Impact of the oyster Crassostrea gigas on a microbial community in Atlantic coastal ponds near La Rochelle

Type Article
Date 2000-10
Language English
Author(s) Dupuy Christine, Pastoureaud Annie, Ryckaert Mireille, Sauriau Pierre-Guy, Montanie Hélène
Affiliation(s) Ctr Rech Ecol Marine & Aquaculture, UMR 10, IFREMER, CNRS, F-17137 Lhoumeau, France.
Univ La Rochelle, Lab Biol & Environm Marine, F-17042 La Rochelle, France.
Source Aquatic Microbial Ecology (0948-3055) (Inter-Research), 2000-10 , Vol. 22 , N. 3 , P. 227-242
DOI 10.3354/ame022227
WOS© Times Cited 16
Keyword(s) Trophic link, Bacteria, Protists, Microbial food web, Coastal pond, Food source, Oysters, Bivalve
Abstract To assess the in situ impact of oysters Crassostrea gigas on planktonic protist and bacteria communities and the potential contribution of protozoa to their food resource intake, the abundance and the diversity of protists and bacteria were followed in 2 Atlantic coastal ponds, with and without oysters. The protist biomass in such ponds was high, with a maximum in spring of 982 mug C l(-1) and a minimum in winter of 179 pg C l(-1). Whatever the season, the presence of oysters (20 m(-2) corresponding to an average of 23 mg dry weight m(-2)) induced a significant decrease in >5 pm protist abundance. On the contrary, planktonic organisms <5 pm, such as Chlorophyta flagellates and bacteria, developed similarly in both ponds. It can be assumed that such depletion in micro-sized protists was especially related to the grazing activity of C. gigas, which efficiently retains >5 pm particles. In spring, oyster grazing triggered dramatic changes in the protist community by lowering the taxonomic diversity. In autumn and winter, the presence of oysters deeply influenced the taxonomic structure of the protist communities: > Fun protists could only develop in the control pond, whereas they were removed by filtration in the oyster pond; on the contrary, >5 Fun protists that were not retained were favoured in the oyster pond. The results showed that hetero/mixotrophic protists represent an important potential resource in coastal ponds: flagellates >5 pm were the main protist resource for C. gigas; ciliates represented the second resource, with a substantial contribution in autumn; diatoms and dinoflagellates, though efficiently removed, represented a weak carbon resource. Our study supports the hypothesis that oysters may access the strong bacterioplanktonic production through hetero/mixotrophic protists, which would thus allow the transfer of carbon from the microbial loop towards C. gigas.
Full Text
File Pages Size Access
publication-822.pdf 16 239 KB Open access
Top of the page

How to cite 

Dupuy Christine, Pastoureaud Annie, Ryckaert Mireille, Sauriau Pierre-Guy, Montanie Hélène (2000). Impact of the oyster Crassostrea gigas on a microbial community in Atlantic coastal ponds near La Rochelle. Aquatic Microbial Ecology, 22(3), 227-242. Publisher's official version : https://doi.org/10.3354/ame022227 , Open Access version : https://archimer.ifremer.fr/doc/00000/822/