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ABSTRACT
We study the dispersion of wind-induced near-inertial oscillations (NIOs) in a fully turbulent

baroclinic mesoscale eddy � eld characterizedby a continuous wavenumber spectrum. The in� uence
of the eddy � eld on the horizontal dispersion of the different NIO modes is analyzed using a vertical
normal mode expansion. Previous studies have identi� ed two dispersion regimes: trapping and
strong dispersion. We examine the modes in physical and spectral space to assess which regime
prevails.

Numerical and analytical results show the prevalence of a trapping regime. For each NIO mode,
there exists a critical horizontal wavenumber, kc , that separates large-scale NIO structures, where
trapping dominates, from the much less energetic small-scale NIO structures, where strong disper-
sion dominates. The maximum ef� ciency of dispersion for scales close to kc concentrates NIO
kinetic energy at these scales.

The wavenumber kc results from a balance between refraction and dispersion. This balance � rst
occurs at the highest wavenumber. Thereafter, kc , which has dimensional expression kc

2 5
p/( ftRm

2 ), decreases with time at a rate inversely proportional to the radius of deformation, Rm , of
the baroclinic NIO mode considered. As a consequence, at any given time, higher NIO baroclinic
mode energy can mostly be found in small-scale negative vorticity structures, such as � laments near
sharp vorticity fronts, whereas lower NIO mode energy is concentratedwithin the core of mesoscale
anticyclonic vortices. For large times, a saturation mechanism stops the time-evolution of kc at a
value close to the peak of the kinetic energy spectrum of the QG � ow � eld.

1. Introduction

Near-inertial oscillations (NIOs), that is internal waves with frequencies close to the
Coriolis frequency, are prominent features of the upper ocean (Webster, 1968). They can
transport the energy input by storms from the surface mixed layer into the water column
(D’Asaro et al., 1995) and may represent an important contributing factor for mixing in the
ocean, since the vertical shear they induce can reduce the Richardson number below 0.25
and trigger mixing events. Considerable observational evidence (see for example Weller,
1982; Kunze and Sanford, 1984; D’Asaro et al., 1995) has emphasized the spatial
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modulation of their horizontal and vertical propagation by mesoscale structures, and this
has led to much theoretical work in the last 15 years (Kunze, 1985; Wang, 1991; Klein and
Treguier, 1995a,b; D’Asaro, 1995a,b; Young and Ben Jelloul, 1997; hereafter YBJ). The
primary mechanism responsible for spatial modulation is the refraction of NIOs by the
vorticity of the mesoscale eddies (Kunze, 1985) or the planetary vorticity gradient
(D’Asaro, 1995a). This refraction can be interpreted as a spatial modulation of the
frequency of these waves by the vorticity � eld, or to be more precise, as a spatial
modulation of the intrinsic frequency of the waves with respect to the lower bound of the
internal wave band.

Some of the studies devoted to the spatial modulation of NIOs by mesoscale eddies and
their subsequent dispersion have investigated their propagation behavior using a ray-
tracing approach (Kunze, 1985). Others have used a vertical normal-mode expansion
(Klein and Treguier, 1995a; Balmforth et al., 1998). These studies have considered mostly
idealized and isolated barotropic mesoscale structures (characterized by a given length
scale) such as a geostrophic jet or an anticyclonic eddy. One important outcome has been
the identi� cation of two horizontal dispersion regimes of the NIOs: the ‘trapping’ regime
and the ‘strong dispersion’ regime. Which regime appears depends on the relative order of
magnitude of the refractive and dispersive effects that is given by the ratio of the length
scale of the mesoscale structure to the Rossby radius of deformation of the NIO baroclinic
mode considered. A large ratio leads to the dominance of the ‘trapping’ regime identi� ed
by Kunze (1985), where NIOs are affected by the local vorticity and disperse slowly.
According to WKB theory, the horizontal wavenumber (k) of the NIOs evolves with time
as Dk/Dt 5 2¹Z, with ¹Z the horizontal vorticity gradient. Inertial waves tend to be
de� ected away from regions of positive vorticity and steered toward regions of negative
vorticity. The spatial structure of the NIO � eld then resembles the vorticity � eld. On the
other hand, a small ratio leads to the dominance of the ‘strong dispersion’ regime where
NIOs disperse quickly and are weakly affected by vorticity. Analytical investigations and
numerical simulations have shown that the spatial structure of the NIO � eld in this regime
resembles not the vorticity but the streamfunction (see Klein and Treguier, 1995a; YBJ).

The goal of our study is to extend the results obtained so far for idealized and isolated
geostrophic structures to a fully turbulent mesoscale eddy � eld characterized by a
continuous wavenumber spectrum over a large range of horizontal scales. This should
allow us to understand the dispersion of NIOs in more realistic situations where mesoscale
structures interact strongly; i.e., where the inverse energy cascade and the direct tracer
cascade are both signi� cant. Such structures have been well documented in regions such as
the Gulf Stream, the Azores Front, and the Antarctic Circumpolar Current, and recent
satellite data have revealed their existence in other regions (Stammer, 1997; Wunsch,
1997). We address several speci� c questions. For a turbulent eddy � eld, does the ‘trapping’
regime or the ‘strong dispersion’ regime dominate? What can be deduced about the spatial
structure of different NIO baroclinic modes? In which mesoscale structures is NIO
dispersion most ef� cient? What are the effects of advection relative to refraction and
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dispersion effects? The present study focuses mostly on the horizontal dispersion of
different NIO baroclinic modes. Implications for the vertical propagation and on the
resulting 3-D distribution of the near-inertial waves will be analyzed in a future study.
Hence, the present work should be considered as a � rst step in understanding 3-D NIO
dispersion in a fully turbulent mesoscale eddy � eld.

In this study, we take advantage of the YBJ framework to describe propagation of NIOs
in a turbulent mesoscale eddy � eld. This approach, unlike WKB approaches, does not
assume an a priori horizontal scale separation between the NIOs and the background � ow.
Therefore, it is well suited to exploring the dispersion of NIOs embedded in a background
� ow characterized by a continuous horizontal wavenumber spectrum, which is our main
purpose. In the present study the background � ow is assumed to be quasi-geostrophic: its
Rossby number is small and its Burger number is O(1). The characteristic horizontal scale
of the NIOs is the same as that of the background � ow but the NIO vertical scale is
assumed to be much smaller than that of the mesoscale eddy � eld (i.e., the NIO Burger
number is much smaller than one). With these scalings, YBJ show that inertial waves are
recovered to leading order, and that departures from perfect inertial oscillations become
appreciable on the slow time scale ts [ (e2f )21, with e2 the Rossby number and f the
inertial frequency. The choice of these scalings allows us to use the simplest formulation of
the NIO equations proposed by YBJ. An additional advantage of using the YBJ approach is
that the derivation of their equations involves an asymptotic reduction of the problem that
� lters out the fast inertial period and isolates the slower subinertial evolution of the
amplitude. Then their equations can easily be incorporated into a model used to simulate
quasi-geostrophic turbulence.

The simplest equation based on the YBJ theory has been incorporated into the
quasi-geostrophic spectral model of Hua and Haidvogel (1986). The NIO equation and the
quasi-geostrophic model are described in Section 2. Numerical results for the horizontal
dispersion of the different NIO modes in both physical and spectral space are described in
Section 3. A simple analytical theory to explain these results is proposed in Section 4.
Finally, the results of this study are discussed in Section 5, and conclusions and prospects
for future work are outlined in Section 6.

2. Formulation of the NIO dispersion problem

a. NIO equations and scalings

Young and Ben Jelloul (1997) consider Boussinesq, inviscid, incompressible and
hydrostatic � ow and linearize about a background geostrophic � ow. The subsequent
derivation involves an asymptotic reduction of the linearized primitive equations using a
multiple scale expansion in e2 that allows one to recover the slower subinertial evolutionof
the amplitude of the near-inertial oscillations on the time scale ts [ (e2f )2 1 introduced
above. To leading order, the NIO velocity � eld, (u, v, w), buoyancy, b, and pressure, p,
are expressed in terms of a complex � eld, A( x, y, z, t), via
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u 1 iv 5 e2if0t A, (1)

w 5 2 1�2 f 0
2N22~Azx 2 iAyz!e

2 if0t 1 c.c., (2)

b 5
i

2
f0~Azx 2 iAyz!e

2if0t 1 c.c., (3)

p 5
i

2
f0~Ax 2 iAy!e

2if0t 1 c.c., (4)

with i complex unity and f 5 f0 1 by the inertial frequency. N( z) is the buoyancy
frequency and a differential operator de� ned by

A 5 ~f 0
2N22A z!z. (5)

Following Flierl (1978) and Gill (1982), if boundary conditionsare rigid lids at top ( z 5 0)
and bottom ( z 5 2H), normal vertical modes can be de� ned as solutions of the
Sturm-Liouville problem:

gm~z! 5 2
1

Rm
2 gm~z!, (6)

with gm the eigenfunctions and 1/Rm
2 the eigenvalues. Rm is the internal Rossby radius of

deformation associated with the mth baroclinic mode. The NIO kinetic energy (u2 1 v2)
can be retrieved directly from the slower subinertial amplitude A by

u2 1 v2 5 A A* 5 u A u 2. (7)

with * denoting the complex conjugate.
Using this approximation, the NIO equation derived by YBJ in the presence of a

background QG � ow takes the dimensional form

]

]t
A 1 J~c , A! 1

if0

2
¹2A 1 i X by 1

Z

2 D A 5 0, (8)

where c and Z [ ¹2c are respectively the streamfunction and relative vorticity of the QG
� ow, and J the Jacobian. The boundary conditions in the vertical are that Az vanish at the
top and bottom of the domain. One important aspect of (8) is that the integral of u A u 2 over
the spatial domain is conserved (see Metzger, 1999).

The second term in (8) corresponds to advection by the geostrophic � ow, the third to
dispersion and the fourth to refraction. The terms ‘advection,’ ‘dispersion’ and ‘refraction’
will be frequently used in what follows, and generally refer to the effect of the different
terms in the governing NIO equation.

The b-effect is expected to play a role in the propagation of NIO energy. However, the
mesoscale eddy � eld considered in this study is such that the RMS amplitude of Z is large
compared to the b-effect. Simulations performed with nonzero b in (8) have con� rmed its
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weak in� uence on NIO dispersion compared to that of Z. Since these are small effects, the
b term has been set to zero in this study.

The derivation of (8) by YBJ makes use of a scaling analysis where the horizontal length
scale L and time scale T [ L/U of the NIOs are assumed to be the same as for the
background QG � ow (U is the velocity scale of the QG � ow). On the other hand, the
vertical scale of the NIOs, lV, is assumed to be much smaller than that of the QG � ow.
More precisely lV ’ eH with e2 5 U/( f0L). Since the QG approximation means that
stretching and relative vorticity terms have the same order of magnitude (i.e., N0

2H2/
f 0

2L2 5 O(1)) the terms in (8), whose amplitudes are in the ratio 1:1:N0
2lV

2/f0LU:1, scale
identically in nondimensional units. YBJ show that, with this choice of the NIO vertical
scaling (which corresponds to q 5 2 in their terminology), the vertical variation of the QG
� ow is incorporated into (8).

Using the preceding scalings, with tildes denoting nondimensional quantities, the NIO
equations become:

]

]t
˜ A 1 J̃~c̃ , ˜ A! 1

i

2
¹̃2A 1

i

2
Z̃ ˜ A 5 2n¹̃4 ˜ A. (9)

with

5 ˜ /~e2L2!. (10)

To ensure consistency with the equations of motion which contain dissipative terms,
appropriate dissipative terms have been added in (9). These can be deduced using the
procedure of YBJ. Their effect is small, but they are necessary both for consistency with
the � ow equations and for numerical stability for large-duration integrations. We use a
hyperviscosity operator to be consistent with the parameterization of dissipative terms in
the QG � ow equations.

b. Vertical normal mode analysis

From now on, tildes are dropped. The equation for A is solved after expanding in
vertical normal modes, using

A~x, y, z, t! 5 O
0

`

Am~x, y, t!gm~z! 5 2 O
1

`

lm
2 Am~x, y, t!gm~z!, (11)

with gm and lm
2 , respectively, the eigenfunctions and eigenvalues of the operator . The

eigenvalue lm
2 is related to the internal Rossby radius of deformation (Rm) of the mth

vertical mode through: lm
2 5 e2L2/Rm

2 . The barotropic component is zero (i.e., A0 5 0),
so all NIO modes are baroclinic. Then the A equation in vertical modes becomes:

] Am

]t
1 O

j,k

em, j,kJ~c j, Ak! 2
i

2

¹2 Am

lm
2 1

i

2 O
j,k

em, j,kZ j Ak 5 2n¹4 Am, (12)
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where

em, j,k 5
1
H E

2H

0

gm~z!g j~z!gk~z!dz (13)

is the triple-interaction coef� cient between modes m , j and k (de� ned in Hua and
Haidvogel, 1986). These triple-interaction coef� cients express the nonlinear energy
transfer between the NIO baroclinic modes. Their values depend strongly on N2( z).

It should be noted that vertical critical layers for NIOs may arise when the change with
depth of the QG vorticity or velocity is comparable or greater than the deviation of the
wave’s intrinsic frequency from the Coriolis frequency (Kunze, 1985). In that case the
expansion (11) is not convergent and the use of a � nite normal mode expansion is not valid.
From (12), such critical layers may arise through the nonlinear energy transfer between
baroclinic modes in the second term (involving the QG velocity) and in the fourth term
(involving the QG vorticity). However, we assume in this study that these nonlinear
transfers are negligible which prevents the appearance of vertical critical layers, at least on
the time scales considered here, and allows the use of a � nite normal mode expansion.

Indeed the chosen N2( z) pro� le corresponds to a summertime strati� cation with the
initial NIO distribution trapped within a shallow surface mixed layer (’30 m thick)
whereas the QG � ow is forced by the instability of a large-scale mean current shear whose
zero crossing is at 1500 m. As a result, the QG � ow is principally captured by the
barotropic and the � rst baroclinic modes while the NIO modes concern much higher
baroclinic modes; i.e., the indices m and k in (12) are much larger than j. We have checked
that in this situation the corresponding triple-interaction coef� cients (de� ned by (13)) are
negligible when m Þ k. Thus, when j 5 1 and k 5 6, em, j,k ’ 1 when m 5 k but em, j,k ’

0 when m Þ k. This ensures that the corresponding nonlinear energy transfers between
different NIO baroclinic modes are negligible, which prevents the appearance of critical
layers, at least on short time scales. This checking has also been done by comparing results
from simulations using both (12) and the following equation

] Am

]t
1 J~c, Am! 2

i

2

¹2 Am

lm
2 1

i

2
Z Am 5 2n¹4 Am, (14)

where the values of the QG velocity and vorticity � elds (assumed to be vertically
homogeneous) are those at 40 m. The results obtained from both sets of simulations are
almost identical for a simulation duration of 15 days. Thus, Eq. (14) can be considered a
valid � rst approximation for the study of the behavior of the different NIO modes. This
equation is equivalent to assuming that the QG � ow felt by the NIOs is barotropic. Then the
only difference in the evolution of the NIO modes comes from their Rossby radius of
deformation Rm (i.e., lm in (14)).

At last, the fact that the NIO baroclinic modes are much higher than the QG modes is
consistent with the assumption considered before about the NIO vertical scales. Indeed if
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we consider the relation Rm
2 /R1

2 5 O(e2), this implies that the NIO vertical scales are much
smaller than that of the QG � ow (i.e., lv ’ eH from the preceding analysis) since these
vertical scales are linked to the internal Rossby radii through f/N (Gill, 1982).

3. Numerical simulations

a. The QG � ow and the initial NIO � eld

The buoyancy pro� le adopted is that of Klein et al. (1998), with the addition of a 30 m
thick surface mixed layer above a 15 m thick seasonal thermocline. This matches
conditionsencounteredduring summer (see also Klein and Treguier, 1995a). As in Klein et
al. (1998), the QG � ow is forced by the baroclinic instability of a vertically sheared zonal
� ow U# ( z) (captured by the � rst baroclinic mode whose zero crossing is at 1500 m) and
damped by a bottom Ekman layer (at z 5 2H) parameterized with a friction coef� cient.
The governing equation for the background � ow is

]q

]t
1 U#

]q

]x
1 J~f, q! 1 b

]f

]x
5 M 1 D , (15)

where f is the perturbed QG streamfunction related to c by c 5 2U# y 1 f. q [ ¹2f 1

( f 0
2N2 2fz)z is the perturbed potential vorticity, M the forcing term and D the dissipation

term. The nondimensionalization of the potential vorticity equation uses the length-scale
L 5 350 km associated with the domain size. This length-scale is chosen to correspond to
7 Rossby radii in the nondimensional domain (0, 2p). The velocity scale is U 5

0.12 m s21 and the time scale is the advective time T 5 L/U 5 33.8 days. The Coriolis
frequency f0 enters the problem only through the � rst internal Rossby radius R1 5 50 km.
The vertical scale is H 5 5400 m. A basic run at 256 3 256 resolution with 16 vertical
modes was carried out to obtain a turbulent mesoscale eddy � eld in statistical equilibrium.
Figure 1 shows the streamfunction and vorticity � elds of the QG � ow at a depth of 50 m at
the end of this run after 3.3 years. The QG � ow is mostly captured by the barotropic and the
� rst baroclinic mode (whose zero crossing is at 1500 m), and hence this � ow is essentially
homogeneous in the vertical from the surface down to 400 m. This simulated turbulent
quasi-geostrophic � ow is similar to that described in Klein et al. (1998), which indicates
that the additional mixed layer has no effect on this � ow.

The vorticity � eld (Fig. 1b) displays the usual emergence of small-scale coherent
vortices and strong vorticity fronts as well as a large number of � laments. Figure 1c shows
the vorticity spectrum at 100 m. This spectrum is characterized by a spectral peak at k 5 5
and a k2 1.5 spectral slope. This means that the most energetic vorticity gradients are
captured by the smallest scales. Since the relative vorticity is the Laplacian of the
streamfunction, the streamfunction spectrum has a k2 5.5 slope, which explains the
dominance of large scales in this � eld (Fig. 1a). This QG � ow � eld is used as the initial QG
� ow for the integration of the NIO equation.

The initial NIO distribution is given by the large-scale disturbance:
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Am~x, y, 0! 5 um~sin x 1 i cos x!, (16)

which corresponds to a horizontally homogeneous NIO kinetic energy � eld. To verify that
the chosen summertime strati� cation leads to a decoupling between the NIO and QG
vertical modes, we consider an initial NIO disturbance trapped within a 30 m thick surface
mixed layer, a situation close to that used by Wang (1991), Klein and Treguier (1995a) and
Balmforth et al. (1998). The resulting normal-mode analysis displays that the NIO � eld is

Figure 1. Contour maps (a, b) and spectrum (c) of the initial streamfunction (a) and vorticity (b, c)
� elds at a depth of 100 m. In (a, b) dashed and continuous contours correspond, respectively, to
negative and positive values relative to the mean.
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mostly captured by the 6th baroclinic mode. This indicates that the vertical scale of the
NIOs is much smaller than that of the QG � ow.

Since this is a process study, the NIO modes have been nondimensionalized so that the
modes initially have not only the same spatial distribution but also the same amplitude; i.e.,
um 5 1 for all m in (16). This choice allows us to compare directly the behavior of
different NIO modes and examine the mechanisms involved. From these initial conditions,
since (14) is linear in terms of NIO modes, the behavior of the modes now only differs
because of the value of lm. Subsequent runs involve NIO Eq. (14) integrated in time along
with the evolving background QG � ow.

Figure 1. (Continued)

2001] 705Klein & Smith: Horizontal dispersion of near-inertial oscillations



b. Horizontal dispersion of the NIO baroclinic modes

In order to characterize the evolution of the modes, we examine the spatial distribution
and spectra of both the NIO subinertial amplitude, Am, and the NIO speed, =um

2 1 vm
2 5

u Amu , of the different modes. The NIO amplitude is the most important quantity to
investigate since the total kinetic energy, which involves all the modes, requires the use of
� rst (11) and then (7). However, the NIO speed, u Amu , leads to a better characterizationof
horizontal dispersion of the different modes, in particular of the spatial distribution of the
kinetic energy associated with these modes.

Comparing Figure 1b and Figure 2 reveals a very weak evolution of the vorticity � eld
over 7 days. On the other hand, the different NIO modes exhibit signi� cant changes, which
differ between modes, despite identical initial distributions. To compare the evolution of
the lower and higher modes, we examine the spatial distribution of modes m 5 3 and 7
(whose Rossby radius are, respectively, 16 and 5 km) after 7 days of simulation. Figure 3a
shows the imaginary part of the amplitude of mode 3. Its spatial distribution is similar to
that of its real part (not shown). It is characterized by patchy mesoscale structures which
are almost isotropic and whose extrema are principally located within mesoscale eddies.
The spatial variability of these structures matches the vorticity � eld more closely than the
streamfunction � eld. The NIO speed distribution of this mode (Fig. 3b) reveals highly
energetic structures, whose shape is slightly more stretched, with maxima mostly located
within anticyclonic eddies.

The NIO amplitude distribution of the higher modes (mode 7 on Fig. 4a) is characterized

Figure 1. (Continued)
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by much smaller structures which are mostly anisotropic, whose extrema are now located
near strong vorticity fronts and in the cores of small-scale coherent vortices. The
correlation with the vorticity � eld is again signi� cant, but the width of the NIO structures is
smaller than that of mode-3 structures and their geometries are different. The NIO speed of
mode 7 (Fig. 4b) reveals a sharp gradient of NIO kinetic energy in regions of intense
vorticity fronts, with a strong depletion of NIO energy on the positive vorticity side and a
concentration of NIO energy on the negative vorticity side, which is reminiscent of the

Figure 2. Contour map of the vorticity � eld 7 days after the initial time. Dashed and continuous
contours correspond, respectively, to negative and positive values relative to the mean.
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‘trapping’ regime. The corresponding energetic structures are mostly thin � lamentary
structures. NIO kinetic energy is expelled from the small-scale cyclonic vortices, and
concentrated in small-scale anticyclonic vortices. For both lower and higher modes, the
departure from the initial homogeneous � eld is quite rapid: after 3 days, the spatial
distribution is similar to that after 7 days but with half the amplitude. This emphasizes the
short time scale associated with the effects of the QG � ow on NIOs.

Figure 3. Contour maps of the imaginary part (Im( A)) of NIO amplitude (a) and NIO speed
(=u2 1 v2 5 u A u ); (b) associated with the 3rd mode, 7 days after the initial time. Dashed and
continuouscontours correspond, respectively, to negative and positive values relative to the mean.
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Figure 5 and subsequent � gures show the spectra of modes 3 (with Rossby radius 16 km)
to 15 (with Rossby radius 2.4 km). These spectra reveal a sharp discontinuity of the
spectral slope at a wavenumber, ks, which we shall call speci� c wavenumber, which
depends on the mode. The speci� c wavenumbers of lower modes are smaller than those of
higher modes. For wavenumbers lower than the speci� c wavenumber, the spectra of the
different baroclinic modes are almost identical and display a k2 1.5 spectral slope. For
higher wavenumbers, amplitudes are smaller for lower modes than for higher modes and
the spectra display a k2 5.5 slope. These two spectral slopes are close to the vorticity

Figure 3. (Continued)
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(k2 1.5) and streamfunction (k2 5.5) slopes, which suggests that the large-scale (respec-
tively small-scale) NIO � eld is correlated to the large-scale vorticity � eld (respectively the
small-scale streamfunction � eld). This result is reminiscent of previous results (see Klein
and Treguier, 1995a and YBJ) on the ‘trapping’ and ‘strong dispersion’ regimes that should
characterize the dynamics of the large and small NIO scales, respectively. The time
evolution of the spectra displays another interesting feature: for 6 , k , ks spectral

Figure 4. Contour maps of the imaginary part (Im( A)) of NIO amplitude (a) and NIO speed
(=u2 1 v2 5 u A u ); (b) associated with the 7th mode, 7 days after the initial time. Dashed and
continuouscontours correspond, respectively, to negative and positive values relative to the mean.
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amplitudes grow with time for all modes while for k . ks the spectral amplitude of each
mode is steady. As a result, the speci� c wavenumbers decrease with time for all baroclinic
modes. Later, the spectral amplitude still increases in time, although weakly and only in the
6 , k , ks region (compare Fig. 5a and Fig. 5b). Figure 6 shows the spectra of kinetic
energy in the NIO baroclinic modes (using (7) integrated over H). These spectra display a
maximum near ks, which corresponds to the dominant wavelength of the NIO waves. This
means that the kinetic energy of NIO modes is concentrated in scales close to ks

2 1.
Thus, the nature of the horizontal dispersion of NIOs induced by a turbulent mesoscale

Figure 4. (Continued)
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eddy � eld depends on whether large or small scales are examined. The ‘trapping’ regime
affects larger, energetic, scales, and the ‘strong dispersion’ regime affects smaller, less
energetic, scales. The horizontal wavenumber that separates these two regions is lower for

Figure 5. Spectra of the NIO baroclinic modes 3, 5, 7, 9, 11, 13, 15 (respectively, A to G) after a
simulation duration of 3.5 days (a) and 7 days (b).
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lower baroclinic modes and higher for higher modes. Furthermore, it varies with time,
becoming smaller as time increases. One might wonder whether, for very long times, the
‘strong dispersion’ regime could affect all scales for the lower modes, in which case the

Figure 6. Kinetic energy spectra of the NIO baroclinicmodes 3, 5, 7, 9, 11, 13, 15 (respectively,A to
G) after a simulation duration of 3.5 days (a) and 7 days (b).
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spatial structure of those modes would resemble the streamfunction � eld. A long numerical
simulation (over 21 days) reveals saturation that stops the decrease of this speci� c
wavenumber near the peak of the vorticity spectrum (i.e., k 5 5).

These new features displayed by the numerical results raise several questions. How may
we explain the spatial structure of the NIOs, in particular the sharp discontinuityin the NIO
spectral slope? Is there a typical length scale for NIO kinetic energy structures resulting
from dispersion by the mesoscale eddy � eld? Which dispersion regime dominates in those
structures, the ‘strong dispersion’ regime or the ‘trapping’ regime?

4. Analysis using a simpli� ed NIO equation

Additional numerical simulations have been performed without the advective terms in
(14). Results in both physical and spectral spaces are similar to those obtained with the full
NIO equation. Comparing Figure 5a and Figure 7b reveals that, for each mode, the
discontinuity in the spectral slope occurs at the same speci� c wavenumber. Thus, the NIO
evolution is mostly driven by the refraction term (involving the vorticity) and the
dispersion term present in (14) (respectively the third and fourth term of (14)). To
understand the appearance of the discontinuity in the spectral slope, we examine the NIO
equation in Fourier space after further simplifying the refraction term. Using

X~x, y, t! 5 O
p52N

p5N O
q52N

q5N

X̂pq~t!e
i~px1qy!, (17)

with X any variable, p and q the horizontal wavenumbers and N the number of horizontal
modes considered, (14) discarding advection and diffusion becomes (subscript m is
dropped hereafter):

d Âpq

dt
1

i

2

k2 Âpq

l2 1
i

2 O
p5p16p2

O
q5q16q2

Ẑp1q1
Âp2q2

5 0. (18)

with k2 5 p2 1 q2. Initially, from (16), A is a large-scale � eld such that u Â10 u 5 1 and

u Âpq u 5 0 otherwise. We assume that there is a spectral gap between the initial

large-scale � eld and the A-scales produced later and that u Âpqu ,, u Â10 u for p, q . 2.
Such a gap is observed during early times (the � rst two days) of the numerical simulations.
From this assumption, the refraction term can be approximated as:

O
p5p16p2

O
q5q16q2

Ẑp1q1 Âp2q2 < O
p5p161

Ẑp1q Â10 < Ẑpq Â10, (19)

where the last near-equality is due to the fact that we are interested in the higher
components of A, where the difference between Ẑp6 1,q61 and Ẑpq is unimportant. The
resulting NIO spectral equation decouples for each wavenumber:

714 [59, 5Journal of Marine Research



d Âk

dt
1

i

2

k2 Âk

l2 1
i

2
Ẑk Â10 5 0, (20)

where Ak is shorthand for Apq.
We now examine the analytical solution of (20) to explain the appearance of the

discontinuous spectral slope and to characterize the different dispersion regimes involved.
Using zero initial condition, the solution is:

u Âku 2 5 2 u Ẑ u 2 u Â10u 2
l4

k4 F 1 2 cos X k2

2l2 t D G , (21)

with period

T~k! 5
4pl2

k2 , (22)

that depends on the horizontal wavenumber k and is directly related to the dispersion
effects.

We focus on the spectral region corresponding to k . 5 since the slope discontinuities
occur mostly in that region. In that part of the spectrum, the vorticity can be approximated
as:

u Ẑ u 2~k! < a z
2k21.5 (23)

with az a constant. In order to examine the properties of u Âk u 2 we de� ne a critical
wavenumber, kc, that follows from (21):

kc
2 5

pl2

t
. (24)

Now, at a given time t, the simpli� ed solutions of u Âk u 2 for k 5 kc, k , kc and k . kc are
the following:

For k 5 kc, the solution equals the average value:

u Âkc u 2 5 2 u Ẑ u 2 u Â10u 2l4kc
24 < 2 u Â10u 2a z

2l4kc
25.5.

For this particular wavenumber, this solution expresses that an exact equilibrium
between dispersion and refraction processes (expressed respectively by the second
and third terms in (20)) has been attained.
For k , kc (starting from k 5 kc=2/ 2), the period of the solution is such that
T(k) .. t (using (22) and (24)). Consequently, at time t, the amplitude can be
approximated by:

u Âku 2 <
u Ẑ u 2 u Â10u 2

4
t2 <

u Â10u 2az
2

4
k21.5t2. (25)
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In this part of the spectrum, the solution is growing with time and is proportional

to the vorticity, Ẑ(k), and the background NIO, Â10. Dispersion processes are
weak and act to concentrate NIO energy in negative vorticity regions. This
corresponds to the ‘trapping’ regime. In this part of the spectrum, the spatial
structure of the NIO � eld is imposed by the vorticity � eld and the solution behaves
like k21.5.
For k . kc (starting from k 5 kc=2), the period of the solution is such that t ..

T(k). The NIO solution experiences oscillations (with a period that decreases as k

increases) about a mean value of:

u Âku 2 5 2 u Ẑ u 2 u Â10u 2
l4

k4 < 2 u Â10u 2az
2l4k25.5. (26)

This mean value behaves like k25.5 and corresponds to the ‘strong dispersion’
regime of YBJ. The spectral slope is that of the streamfunction spectrum. The
oscillation around this mean value corresponds to NIO energy concentration
(when the refraction term in (20) overcomes the dispersion term) followed by an
NIO energy relaxation (when the dispersion term in (20) overcomes the refraction
term).

We now examine at which scale dispersive processes are most ef� cient. Dispersion term

in (20) can be characterized by Dt 5 k2 Âk/~2l2!, and (25) and (26) lead to:

u D t u 2 < 5 u Â10u 2a z
2

16l4 t2k2.5 if k , kc

u Â10 u 2az
2

2
k21.5 if k . kc

. (27)

These relations show that the spectrum of dispersion is characterized by a spectral peak at
k ’ kc. So the maximum ef� ciency of dispersion occurs at k 5 kc. In consequence, the
critical wavenumber kc should characterize the scale of the structures where NIO energy is
concentrated as shown in the numerical simulations (see Fig. 6). This important property is
due to the fact that the spectral slope of vorticity is gentler than k24.

This analysis explains the shape of the numerical NIO spectrum, in particular the
existence of a discontinuity of the spectral slope. It also yields a simple estimate of the
critical wavenumber that characterizes this discontinuity.As shown in the next section, this
critical wavenumber, kc, is quite close to the speci� c wavenumber, ks, of the numerical
results. From (24), for a given wavenumber, dispersion is equal to refraction at the end of
the � rst phase. This should affect � rst the highest wavenumbers. If kN designates the
highest wavenumber, dispersion equals refraction at time t 5 pl2kN

2 2.
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5. Discussion

The preceding analysis does not take into account processes such as the wave-wave
interactions between the NIO subinertial amplitude, A, and background vorticity, Z,
that lead to nonlinear energy transfer between the NIOs horizontal modes. These
interactions have been assessed using two simulations, one corresponding to (20) and
one to (14) with the advection terms suppressed. Comparing the two for a given
baroclinic mode reveals little change of the spatial heterogeneity properties of the NIO
� elds during the � rst 2 days. After 3.5 days, both � elds are still close, and the only
change is the larger amplitude of the NIO � eld obtained with (20). Analysis of the NIO
spectra (see Fig. 7) reveals that these interactions are non-negligible after 3.5 days.
They reduce the amplitude at large scales (k , ks), while small scales (k . ks) are
unchanged. A more careful examination shows that they reduce the amplitude of the
Z A term in the NIO equation, which is still acting to force A through the vorticity Z.
The high correlation of A with Z is unchanged. Thus, these wave-wave interactions
do not change the nature of the dynamical regimes identi� ed in the preceding analysis.
The speci� c wavenumber ks is slightly larger than kc (given by (24)), and kc is a lower
limit for ks. For large times, the wave-wave interactions are responsible for the
saturation that stops the evolution of ks.

Comparison of the reference simulation described in Section 3 (cf. Figs. 5 and 6)
with the simulation with the advection term suppressed (cf. Fig. 7b) reveals that
advection processes have an essentially negligible effect during the � rst 3 days. Later,
these processes become non-negligible, although they do not greatly affect the spatial
heterogeneity of the NIO during the next 4 days: the direct cascade induced by
advection slows the rate of decrease of the speci� c wavenumber ks. These cascade
effects also amplify the smallest NIO scales. As a result, the NIO spectral slopes are
slightly gentler at high wavenumber. In physical space, this makes the small-scale NIO
structures more stretched.

The good correspondence between the simple analytical � ndings and the different
numerical simulations suggests that kc, given by (24), is a reasonable estimate of the
speci� c wavenumber ks, and thus of the characteristic scale of the structures at which
NIO kinetic energy becomes concentrated. This estimate should be considered as a
lower limit. The preceding analytical analysis also highlights the physical mechanisms
that drive the evolution of the NIOs embedded in a QG � ow � eld. In summary, the
vorticity structures of different sizes produce NIO spatial structures of the same size
with an amplitude proportional to that of the vorticity. However, the effects of the
dispersion mechanisms concentrate the NIO kinetic energy in structures with scales
close to kc

21. For these speci� c spatial structures, the vorticity effects equilibrate the
dispersion effects. A simple physical interpretation is suggested by Metzger (1999),
who characterized the NIO equation for a simple case by a “dispersivity” parameter
analogous to the diffusivity associated with passive scalar diffusion processes. From
the nondimensional NIO equation (14), the dispersivity associated with the mth
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baroclinic mode is hm 5 lm
22. Then the length scale (d) over which the tracer is

dispersed is given by d2 5 phmt. This is the scale given by kc (see (24)). The
dimensional forms of kc and d2 are kc

2 5 p/f0tRm
2 and d2 5 pf0tRm

2 , respectively.

Figure 7. Spectra of NIO amplitude of the baroclinic modes 3, 5, 7, 9, 11, 13, 15 (respectively,A to
G), 3.5 days after the initial time, obtained with a simulation corresponding to (20) (a) and with a
simulation corresponding to (14) with the advection terms suppressed (b).
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6. Conclusion

The present study sheds new light on NIO dispersion in a mesoscale eddy � eld. The
trapping regime dominates the dispersion of the NIOs, with the important consequence that
the NIO spatial distribution matches the QG vorticity � eld more closely than the
streamfunction � eld. This is apparent in Fig. 8(a–b) which shows the vorticity and
streamfunction � elds � ltered to retain only Fourier modes k , ks (with ks corresponding to
the speci� c wavenumber of the 3rd baroclinic mode). Comparison with Figure 3(a–b)
shows that the NIOs more closely resemble the vorticity � eld.

This study also reveals the existence of a speci� c wavenumber, ks, that separates the
large-scale NIO structures where the ‘trapping’ regime dominates from the less energetic
small-scale NIO structures where the ‘strong dispersion’ regime dominates. The usual
interpretation (Kunze, 1985) would be that lower horizontal wavenumber k implies
frequencies closer to f which would be more susceptible to vorticity trapping while high k
implies higher frequencies which will be freer to disperse. However, the present results
reveal a conspicuous discontinuity in the dynamical regimes, which occurs at k 5 ks. The
small-scale (k . ks) NIO structures do not grow in time, while the large-scale (k , ks)
structures are active and grow, at least in the initial linear regime (Fig. 5a–b). The
ef� ciency of the dispersion mechanisms for scales close to ks leads to a strong concentra-
tion of NIO kinetic energy at these scales. This feature is due to the competition between
the effects of vorticity structures and the dispersion of NIO structures that have the same
horizontal scale (ks

2 1). NIO energy associated with the higher vertical modes is mostly
found in small-scale negative vorticity structures like � laments near the sharpest vorticity
fronts, while the NIO energy associated with the lower modes is concentrated within the
mesoscale anticycloniceddies. For large times, saturation stops the time evolutionof ks at a
value close to the kinetic energy spectrum peak of the QG � ow � eld.

One important consequence is that the length scale characterizing the most energetic
NIO structures increases with time, and this increase is faster for the lower modes. Thus,
the QG structures that signi� cantly affect the NIO energy of a given baroclinic mode differ
(with respect to both scale and location in physical space) from those that affect the NIO
energy of other modes. These results are important since a turbulent mesoscale eddy � eld
cannot be considered as a simple juxtaposition of geometrical structures with different
length scales: in such a � eld, small-scale structures are embedded in larger structures.
Since the vertical propagation of NIO energy results from the combination of different
baroclinic modes, this should lead to a 3-D distribution of the near-inertial oscillations
quite different from that resulting from each QG structure independent of the others.

As mentioned in the introduction, this study is a � rst step toward understanding 3-D NIO
dispersion in a fully turbulent mesoscale eddy � eld. Here we have focused mostly on the
horizontal dispersion of the different NIO baroclinic modes in a situation that corresponds
to a summertime strati� cation for which the vertical propagation of the NIOs is very weak
(see also Klein and Treguier, 1995a). Such a situation makes the nonlinear energy transfer
between the different NIO baroclinic modes to be negligible and thus prevents the
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appearance of vertical critical layers at least for the timescales considered. It is equivalent
to assuming that the QG � ow is barotropic. However for a wintertime strati� cation,
corresponding to a large mixed-layer depth, the approach using a vertical normal mode
expansion is no longer valid when a baroclinic QG � ow is present, even for a short
time-duration of 15 days. In this situation nonlinear energy transfer between baroclinic
NIO modes may affect their horizontal dispersion and lead to the appearance of vertical
critical layers (see for example Eriksen (1993) for a description of the internal-wave modal

Figure 8. Contour map of the � ltered streamfunction (a) and vorticity (b) with k , k s (with ks

corresponding to mode 3) after 7 days.
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response to wind-forcing as function of mixed-layer thickness). Two extensions of this
work, for a wintertime strati� cation, should be undertaken. The � rst concerns the
implications of the present results on the vertical propagation of NIOs embedded in a
barotropic QG � ow. This requires an approach using a much higher resolution in the
vertical and based on the examination of individual structures. Although cpu intensive, this
extension can be handled within the YBJ framework. The second is to consider the effects
of the nonlinear energy transfers between different NIO baroclinic modes that occur
through the vorticity and advection terms when the QG � ow is baroclinic. In this situation a

Figure 8. (Continued)
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preliminary study of the time scale involved in the appearance of vertical critical layers
should be undertaken.

Another direction to explore is the role of the wave-wave interactions.The NIO equation
(8) is based on the assumption that they are negligible, which is justi� ed from the scalings
used. However some previous studies have produced arguments showing that, even when
the NIO Rossby number is formally in� nite, these interactions are still negligible. Klein
and Treguier (1995a) found that simulationsover 20 inertial periods with and without these
nonlinear terms produced identical results. In another study, Klein and Treguier (1995b)
investigated the role of these interaction terms more closely. Both numerical and asymp-
totic analysis showed that these terms cancel. Nevertheless one may wonder whether, when
NIOs concentrate in small-scale vorticity structures, interaction terms could become
signi� cant and be a sink for trapped inertial energy. Again, previous results indicate that
this is not the case. McComas and Muller (1981) and Kunze (1985) argue that the energy
exchange with the mean � ow or with the higher frequency internal waves does not provide
a sink for trapped near-inertial wave energy. Kunze et al. (1995) described observations in
a warm ring vortex that convincingly demonstrated this point. Shear instability still
remains the most plausible sink. However, a quantitative test should be undertaken to
better understand the role of these terms.
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