FN Archimer Export Format PT J TI Dietary probiotic live yeast modulates antioxidant enzyme activities and gene expression of sea bass (Dicentrarchus labrax) larvae BT AF TOVAR-RAMIREZ, D. MAZURAIS, David GATESOUPE, J. F. QUAZUGUEL, Patrick CAHU, Chantal ZAMBONINO-INFANTE, J. L. AS 1:1;2:1,2;3:1,2;4:1,2;5:1,2;6:1,2; FF 1:;2:PDG-DOP-DCB-PFOM-ARN;3:;4:PDG-DOP-DCB-PFOM-ARN;5:PDG-DOP-DCB-PFOM;6:; C1 IFREMER, UMR1067, F-29280 Plouzane, France. INRA, UMR1067, F-64310 St Pee Sur Nivelle, France. C2 IFREMER, FRANCE INRA, FRANCE SI BREST SE PDG-DOP-DCB-PFOM-ARN PDG-DOP-DCB-PFOM IN WOS Ifremer jusqu'en 2018 copubli-france copubli-p187 IF 2.044 TC 129 UR https://archimer.ifremer.fr/doc/00002/11299/7881.pdf LA English DT Article DE ;Antioxidant enzymes;Probiotics;Debaryomyces hansenii;Dicentrarchus labrax AB The main goal of this work was to determine the effect of dietary live yeast Debaryomyces hansenii on the enzymatic antioxidative status of sea bass Dicentrarchus labrax larvae. Growth, activity and expression of the main antioxidative enzymes: catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase (SOD), and heat shock protein (HSP70) were measured in sea bass larvae at 23 and 48 days after hatching. Larvae were fed on two microdiets: group one, fed microdiet containing live yeast and the control group fed microdiet without yeast. Heat shock protein 70 showed the same expression levels in both fish larvae fed yeast and the control diet. The group fed D. hansenii showed highest growth and lower activity and expression levels of GPX and SOD compared to fish fed control diet. In our work the differences in activity and gene expression patterns could only be attributed to the presence of yeast, assuming a possible involvement of superoxide anion retention in fish larvae, which could represent importance to the host to increase cell or tissue responsiveness to growth- and/or differentiation-enhancing factors. PY 2010 PD FEB SO Aquaculture SN 0044-8486 PU Elsevier Science Bv VL 300 IS 1-4 UT 000275579400021 BP 142 EP 147 DI 10.1016/j.aquaculture.2009.12.015 ID 11299 ER EF