Mn labelling of living oysters: Artificial and natural cathodoluminescence analyses as a tool for age and growth rate determination of C. gigas (Thunberg, 1793) shells

Franck Lartauda,b,* , Marc de Rafelis a, Michel Ropert c, Laurent Emmanuel a, Philippe Geairond and Maurice Renarda

a UPMC Univ Paris 06, UMR 7193 ISTeP, Laboratoire Biomimérisations et Environnements sédimentaires, case postale 116, 4 place Jussieu, 75252 Paris cedex 05, France
b IUEM-UBO, UMR CNRS 6539, Lab. Sciences de l'Environnement Marin (LEMAR), Technopôle Brest-Iroise, Place N. Copernic, 29280 Plouzané, France
c Ifremer, Laboratoire Environnement Ressource de Normandie, Avenue du Général de Gaulle, BP 32, 14520 Port-en-Bessin, France
d Ifremer, Laboratoire Environnement Ressource des Pertuis Charentais, Avenue de Mus de loup, 17390 La Tremblade, France

*: Corresponding author: Franck Lartaud, email address: franck.lartaud@obs-banyuls.fr

Abstract:

We developed a growth model for Crassostrea gigas oyster shells based on the use of in situ temporal manganese markings to calibrate natural cathodoluminescence (CL) changes in the shell hinge sections. A 30 min to 4-h exposure period with Mn²⁺ (90–120 mg l⁻¹) was sufficient to create a detectable mark in the shells. This makes the Mn²⁺ markings the fastest mollusc shells marking technique to date. The natural CL from juvenile and adult shells cultured in four standard shellfish-farming locations along the English Channel and French Atlantic coasts, exhibited a seasonal pattern (maximum CL intensity occurring during summer periods, minimum CL intensity occurring during winter). Hydrobiological data recorded at Baie des Veys site allows us to attribute the seawater temperature as the main parameter controlling CL of shells. Chlorophyll a and seawater manganese concentration were not decisive in the luminescence intensity of the shells. A relationship between oyster hinge growth and the length of shells makes the umbo investigations a promising tool for oyster-farming and/or wild stock assessments. Shell growth varied at spatial and temporal scales (higher growth rates were observed during summer–autumn and lower during the winter period), depending on seawater temperature changes. Sub-monthly Mn²⁺ markings support the fact that shell deposition can occur under temperatures below 6 °C, which has to be taken into account for both shellfish production and environmental monitoring derived from chemical compositions of the shells. Finally, our results point out the efficiency of age and shell growth rate determination by CL analysis in further shellfish ecosystem researches.

Keywords: Oyster shells; Crassostrea gigas; Manganese markings; Cathodoluminescence; Seasonal growth patterns
1. Introduction

The *Crassostrea gigas* world production amounted to 4.6 million tons in 2006. In France alone, 116,150 tons were produced in 2006, which represents approximately a global turnover of 325 thousands US dollars (FAO, 2008). Oyster-farming is thus an important economic supply for many countries. Understanding the modulations of shell growth rate appears fundamental for the shellfish farming so does the research for better growth locations as well as the study of life cycle to avoid summer mortality (Samain and McCombie, 2007). Moreover, it is needed to determine age and shell growth rate to assess the proliferation dynamic of wild oyster populations (Meistertzheim, 2008).

Sclerochronology, the zoological counterpart of dendrochronology, allows the determination of ontogenic ages of bivalves (Hudson et al., 1976; Tanabe, 1988; Jones and Quitmyer, 1996; Richardson, 2001). As bivalve shells were formed by incremental growth, the analysis of skeletal growth patterns from different environmental settings, including marine (Jones, 1983; Chauvaud et al., 1998; Schöne et al., 2003; Richardson et al., 2004) and freshwater bivalve mollusks (Checa, 2000; Kaandorp et al., 2003; Schöne et al., 2004; Verrecchia, 2004), provide clues to determine the age and growth rate of the shells. Shell growth varies cyclically and results in the formation of distinct daily (Goodwin et al., 2001; Schöne et al., 2002; Chauvaud et al., 2005), fortnightly (Schöne, et al., 2003; Verrecchia, 2004) and annual growth lines (Jones, 1980; Witbaard et al., 1994; Marchitto et al., 2000). Many bivalves decelerate their shell growth once per year during seasonal temperature extremes, seasonal food scarcity or annual reproduction cycles (Jones, 1983; Richardson, 2001; Schöne and Giere, 2005). Counting growth increments or growth lines can enable precise calendar dating of each shell portion and estimation of ontogenetic age, life span, onset of maturity, etc. In addition, shell carbonate contains valuable information on habitat
changes that occurred during lifetime. For example, shell growth rates may vary with
temperature and food supply (Jones et al., 1989; Hawkes et al., 1996; Chauvaud, et al., 1998;
Langlet, 2002; Lartaud et al., 2006). Geochemical data (stable carbon and oxygen isotopes,
trace and minor element ratios) can also provide proxy data for environmental and
physiological conditions (Killingley and Berger, 1979; Lazareth et al., 2003; Gillikin et al.,
2005; Lartaud, 2007; Wanamaker et al., 2007).

Traditionally, growth/age model of oysters are obtained using biometric methods such
as the volume of each valve (Higuera-Ruiz and Elorza, 2009), the weight index (Higuera-Ruiz
and Elorza, 2004), the shell thickness and the length of valve (dorsal-ventral measurements;
Alzieu et al., 1982). Another sclerochronological approach consists in a study of the
ligamental area of oyster shells where skeletal growth breaks, associated with concave
bottoms, correspond to annual growth increments (Lawrence, 1988; Kirby et al., 1998; Kirby,
2001; Lartaud, et al., 2006) or internal growth lines, checks and bands (Richardson et al.,
1993). Unfortunately, most of these methods cannot be carried out regularly on living
individuals during an aquaculture experiment. Moreover, shell morphology and its use are
strongly dependent on environmental parameters and taphonomic history for fossil specimens
(Galstoff, 1964; Surge et al., 2001; Higuera-Ruiz and Elorza, 2009). Indeed, external shell
chronological markers may be due to artificial phenomena such as predation or storms
(Richardson et al., 1980; Lartaud, et al., 2006).

Chemical marking techniques of bivalve shells could be a good alternative to estimate
shell growth rate. Using fluorochromes (Day et al., 1995; Sato-Okoshi and Okoshi, 2002;
Thébault et al., 2006), strontium (Fujikura et al., 2003) or manganese (Hawkes, et al., 1996;
Langlet et al., 2006; Barbin et al., 2008) on living individuals, bright artificial growth lines
can be revealed using microscopy. Because incorporation of such chemical elements into
calcite lattice is fast (few hours at most), those particular methods provide a high-resolution
chronologic framework, essential for growth rate change measurements or geochemical sampling and analysis (Kirby, et al., 1998; Lartaud, et al., 2006).

In the present study, we investigate the growth rate of oysters *Crassostrea gigas* using the chemical marking technique of shells with manganese chloride. Unlike the work of Langlet et al. (2006) in which oysters were settled in only one restricted and confined area (Thau Lagoon, Hérault, France), we ran our experiments in open marine environments over two years. Oysters (young and adult specimens) have been cultured in four different standard shellfish-farming locations along the Atlantic coast of France and the English Channel between January 2005 and November 2006. During the breeding period, nearly monthly Mn$^{2+}$ markings provide a well-adapted tool for the growth rate variability to be quantified (winter cessation, seasonal modifications, etc.). Cathodoluminescence microscopy is then used to reveal together natural luminescence of the shells and artificial sharp growth luminescence band related to markings.

2. Materials and Methods

2.1. Experimental growth conditions and sample preparation

The experiments were carried out at the Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), in the marine stations of the institute. Oysters were bred in four locations along the English Channel and the Atlantic coasts (Fig. 1): Baie des Veys (Normandy), L’Houmeau marine pond and Marennes-Oléron Bay (Charente-Maritime), and Arcachon basin (Gironde), which represent the main *C. gigas* French oyster-farming areas. All of these sites present a semi-diurnal tidal regime. The L’Houmeau marine pond corresponds to a very restricted environment (~500m2 and 1m deep), only overrun by
seawater during spring tides (up to 80 tide coefficient). A hydrological survey was carried out at Baie des Veys (site 1) between January 2005 and November 2006 to determine the role of the environmental parameters in the luminescence of shells. Daily measurements of seawater temperature were provided by the IFREMER YSI probe multi-parameter (fixed to the oyster tables). In order to estimate trophic resources potentially available for oysters, total chlorophyll a (μg.l⁻¹) were sampled fortnightly, directly filtered through Whatman GF/F filters. Seawater samples were collected monthly in polyethylene bottles previously cleaned with nitric acid and washed wish demineralised water rigorously. Manganese content was determined with an inductively coupled plasma-atomic emission spectrometer (ICP-AES) after preconcentrating metals at pH 5.5 using chelex resin. The standard used for the analysis was the IAPSO international standard.

Oyster *Crassostrea gigas* (Thunberg, 1793) spat were sourced from wild broodstock at the Arcachon basin at the end of January 2005. The size of the shells (>10mm umbo-margin axis) indicated that they came from the summer 2004 pond. Spats were separated in four distinct groups and transplanted in packs to be cultured on oyster tables at the different study locations until autumn 2006 (Table 1). For each breeding location, we used the same chemical marking process as described in Langlet et al. (2006), in the Thau lagoon *C. gigas* shells experiment. More precisely, complete packs are immersed during 4 hours in a filled tank with seawater (sampled on the site) containing 90 mg.l⁻¹ of manganese chloride tetrahydrate (MnCl₂, 4H₂O). Once marked, the packs were immediately replaced onto the culture tables. The oyster shells were marked almost each month (see Table 2). During the same period, additional packs were placed on each culture tables for reference. Furthermore, other marking experiments were conducted on *C. gigas* oyster shells from Marennes-Oléron bay to test the effect of Mn²⁺ markings concentration and incubation time (Table 3).
At the same time, adult specimens (>2 years) were bred and Mn$^{2+}$ marked on the oyster tables from Marennes-Oléron Bay and Arcachon basin with a view to investigate the influence of the ontogeny on the CL response of the shells. The adult samples breed on Marennes-Oléron oyster tables were produced from the IFREMER hatchery at La Tremblade, (Charente-Maritime) and transplanted until they were six months old into nursery tanks at Bouin (Fig. 1). In these tanks the spats were fed daily with a diet of micro-algae (*Skeletonema costatum*) that had been cultured in drill water rich in manganese (see Hussenot and Buchet (1998) and Pirastru (1994)). This supply of manganese internally marks the shells with a manganese spike—during the entire breeding period at Bouin (Lartaud et al., 2009). Those particular conditions greatly differ from the marine natural environments, where seawater shows very low Mn content. Therefore, those two environments are easily discriminated using CL analysis of the hinge area. The spats were then cultured for one year and a half on oyster tables in the Marennes-Oléron bay and placed in Marennes marine ponds until their use in our Mn$^{2+}$ marking experiment (September 2005 – November 2006). The adults cultured at the Arcachon basin were born during the summer 2002, collected in February 2003, transplanted for one year on oyster tables in the Morbihan Gulf and one additional year on oyster tables in the Arcachon basin before starting our marking protocol (Table 1 & 2).

Immediately upon collection the oysters were carefully opened in the field by cutting through the adductor muscle avoiding any damage to the hinge area. The flesh was scrapped and removed from the inner surface of the shell valves to avoid any post-mortem carbonate dissolution following the oysters’ aerial emersion. Upon return to the laboratory the shells were placed in a 6% solution of Hydrogen peroxide (H$_2$O$_2$) for 6 hours to remove any epibiota from the outer shell surfaces, washed in 0.15N Nitric acid for 20 minutes to dissolve any carbonate based superficial contamination and rinsed in demineralised water (5 mins.) The dry left shell valve of each oyster was cut along the maximum growth axis through the middle
of the hinge region to the ventral shell margin (see Fig. 2). Slides of the hinge region were
polished with grains of silica carbide and cerium oxide of decreasing size (to 1 µm), to obtain
about 100 µm thick sections.

2.2. Cathodoluminescence analysis

Cathodoluminescence phenomenon results from the interactions between a light-emitting centre (impurity or chemical element) and the atomic environment inside the crystal lattice during excitation by an electron gun (Machel et al., 1991; Barbin and Schvoerer, 1997). In calcite, CL emission (~620 nm) is mainly due to the presence of Mn^{2+} trapped into the lattice during mineral growth (Amieux, 1982; El Ali et al., 1993; de Rafelis et al., 2000). Cold cathode (Cathodyne-OPEA, 15-20 kV and 200 to 400 µA.mm^{-2} under a pressure of 0.05 Torr) observations were made on the foliated calcite of the hinge section (see Fig. 2), since this area contains an ontogenetic record of both oysters’ hinge growth and environmental conditions experienced throughout their life (Carriker and Palmer, 1979; Richardson, et al., 1993; Kirby, et al., 1998; Lartaud, et al., 2006). A numerical Nikon D70 (800 ASA) camera was used for luminescence image acquisition with a constant exposure time of 10s. Mounted photographs, providing a detailed panorama of the hinge, were used to generate luminescence spectra by means of JMicrovision software (Roduit, 2006). Luminescence analyses can only be semi-quantitative, because each thin-section has its own heterogeneity, which make luminescence intensity normalization impossible (Langlet, et al., 2006; Lietard and Pierre, 2008). Luminescence intensity is therefore expressed in arbitrary units (AU). The markings recognition helps us to transform CL spectra along a growth profile into a calendar profile, by counting a constant growth rate between two consecutive markings.
Mn$^{2+}$ markings are also used as temporal point of reference to measure shell growth rate. The analysis of growth intervals were conducted on the CL mounted photographs using the image processing software TNPC 4.1 (www.noesisvision.com). Multiple stepwise non-linear regression analysis (Statgraphics SGS software) was performed to establish the Von Bertalanffy relationships of oyster hinges from each location. This equation enables the determination of ontogenetic ages from shell lengths: $L_t = L_\infty(1-e^{-k(t-t_0)})$, where L_t is the hinge shell length (mm) at time t (in years), L_∞ the maximum hinge shell length (mm), t_0 the setting size and k a time constant. Furthermore, Baie des Veys shell lengths were measured during each marking dates to test the hinge-shell lengths relationships.

3. Results

3.1. Mn-chemical marking on living oysters

At the end of the experiment, comparison between the marked and the reference packs shows that chemical marking technique does not produce any significant stress on oysters, mortality remaining low and similar in both populations. To improve that technique, we tried to modify the protocol proposed by Langlet et al (2006) using higher Mn-concentrations and shortening the time of bathing in doped water (Table 3). Again, the oysters have fully supported the treatment (such Mn concentrations are not lethal to individuals) and oyster shells showed recognizable luminescent bands when using CL microscopy. By reducing the tagging time (4 hours down to 30 minutes), Mn-marking becomes one of the fastest mollusc shells marking technique and can then be very useful when site access is problematic, for example during periods of low tides.
3.2. Natural cathodoluminescence of oyster’s hinges calibrated with Mn\(^{2+}\) markings

Fifteen juvenile and six adult oyster shells were viewed under CL analysis. The shells exhibit a natural luminescence graded from purple-dark blue to orange colours contrasting with the distinct orange Mn marking induced luminescence (Fig. 3). Even though CL emission from manganese markings varied in a same shell and through different shells (Fig 4), the marking spikes are easily recognizable on the photomicrographs to be used as point of reference for the natural CL changes calibration. Corresponding dates of Mn\(^{2+}\) markings led to attribute a seasonal fluctuation of the CL rhythms, with an alternation of relative bright and dull luminescent zones during summer and winter times respectively (Fig. 3). Although CL absolute values differ following the sample location, this phenomenon is identified for all shells bred on a same site (Fig. 4a,b,c) and for shells from different sites (Fig. 4e,f). In some location, few shells present a trend in the CL signal during growth that can disturb the apparent seasonal cycle (Fig 4e) but which can be easily removed by a simple subtraction of a linear trend. In others, oyster shells exhibit a highly disrupted natural CL (Fig 4d) without any clear relationship with any seasonal pattern. Regarding such shells, manganese markings are essential to establish a calendar scale in the mineralization. Systematically, the CL emission in the younger part of the shells (first months) is too high to be attributed to a winter period as compared with the rest of the hinge which reveals clear seasonal rhythms and is in contradiction with previous work of Barbin (2000). First, those high CL-intensities could be related to the history of breeding. Indeed, some oysters have been bred for few months into nursery tanks, at Bouin, filled with Mn-rich water. Secondly, during the first months of life, the hinge is made of very tight chalky and foliated microstructures. As shown in Figure 3, chalky calcite is always more luminescent than foliated. During digitalization of CL images,
juvenile part of the hinge often shows abnormally high luminescent due to the close of chalky microstructures.

Unlike the younger ones, the Mn$^{2+}$ markings are not always present in the adult shells. Some winter and spring marks do not appear in the hinge CL spectrum of those specimens (Table 2, Fig 5). Nevertheless, as it is described for juvenile shells, the CL spectrum from older specimens shows the same seasonal changes in the luminescence intensity (Fig. 5). The age determination by CL analysis of shells from Marennes-Oléron bay (3 years old) and Arcachon basin (4 years old) is consistent with the life history of these samples (Table 1).

3.3. Hinge growth rate of C. gigas shells

We observe a significant correlation between Baie des Veys oyster shells and hinge lengths (Fig. 6). According to this relationship shell length can be modelled by hinge growth measurements. So all measures made on oyster’s hinge would provide information about shell length variations. Using that technique, no individual biometric measurement is needed during the life of the animal because all the oysters of a same location are marked in one time (the entire pack is immersed in doped Mn-seawater). Post-mortem CL analysis allows the reconstruction of the overall growth history of organisms.

Using precise temporal marks with the manganese markings, our estimations of hinge growth rate display a high shell growth rate during the first year of life for oysters from each shellfish location (daily growth calculations ranged between 36 and 51 μm/d, see Table 4). Oyster shells from the most protected environment (L’Houmeau marine pond, site 2) grew faster during the first step of life. Within the second year, a clear difference in shell growth was observed between each location. Oysters from Baie des Veys and Arcachon basin have the highest mean hinge daily growth rate (19 and 17 μm/d, respectively), whereas it is lower
for oyster shells from Marennes-Olérion and L’Houmeau marine pond (7 and 5 μm/d, respectively). A clear slow down is observed after 3 years with only a 4 μm/d hinge mean daily growth rate.

Shell growth spatial variations can be pointed out using the Von Bertalanffy growth equation (Fig. 7). Shells from Baie des Veys exhibit the extended maximum of hinge size ($L_\infty = 33.245$ mm) whereas shells from Marennes-Olérion bay ($L_\infty = 12.966$ mm) and the protected marine pond from L’Houmeau ($L_\infty = 11.793$ mm) have the lowest maximum hinge size. We notice a good correlation in the hinge growth between oyster from the same site in Baie des Veys ($r^2 = 0.95$), Marennes-Olérion ($r^2 = 0.80$) and, to a lesser extent, Arcachon basin ($r^2 = 0.66$). However, hinge growth shows a higher inter-individual variability in the L’Houmeau marine pond ($r^2 = 0.46$). As revealed by the figure 7, two distinct models seem to have taken place. Marennes-Olérion shells have a low growth rate with a slow-down period which appear earlier in the life of the oysters around 2 years of age. On the contrary, Baie des Veys shells have a higher growth rate and the slowing down takes place later. However, the absence of adult shells at this location can slightly disturb our shell growth rate slow down estimation. Arcachon and L’Houmeau marine pond shells show a mix between these two cases. Those shells have a lower growth rate than in Baie des Veys oysters, but the ontogenic slow-down appears before the oysters turned three.

At a seasonal scale (Fig 8), if we notice a decrease in the shell growth rate during the winter period, no total cessation in the carbonate biomineralization has been encountered between two consecutive markings. Shells from Baie des Veys exhibit a large seasonal change in the hinge growth rate. Maximum shell depositions are observed during summer – early autumn period, with peaks until 41 to 55 μm/d in 2005 and 22 to 41 μm/d in 2006. The lowest growth rates (~10 μm/d) take place in winter (Fig. 8). The shells from other locations
present a less significant (Marennes-Oléron bay, Arcachon basin) or none at all (L’Houmeau marine pond) seasonal fluctuation in the hinge growth rate.

3.4. Relationship between environmental parameters and intensity of natural luminescence

Mean seawater temperatures between markings show a clear seasonal range in Baie des Veys (from 6.0 ± 0.1°C in February to 19.1 ± 0.1°C in August, see Table 5). Two annual major phytoplankton blooms are identified by chlorophyll a measurements. One occurs in spring, the other during early autumn. In parallel, no seasonal trend can be deduced from the Mn seawater content analysis, even when the data are compared with those of salinity. A decrease in salinity, for example related to fresh-water runoff, cannot be mentioned.

A correlation matrix between measured seawater environmental parameters (temperature, chlorophyll a and manganese content) and oyster shells properties (hinge growth rate and CL emission) at Baie des Veys (site 1), has been investigated using a principal component analysis (PCA). PCA is used to obtain an overview of the data and identify possible sources, significant correlations (at p = 0.05 level) are sought. In this test, 69% of the variability is explained by 5 variables listed hereafter. As described by the correlation matrix of the variables, we can observe significant positive correlations between CL and seawater temperature (r = 0.511), CL and hinge growth rate (r = 0.427), seawater temperature and hinge growth rate (r = 0.678), seawater temperature and chlorophyll a (r = 0.340), seawater manganese content and hinge growth rate (r = 0.531). Finally, no significant correlations are observed between CL and chlorophyll a or between CL and seawater manganese.

4. Discussion
4.1. Age determination by CL growth patterns

In the present study, the use of Mn$^{2+}$ markings of juvenile and adult oyster shells bred in different locations (Baie des Veys, L’Houmeau marine pond, Marennes-Oléron bay and Arcachon basin) allows the identification of a clear seasonal cycle in the natural cathodoluminescence of the hinge. Those results are in agreement with previous observations from Langlet et al. (2006) on *C. gigas* shells from Thau lagoon (France). As revealed by our experiment, the seasonal fluctuations in oyster hinge CL take place both in protected and open marine environments. Furthermore, no influence of ontogeny seems to act on the CL rhythms, at least throughout the 4th year of life. However, the CL spectrum is occasionally disturbed and the seasonal cyclicity is no longer visible (i.e. shell MAn6-4 from L’Houmeau marine pond, Fig 4d). Langlet et al. (2006) and Barbin et al. (2008) show variations in the natural luminescence intensity of *C. gigas* shells at daily and tidal cycles which clearly overlap the low frequency seasonal cycles. The non-registration of a seasonal cyclicity on CL spectrum of L’Houmeau marine pond shells could be explained by the peculiarities of this environment, such as very low depth, which enhance the exchanges with the atmosphere. For example, winter water temperature can drop below 0°C while summer salinity can rise up to 40 PSU. These extreme values do not prevent the growth shell (Fig. 4d) but are probably sufficient to affect the bio-availability of manganese during growth. Thus, in the very confined environments, such as marine ponds, seasonal fluctuations of natural luminescence are not expressed in the shell while a high-frequency cyclicity (tides, showers) is well expressed.

4.2. Oyster shell growth
4.2.1. Contribution to shellfish ecosystems monitoring

As noticed by Langlet (2002) for *C. gigas* shells from the Thau lagoon (south of France), the hinge – shell length relationship observed in the shells from Baie des Veys (north of France) in the present study, proved that growth measurements made on the umbo turns out to be an interesting tool for oyster farming. Shell growth measurements made during the IFREMER – REMORA shellfish program (Fleury et al., 2003) on *C. gigas* bred at the same sites than those used in this study, show similar spatial and temporal variations than our results about the hinge growth (higher growth rate in Normandy, summer-autumn seasonal peak). The REMORA program consists in a complete aquaculture assessment (mortality, growth, yield breeding, trade quality) of French oyster-farming by quarterly sampling on the field. The study of the hinge area would deliver an alternative method to such aquaculture approach.

4.2.2. Temporal and spatial variations

In our study, seasonal changes in the hinge growth rate can be attributed to seawater temperature fluctuations, but not to variations in the food supply. Carbonate shell deposition in oyster species stimulated by seawater temperature have been already reported by Dame (1972), Richardson et al. (1993), Kirby et al. (1998) and Gangnery et al. (2003). Most contrasted seasonal SST locations (i.e. Baie des Veys) generate a higher seasonal change in the shell growth rate than less variable environments (L’Houmeau marine pond). Kirby et al. (1998) pointed out *C. virginica* growth breaks related to water temperature below 10°C. Our marking-recapture experiment clearly demonstrates that *C. gigas* shell deposition can take place under temperature as low as 6°C. Corresponding growth rate of the hinge area of shells
from Baie des Veys is close to 10 μm/d at this time (see Fig. 8). This is consistent with the results from Child and Laing (1998) that showed the tolerance of juvenile Pacific oysters is about three weeks at 3°C. The existence of a full year mineralization allows the winter temperature to be reconstructed from geochemical analysis of the shells (Wanamaker, et al., 2007).

The shells from the northern location (Baie des Veys) exhibit the highest growth properties (maximum size and length of steady growth). On the other hand, the southward and most protected site (L’Houmeau marine pond) shows the lowest growth properties. Spatial variations in the hinge growth rate could neither be explained only by seawater temperatures, nor chlorophyll a variations. Oyster flesh growth can be approached by a Dynamic Energy Budget (DEB) model, where forcing variables are temperature and phytoplankton densities (Kooijman, 2000; Pouvreau et al., 2006). However, recent works demonstrated that a single genetic pool placed in different environments could present distinct growth model which could not be assigned by the DEB model (Meistertzheim, 2008). The author concluded to a failure in the present DEB chosen variables, in particular about the food supply estimations. Indeed, a high diversity of the sources of food (phytoplankton, protozoa, micro-zooplankton, bacterial aggregates, detritical organic matter etc.) is now recognized for *C. gigas*. That heterogeneity in the food supply might be taken into account to determine shell growth differences according to the shellfish production areas.

4.3. Role of environmental parameters upon natural CL of shells

The CL oscillations have been related to Mn$^{2+}$ changes in the shells (Langlet, et al., 2006; Barbin, et al., 2008). Mean Mn concentrations are higher in orange areas (15-20 ppm) than in the dull areas (2.5-5 ppm; Langlet, 2002; Lartaud, 2007). Seawater temperature, algal
bloom event and manganese bioavailability to filter feeder and rate of shell deposition are widely recognized as the main factors to control Mn of shells (Hockett et al., 1997; Lewis and Cerrato, 1997; Vander Putten et al., 2000; Lazareth, et al., 2003; Cravo et al., 2004; Langlet, et al., 2006). During markings, Mn$^{2+}$ addition is about three thousand times more concentrated than natural seawater (Hockett et al., 1997; Barbin et al., 2008; this study). Although the manganese markings point out an uptake in Mn$^{2+}$-rich water (seawater containing 90 mg.l$^{-1}$ of Mn chloride tetrahydrate, see Materials and Methods), natural CL of shells are not linked to seawater Mn fluctuations (definitely lesser concentrated, see Table 5). Our results indicate that natural luminescence is mainly controlled by seawater temperature and shell growth rate. Works on growth of inorganic calcite under experimental conditions described a positive correlation between temperature and Mn$^{2+}$ uptake in the calcite lattice (Dromgoole and Walter, 1990). The rise in temperature affects the incorporation of manganese into calcite, by modifying the distribution coefficient for Mn$^{2+}$ (D_{Mn}). Although their works were only directed about experimental calcite overgrowth, so difficult to reproduce for biogenic carbonate, Dromgoole and Walter (1990) showed that D_{Mn} values ranged from 3 to 11 at 10°C, and from 8 to 22 at 50°C. Moreover, the biomineralization processes stimulation by temperature (i.e. rate of shell deposition) increases the rate of Ca turnover in the oyster mantle (Wheeler, 1992). As the bulk of shell calcium comes from the external medium, Ca$^{2+}$ is actively transported from the seawater to the extrapallial fluid during shell deposition (Carré et al., 2006). It has been demonstrated that Mn$^{2+}$ is used as an analogue of Ca$^{2+}$ in the uptake of cations from the external medium (Markich and Jeffree, 1994). Thus, a rise in water temperature may increase Mn$^{2+}$ uptake and its transfer to the site of shell mineralization, resulting in higher concentrations in the growth layers. This agrees with the results of Wada and Fujinuki (1976), which showed that the Mn$^{2+}$ concentration in the extrapallial fluid of C.
...gigas was higher (~0.21 ppm) during periods of active shell growth than during periods of low growth (~0.15 ppm).

Our measurements show that temperature, shell growth rate, chlorophyll a and Mn content in seawater can explain about 70% of the CL signal. Other parameters might affect the CL emission of the shells, such as self-quenching of the organic matrix (Götte and Richter, 2009). Further works have to deal with a better understanding in the cause of natural CL changes in the shells. Marking experiments on shorter periods (i.e. week to sub-daily rather than monthly as used in our study) on specific seasons (summer, winter) will provide an easier comparison between seawater parameters and shell CL.

5. Conclusion

Cathodluminescence of polished radial sections of oyster Crassostrea gigas hinges previously Mn labelled, demonstrated seasonal patterns of natural luminescence that were used to determine the oysters age and establish a chronological scale along the shell hinge sections. These seasonal changes in the CL of shells were recognized in juvenile and adult oysters at four locations along the English Channel and French Atlantic coastal waters, and were mainly attributed to temperature variations. This efficient sclerochronological profile could be used to define the positions for high resolution drilling of samples of shell carbonate for geochemical analysis in order to reconstruct environmental parameters.

The relationship between umbo and shell length provides an efficient tool for oyster-farming and/or wild stock assessments. Shell growth rate variations during ontogeny can be drawn from the post-mortem hinge study. The general growth pattern (seasonality) was driven by temperature. At a monthly time scale, none growth cessation was observed, even in winter when temperatures below 6°C.
Thanks to an easy implementation process (efficient within 30 min), such Mn$^{2+}$ marking-recapture experiment, which supplies accurate details about the spatial and temporal oyster shell growth, could be brought into general for shellfish ecosystems studies (e.g. growth performance per oyster farms, improvement in the DEB model, etc.).

Acknowledgments

This work was financially supported by University Pierre and Marie Curie (Paris 06) via the BQR project “High frequency to very high frequency recordings of environmental changes to climate by biomineralizations” (Marc de Rafelis, project leader). We wish to thank Fabienne Rauflet, Aline Gangnery, Stephane Robert, Danièle Maurer, Florence D’Amico, Marianne Alunno-Bruscia (IFREMER) and Frederic Delbes (UPMC) for field and laboratory assistance. Thank you to Pierre BENOIT (Laboratoire d’Hydrologie) for the seawater ICP-AES analyses. We are grateful to Michel Roux and Elisabeth Schein (Univ. Reims) for their helpful advices on the Mn$^{2+}$ markings and the oyster shell growth.

References

Higuera-Ruiz, R., Elorza, J., 2009. Biometric, microstructural, and high-resolution trace element studies in *Crassostrea gigas* of Cantabria (Bay of Biscay, Spain): Anthropogenic and seasonal influences. Estuarine Coastal Shelf Sci. 82, 201-213.

Wanamaker, A.D., Kreutz, K.J., Borns, H.W., Introne, D.S., Feindel, S., Funder, S., Rawson, P.D., Barber, B.J., 2007. Experimental determination of salinity, temperature, growth, and metabolic effects on shell isotope chemistry of *Mytilus edulis* collected from

Legends to Tables

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Summary of the breeding conditions of the oyster shells used for this study.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2</td>
<td>Dates of Mn(^{2+}) markings of the oyster shells on each location. The dates in italic point out the death of the samples.</td>
</tr>
<tr>
<td>Table 3</td>
<td>Description of four Mn(^{2+}) markings experiments conducted on C. gigas oyster shells. The red arrows point out the marking lines on the shell section microphotographs (white scale bar is 200 μm).</td>
</tr>
<tr>
<td>Table 4</td>
<td>Growth rates measurements of the hinge area from C. gigas marked oysters and estimated shell mean annual growth rate using the relationships taken Fig. 7.</td>
</tr>
<tr>
<td>Table 5</td>
<td>Evolution of the environmental parameters (temperature, chlorophyll a and seawater manganese content) at Baie des Veys during the breeding and marking-recapture period of oyster shells.</td>
</tr>
</tbody>
</table>
Legends to Figures

Figure 1: Simplified map showing the different locations where the oyster *Crassostrea gigas* shells were transplanted and cultured. (1) Baie des Veys, (2) L’Houmeau marine pond, (3) Marennes-Oléron, (4) Arcachon basin and (Nur) nursery tanks located at Bouin.

Figure 2: A- Photograph of a left valve of the oyster *C. gigas*. B- Transmitted-light microphotograph of a thin-section of the hinge region showing the two characteristic microstructure of the oyster shells: foliated calcite (Fo) and chalky calcite (Ch). Cathodoluminescence analyses are performed exclusively on the foliated calcite of this area. C and D are BSE images with close ups of the two microstructure. Images are made with a ZEISS ULTRA 55VP SEM operating at 7.00 kV on carbon-coated tin-section.

Figure 3: Age model of a Mn$^{2+}$ marked *C. gigas* shell from Baie des Veys (Normandy). CL images are digitalized and successive chemical markings are identified on the resulting spectrum. Marking dates are then fitted with the breeding calendar. Linear growth rate is applied between two successive Mn-spikes.

Figure 4: Seasonal natural cathodoluminescence changes of juvenile *C. gigas* brood in Baie-des-Veys (a= BDVn6-2, b= BDVn6-4, c= BDVn6-5), L’Houmeau marine pond (d= Man6-4), Marennes-Oléron Bay (e= Dajn6-4) and Arcachon basin (f= Tesjs6-2), recognized by the Mn$^{2+}$ markings (black arrow).
Figure 5: Seasonal natural cathodoluminescence changes of adult’s *C. gigas* brood in Marennes-Oléron Bay (a) and Arcachon basin (b), recognized by the Mn$^{2+}$ markings (black arrows).

Figure 6: Linear relationships observed between the hinge and the shell length from Thau *C. gigas* shells (dotted line, after Langlet, 2002) and Baie des Veys shells (continuous line and dots with error bars, this study).

Figure 7: Size at age date for shells from (A) Baie des Veys, (B) L’Houmeau marine pond, (C) Marennes-Oléron bay and (D) Arcachon basin showing the estimated Von Bertalanffy relationships for each location. The different symbols represent different individuals.

Figure 8: Seasonal variation in *C gigas* hinge area growth rates. Each data point is the calculated growth rate from an individual oyster between 2 dates of markings. (A) Baie des Veys, (B) L’Houmeau marine pond, (C) Marennes-Oléron bay, and (D) Arcachon basin.
Figure 6

For this study:

\[L_{hinge} = 0.175 \times L_{shell} + 0.813 \]

\[r^2 = 0.96 \]

For Langlet (2002):

\[L_{hinge} = 0.132 \times L_{shell} + 2.981 \]

\[r^2 = 0.71 \]
Figure 7

(A) $L_t = 33.245\left(1 - e^{-0.365(t-0.331)}\right)$
$R^2 = 95\%$

(B) $L_t = 11.793\left(1 - e^{-1.123(t-0.348)}\right)$
$R^2 = 46\%$

(C) $L_t = 12.966\left(1 - e^{-1.304(t-0.263)}\right)$
$R^2 = 80\%$

(D) $L_t = 17.753\left(1 - e^{-0.783(t-0.133)}\right)$
$R^2 = 66\%$
<table>
<thead>
<tr>
<th>Location</th>
<th>Shells</th>
<th>Birth</th>
<th>Hatchery (La Tremblade) + Nursery (Bouin)</th>
<th>Oyster tables (before the marking phase)</th>
<th>Marine ponds</th>
<th>Oyster tables (during the marking phase)</th>
<th>Collection of oysters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baie-des-Veys (Géfosse)</td>
<td>C. gigas (juvenile)</td>
<td>summer 04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L'Houmeau marine pond (Marais du plomb)</td>
<td>C. gigas (juvenile)</td>
<td>summer 04</td>
<td></td>
<td></td>
<td>Feb 05</td>
<td></td>
<td>Nov 06</td>
</tr>
<tr>
<td>Marennes-Oléron bay (d'Agnas)</td>
<td>C. gigas (juvenile)</td>
<td>summer 04</td>
<td></td>
<td></td>
<td>Mar 03</td>
<td>Oct 03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. gigas (adult)</td>
<td>Mar 03</td>
<td></td>
<td></td>
<td>Jun 05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arcachon basin (Tès)</td>
<td>C. gigas (juvenile)</td>
<td>summer 04</td>
<td></td>
<td></td>
<td>Feb 03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. gigas (adult)</td>
<td>summer 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Baie-des-Veys (Géfosse)</td>
<td>L'Houmeau (Marais du Plomb)</td>
<td>Marennes-Oléron bay (d'Agnas)</td>
<td>Arcachon basin (Tes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/24/2005</td>
<td>juvenile</td>
<td>5/19/2005</td>
<td>juvenile</td>
<td>5/10/2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/15/2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/27/2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/10/2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/22/2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/7/2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/28/2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immersion time</td>
<td>MnCl₂, 4H₂O concentration</td>
<td>Cold cathod adjustment</td>
<td>Exposure time</td>
<td>Quality of mark</td>
<td>Incorporated mark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4h</td>
<td>90 mg.l⁻¹</td>
<td>18 kV</td>
<td>10s</td>
<td>Clear mark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1h30</td>
<td>120 mg.l⁻¹</td>
<td>15 kV</td>
<td>30s</td>
<td>Clear mark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1h</td>
<td>120 mg.l⁻¹</td>
<td>17 kV</td>
<td>30s</td>
<td>Clear mark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 min</td>
<td>120 mg.l⁻¹</td>
<td>17 kV</td>
<td>30s</td>
<td>Faint mark</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4

<table>
<thead>
<tr>
<th>Location</th>
<th>Nb of shells</th>
<th>Year of growth</th>
<th>Measured mean hinge growth rate (μm/d)</th>
<th>Estimated mean shell growth rate (mm/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baie des Veys</td>
<td>4</td>
<td>1st</td>
<td>44</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2nd</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>L'Houmeau marine pond</td>
<td>3</td>
<td>1st</td>
<td>51</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2nd</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Marennes-Oléron</td>
<td>4</td>
<td>1st</td>
<td>36</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2nd</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Tès</td>
<td>4</td>
<td>1st</td>
<td>47</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2nd</td>
<td>17</td>
<td>31</td>
</tr>
<tr>
<td>Marennes-Oléron (adults)</td>
<td>3</td>
<td>4th</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Tès (adults)</td>
<td>3</td>
<td>3th</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4h</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Table 5

<table>
<thead>
<tr>
<th>Marking dates</th>
<th>Mean temperature (°C)</th>
<th>Mean chlorophyll a (μg.l⁻¹)</th>
<th>Mean Mnₕₐₜₜ (mg.l⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/28/05 - 2/9/05</td>
<td>7.4 ± 0.3</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>2/9/05 - 2/24/05</td>
<td>7.0 ± 0.5</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>2/24/05 - 5/9/05</td>
<td>8.1 ± 0.6</td>
<td>2.0</td>
<td>0.0106</td>
</tr>
<tr>
<td>5/9/05 - 7/21/05</td>
<td>15.3 ± 0.5</td>
<td>6.0</td>
<td>0.0076</td>
</tr>
<tr>
<td>7/21/05 - 9/15/05</td>
<td>19.1 ± 0.1</td>
<td>1.3</td>
<td>0.0043</td>
</tr>
<tr>
<td>9/15/05 - 10/17/05</td>
<td>17.2 ± 0.3</td>
<td>4.0</td>
<td>0.0260</td>
</tr>
<tr>
<td>10/17/05 - 11/15/05</td>
<td>15.4 ± 0.4</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>11/15/05 - 1/31/05</td>
<td>9.2 ± 0.6</td>
<td>0.7</td>
<td>0.0122</td>
</tr>
<tr>
<td>1/31/05 - 3/15/06</td>
<td>6.0 ± 0.1</td>
<td>0.9</td>
<td>0.0063</td>
</tr>
<tr>
<td>3/15/06 - 5/15/06</td>
<td>8.6 ± 0.5</td>
<td>5.2</td>
<td>0.0129</td>
</tr>
<tr>
<td>5/15/06 - 6/27/06</td>
<td>14.4 ± 0.5</td>
<td>3.1</td>
<td>0.0108</td>
</tr>
<tr>
<td>6/27/06 - 8/10/06</td>
<td>18.8 ± 0.4</td>
<td>3.0</td>
<td>0.0075</td>
</tr>
<tr>
<td>8/10/06 - 9/22/06</td>
<td>18.6 ± 0.1</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>9/22/06 - 11/7/06</td>
<td>16.8 ± 0.4</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>11/7/06 - 11/28/06</td>
<td>13.0 ± 0.3</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>