FN Archimer Export Format PT J TI Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime BT AF LEVY, Marina KLEIN, Patrice TREGUIER, Anne-Marie AS 1:;2:;3:; FF 1:PDG-DRO-DOPS-LPO;2:;3:; C1 Univ Paris 06, Lab Oceanog Dynam & Climatol, LODYC, F-75252 Paris 05, France. IFREMER, Ctr Brest, LPO, F-29280 Plouzane, France. C2 UNIV PARIS 06, FRANCE IFREMER, FRANCE SI BREST SE PDG-DRO-DOPS-LPO IN WOS Ifremer jusqu'en 2018 copubli-univ-france IF 1.466 TC 315 UR https://archimer.ifremer.fr/doc/2001/publication-800.pdf LA English DT Article DE ;Oligotrophy;Phytoplankton production;Vorticity gradient;Eddy field;Mesoscale physics AB Using a protocol of numerical experiments where horizontal resolution is progressively increased, we show that small-scale (or sub-mesoscale) physics has a strong impact on both mesoscale physics and phytoplankton production/subduction.Mesoscale and sub-mesoscale physics result from the nonlinear equilibration of an unstable baroclinic jet. The biogeochemical context is oligotrophy. The explicitly resolved sub-mesoscales, at least smaller than one fifth of the internal Rossby radius of deformation, reinforce the mesoscale eddy field and contribute to double the primary production and phytoplankton subduction budgets. This enhancement is due to the reinforced mesoscale physics and is also achieved by the small-scale frontal dynamics. This sub-mesoscale physics is associated with density and vorticity gradients around and between the eddies. It triggers a significant small-scale nutrient injection in the surface layers, leading to a phytoplankton field mostly dominated by fine spatial structures. It is believed that, depending on wind forcings, this scenario should work alternately with that of Abraham (1998) which invokes horizontal stirring of nutrient injected at large scales. Results also reveal a strong relationship between new production and negative vorticity, in the absence of wind forcing and during the period of formation of the eddies. PY 2001 PD JUN SO Journal of Marine Research SN 0022-2402 PU Yale University VL 59 IS 4 UT 000171207400003 BP 535 EP 565 ID 800 ER EF