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Abstract:  
 

Recent advances in technologies have lead to a vast influx of data on movements, based on discrete 
recorded position of animals or fishing boats, opening new horizons for future analyses. However, 
most of the potential interest of tracking data depends on the ability to develop suitable modelling 
strategies to analyze trajectories from discrete recorded positions. A serious modelling challenge is to 
infer the evolution of the true position and the associated spatio-temporal distribution of behavioural 
states using discrete, error-prone and incomplete observations. In this paper, a Bayesian Hierarchical 
Model (HBM) using Hidden Markov Process (HMP) is proposed as a template for analyzing fishing 
boats trajectories based on data available from satellite-based vessel monitoring systems (VMS). The 
analysis seeks to enhance the definition of the fishing pressure exerted on fish stocks, by 
discriminating between the different behavioural states of a fishing trip, and also by quantifying the 
relative importance of each of these states during a fishing trip. The HBM approach is tested to 
analyse the behaviour of pelagic trawlers in the Bay of Biscay. A hidden Markov chain with a regular 
discrete time step is used to model transitions between successive behavioural states (e.g., fishing, 
steaming, stopping (at Port or at sea)) of each vessel. The parameters of the movement process 
(speed and turning angles) are defined conditionally upon the behavioural states. Bayesian methods 
are used to integrate the available data (typically VMS position recorded at discrete time) and to draw 
inferences on any unknown parameters of the model. The model is first tested on simulated data with 
different parameters structures. Results provide insights on the potential of HBM with HMP to analyze 
VMS data. They show that if VMS positions are recorded synchronously with the instants at which the 
process switch from one behavioural state to another, the estimation method provides unbiased and 
precise inferences on behavioural states and on associated movement parameters. However, if the 
observations are not gathered with a sufficiently high frequency, the performance of the estimation 
method could be drastically impacted when the discrete observations are not synchronous with the 
switching instants. The model is then applied to real pathways to estimate variables of interest such as 
the number of operations per trip, time and distance spent fishing or travelling. 

Keywords: Bayesian Hierarchical Models; Hidden Markov Model; State-space model; VMS; Fleet 
behaviour; Fishing effort 
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INTRODUCTION 47 

Recent advances in technologies have lead to a vast influx of data on movements of animals 48 

or fishing boats, opening new horizons for future analyses of movements, trajectories and 49 

behaviours to address fundamental (e.g. analyzing foraging behaviours) or applied (e.g. 50 

analyzing fishing strategy) issues. However, most of the potential interest of tracking data 51 

depends on the ability to develop suitable modelling strategies to analyze trajectories from 52 

discrete recorded positions. Thus, a serious modelling challenge this paper seeks to address is 53 

to infer the evolution of the true position and the associated spatio-temporal distribution of 54 

behavioural states using discrete, error-prone and incomplete observations. The interest of 55 

inferring on animal spatial distribution and behaviour has been recently addressed in several 56 

studies (Barraquand and Benhamou 2008, Jonsen et al. 2005, Patterson et al. 2008).  57 

Accounting for spatial and seasonal characteristics of fishing activities is essential for reliable 58 

stock assessments and realistic forecasting models for management purposes (Booth, 2000; 59 

Babcock et al., 2005; Pelletier and Mahévas, 2005). A fine scale spatio-temporal description 60 

of fishing behaviours, effort and catches provides insights for a better understanding of both 61 

the spatio-temporal dynamics of fish resources (Bertrand et al., 2004; Poos and Rijnsdorp, 62 

2007), and the impact of fishing pressure on marine ecosystems (Smith and Wilen, 2003; 63 

Rijnsdorp et al., 1998; Mills et al., 2007). The exploration of alternative management 64 

measures is another field of application. For instance, understanding fishermen response to 65 

management measures is critical to anticipate the effect of management strategies (Vermard et 66 

al., 2008) and simulation tools for management scenario testing require a spatial description 67 

of vessels’ dynamics  (Mahévas and Pelletier, 2004).  68 

Classical methods to analyse fishing effort are based on data derived from fishermen 69 

declarations (log-books). In the North-East Atlantic, fishing effort data are often recorded as 70 
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days at sea and reported at the scale of the ICES1 rectangle (30’ in latitude and 1° in 71 

longitude). However, both the metric used and the reporting scale are too coarse for 72 

accurately estimating fishing effort, and may give a misleading picture of its actual structure 73 

(Rijnsdorp et al., 1998). Deriving a fine scale spatio-temporal distribution of fishing activity 74 

and fishing effort requires analysing the activity of fishing vessels at sea, which can typically 75 

be divided between travelling/steaming time, searching time, fishing time and handling time. 76 

Log-books are not designed to provide information that can be used for such a fine scale 77 

description of fishing trips. Distinguishing between these different phases or behaviours 78 

would have two main benefits. First, it would enable us to improve the definition of the 79 

effective fishing effort, i.e. the pressure that is actually exerted by fishing units on harvested 80 

stocks. Second, although the different phases of the fishing trip may overlap (skipper 81 

searching for fish schools when the crew is processing the fish already caught), all these 82 

activities usually result in distinct revenues and costs. From an economic point of view, it is 83 

then important to be able to quantify the duration of these different phases (Pelletier et al., 84 

2009). 85 

Recent advances in technologies have lead to a vast influx of data on movements of fishing 86 

boats, thereby opening new horizons for future analysis. In 1998, the European Commission 87 

(EU) introduced legislation to monitor European fishing vessels for security control and 88 

enforcement purposes using a satellite-based Vessel Monitoring System (VMS). From 1st 89 

January 2005, all vessels over 15 m in length are required to transmit their position at interval 90 

of 2 hours or less. These data provide a discrete, more or less regular record of the vessels 91 

position. It is therefore thought that VMS data are a potentially valuable source of information 92 

to understand spatial and temporal dynamics of fishing activity, fishing effort allocation, costs 93 

and revenues, and of biological impacts of fisheries.  94 

                                                 
1 International Coucil for the Exploration of the Sea 
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However, VMS data basically consist in sequentially recorded positions, and do not directly 95 

indicate whether a vessel is fishing or not. Most of the potential use of VMS data then 96 

depends upon our ability in interpreting these records to accurately distinguish 97 

travelling/steaming from searching and fishing behaviour during boat trips. Building 98 

statistical tools to analyse VMS data hence remains challenging.  99 

Classical analyses of VMS data use vessel’s speed and sometimes vessel’s direction rules 100 

(speed between two positions and turning angle between two segments) to identify trawling 101 

and steaming behaviour. These analyses assume that boats steaming will mostly follow a 102 

straight line at a high speed and boats fishing are characterized by a more erratic trajectory 103 

and a low speed. Several authors (e.g. Kourti et al., 2005; Murawski et al., 2005; Harrington 104 

et al., 2007; Mills et al., 2007) have proposed methods that necessitate strong hypotheses to 105 

be set a priori. In particular, the angle and speed characterizing the different behavioural states 106 

have to be specified a priori. Moreover, such methods are appropriate when the travelling and 107 

fishing speeds are very different and when the boats are not practicing different fishing 108 

activities with different fishing speeds. Instead of assuming a linear interpolation of the track, 109 

Hintzen et al. (2009) used the cubic Hermite method to improve its description. They however 110 

classified the position recording based on a speed level set a priori. Bertrand et al., (2005; 111 

2007) proposed to describe the movement on its own through random walk based on Lewy 112 

trajectories. The method was applied to characterize and quantify the entire movement of 113 

foragers, and it is not designed to separate out fishing and travelling time.  114 

These methods are not fully satisfying and inferring the evolution of the true but hidden 115 

position and behavioural state of fishing vessels from available (discrete, error-prone and 116 

incomplete) recorded VMS positions reveals an exiting challenge.  117 
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In this paper, we propose the Bayesian hierarchical modelling framework as a general 118 

template to analyse fishing vessel trajectories from VMS data. Bayesian hierarchical models 119 

(BHM) (Clark 2005; Cressie et al. 2009) using hidden markov models (HMM) have been 120 

proposed recently has a valuable framework to deliver the analytical basis for a synthesis on 121 

individual movements (Patterson et al., 2008). The framework was successfully applied to 122 

analyse movement data of animals from imprecise or incomplete survey data. Morales et al. 123 

(2004) applied BHM to elk movements and found associations between different behaviours 124 

(encamped or exploratory mode) and habitat type, respectively woodland and agricultural 125 

habitat. Jonsen et al. (2005) analyse the foraging behaviours of seals through Bayesian SSM 126 

of remotely sensed movements. Jonsen (2006) and Jonsen et al. (2007) applied the approach 127 

to analyse the behaviour and trajectory of leatherback turtles.  128 

But to our best knowledge, BHM has never been applied to model fisheries behaviour. By 129 

contrast with models usually developed to study movement from VMS data and to distinguish 130 

fishing from steaming, it is not necessary to specify a priori the value of the speed and turning 131 

angles characterizing each behaviour. In theory, this approach can also accommodate missing 132 

position records which are quite usual in VMS data. However, if the BHM approach 133 

theoretically offers some flexibility to deal with complex spatio-temporal models (Cressie et 134 

al. 2009), its practical implementation for analysing VMS data remains challenging, and the 135 

aim of this paper is to provide a first investigation of the potential of HBM with hidden 136 

Markov processes to analyse VMS data.  137 

The approach is developed in three steps. First, the main intuition of modelling fishing boats 138 

behaviours through hidden Markov process in continuous or discrete time is pointed out. 139 

Second, a specific model with three behavioural states (fishing, steaming and stopping) within 140 

a discrete time Markovian framework is developed. The performance of the Bayesian 141 
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estimation method is assessed through a simulation-estimation approach. Several contrasted 142 

scenarios were played to assess how different data configurations impact the estimations.  In a 143 

third step, the framework was applied to the French pelagic fishery of the Bay of Biscay. This 144 

fleet is targeting various pelagic species (e.g., Anchovy, Sardine, Tuna, Horse Mackerel) 145 

(Vermard et al., 2008) and can operate at a large scale going from the whole Bay of Biscay to 146 

the Channel. It has been affected by a severe crisis from 2005 following the anchovy closure. 147 

Given the possible stock recovery and re-opening of the fishery, some management measures 148 

such as spatial closures or effort reduction are envisaged. We discuss the extent to which 149 

improving fishing effort metrics via our approach could contribute to develop the scientific 150 

rationale supporting these management measures.  151 

MATERIAL AND METHODS 152 

VMS data 153 

Vessel Monitoring System (VMS) was introduced as part of the European Common Fishery 154 

Policy. It is applied to boats over 24 meters since 01/01/2000 (CE No 686/97), to boats over 155 

18 meters since 01/01/2004 and to boats over 15 meters since 01/01/2005 (CE No 156 

2244/2003). Vessels are monitored by system using Inmarsat, Euteltracs or Argos systems.  157 

Position (accuracy around 500 m ; FA0, 1998), time (accuracy = 1 sec.; FAO 1998) and, since 158 

2005, heading and instantaneous speed are recorded for each vessel. These data are recorded 159 

at a time step inferior to two hours. However, time intervals between two emissions are often 160 

not regular, or the boat position can even be unknown for hours because of lack of satellite 161 

coverage, breakdown or stops in the emission system. The irregularity and the gaps in the 162 

available time series can blur the information contained in these VMS data and complicates 163 

the identification of states, speeds and boats pathways.  164 
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A hidden Markov process for modelling fishing boat behaviours 165 

This section explains the key intuition of the modelling framework and seeks to point out the 166 

main methodological issues addressed in the paper.  167 

Bayesian Hierarchical Models with Hidden Markov Process 168 

The approach consists in coupling an hypothetical and hidden (non observed) mechanistic 169 

model of individual movements including stochasticity, to an observation model including 170 

observation error, which gives the probability of obtaining a particular observation 171 

conditional on the true position and behavioural state. The hidden process of individual 172 

movement is modelled through Markovian transitions between different behavioural states, 173 

related to the movement process. The succession of the behavioural states forms the so called 174 

hidden (not observed) Markov chain. Typically, distributions for speed and turning angles are 175 

associated with each behavioural state. At each time step, the approach enables one to 176 

estimate the true position, the probability to be in a particular state (behavioural mode), and 177 

the process model parameters (e.g. mean speed and turning angles). The Bayesian framework 178 

has several advantages for deriving inferences in such complex models. First, the Bayesian 179 

setting offers the opportunity to integrate multiple sources of information through data and 180 

informative priors. Second, inferences come in the form of posterior probability distributions, 181 

which fully describe uncertainty. Third, Monte Carlo simulation methods and associated 182 

softwares provide efficient techniques to estimate the posterior distribution even for such kind 183 

of models with complex hierarchical structure (Lunn et al. 2009).  184 

Markov process in continuous time as a general template 185 

The main intuition of the model consists in considering the successive alternation of the 186 

fishing boats behaviours as a hidden Markov process (MP). MPs in continuous time provide a 187 
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general template for modelling movement behaviour and in particular fishing boat behaviour. 188 

Let us suppose a MP in continuous time, denoted St, taking its value in a discrete states space 189 

of size k, with possible states in {1,…,k}. In our application, St will denote the state of fishing 190 

boats at time t, and St will take values in {1,2,3}, the three possible states being steaming, 191 

fishing or stopping. In a first order homogeneous continuous MP (also called memory-less; 192 

the future state of the system is influenced only by its current state and not by the past), the 193 

amount of time Ti the process stays in state i before shifting to another state is random with an 194 

exponential distribution with rate λi (λi>0) depending upon the current state i (Karlin and 195 

Taylor 1975; Ross 1996). The greater the rate λi, the smaller the mean time spent in state i 196 

before switching. Once a shift happens, one needs to define the direction (the state) in which 197 

the shift will occur. The probability to shift from the current state i to an other state j (ji) is 198 

denoted pij ( 1
1

, 


k

j
jip  for all i, and pii=0 because we are working conditionally upon a shift 199 

happens). Hence, the probabilities pij’s and the rates λi’s capture the stochastic structure of a 200 

continuous Markovian process.  201 

MP in discrete time can be considered as a simplification of Markov process in continuous 202 

time in the sense that the amount of time Ti the process stays in state i before shifting to 203 

another state are random but take discrete values (an entire number of time steps). Instead of 204 

an exponential distribution, the distribution of the Ti’s are geometric. Such models can 205 

alternatively be viewed as Markov process in discrete and regular time step t (we can define 206 

t = 1 without any loss of generality). The Markov chain is now viewed at any discrete time 207 

step t = 1,2,…,n, and not at the switching instants as before. The process is entirely defined by 208 

the kk stochastic matrix P = (pi,j) where pi,j is the probability to shift from state i to state j 209 
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between two discrete times t and t+1 (with 1
1

, 


k

j
jip  for all i, and pi,i can be non null as the 210 

system might well stay in the same state i between two instants t and t+1).  211 

For instance, the Figure 1 sketches the behaviour of a fishing boat switching between two 212 

states steaming (state 1) and fishing (state 2). This behaviour can be modelled in a continuous 213 

(A) or in a discrete with regular time steps (B) framework. Through a MP in discrete time 214 

with regular time steps, the switching events arise at the end of a given time step, the amount 215 

of time spent on each behavioural state is a multiple of the time step duration. Through a MP 216 

in continuous time, the amounts of time spent in both states are random, and the mean amount 217 

of time spent at fishing is smaller than the amount of time spent at steaming, what 218 

corresponds to λ1<λ2. The impact of approximating a continuous MP by a discrete MP is not 219 

an issue addressed in this paper. Rather, the article is focussed on the performance of the 220 

estimation method when the system is observed at discrete time.  221 

Fig. 1 near here 222 

Drawing inference from observations acquired at discrete time 223 

The MP for the states of the system mimics the dynamic of the successive behaviours of a 224 

fishing boat, which is not directly observed. The observations one are willing to use are the 225 

successive positions registered from VMS data, which are acquired at a rather regular time 226 

steps because of the VMS device. 227 

Let us suppose a first (ideal) situation in which observations about the state of the system are 228 

acquired precisely at the instants at which the system switches from one state to another. 229 

Irrespective of the framework used for the hidden MP for fishing boat behaviour (e.g. either 230 

continuous or discrete time with regular time step), such a situation can be qualified as data-231 
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rich in the sense that the available observations are informative about the hidden MP. The 232 

observations are the VMS positions at each switching instant. The time interval between two 233 

observations provides direct information about the amount of time spent in the current state. 234 

Two successive observations provide information about the speed of the boat, and hence 235 

about the behavioural state of the boat between the time interval considered, and three 236 

successive positions provide information about the change of direction and are in turn also 237 

informative about the behavioural state.   238 

However, such a situation is not realistic, as the instants at which VMS data are acquired do 239 

not have any chance to match with instants at which boats switch from one behavioural state 240 

to another. Indeed, GPS devices are routinely programmed to send an emission at roughly 241 

regular time step (say of 1 hour), totally independently from the rhythm of the fishing activity. 242 

Hence, irrespective of the framework (continuous or discrete time with regular time steps), 243 

deriving inferences about the behavioural states of the boats from observations acquired at a 244 

discrete (roughly) regular time step independently from the rhythm of the fishing activity 245 

becomes challenging. For instance, the Figure 1 illustrates a case where the observations are 246 

acquired at regular time steps, no matter the switching points between two different 247 

behaviours. If the data are acquired with a rather low time frequency (say 1 hour for instance), 248 

then short fishing operation (say about 20’ such as the one corresponding to T6) will be hardly 249 

identified. By contrast, if the frequency of the data acquisition increases (see the effect of 250 

additional information in Fig. 1), the performance of the estimation method should increase. 251 

For instance, the identification of the operation T6 (Fig. 1) should be improved by increasing 252 

the acquisition rate. 253 

Here, by using a simplified discrete time Markov process framework for the dynamic of 254 

fishing boat behaviour, we propose to address the following questions through a simulation 255 
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method: 1) What is the performance of the estimation method in the ideal situation where 256 

observations are available at each switching instants between two behaviours? 2) What is the 257 

performance of the method when the observations are available at instants which do not 258 

correspond to the switching instants between different behaviours? 3) What is the 259 

performance when the frequency of the data acquisition increases/decreases?  260 

These questions are addressed through a specific model with three behavioural states for the 261 

fishing boats developed in the following section.  262 

Specific state-space model with a hidden Markov chain with three 263 
behavioural states 264 

Process model 265 

Fig. 2 near here 266 

The model is organized following a hierarchical structure (Fig. 2). At the top of the structure, 267 

constant parameters control the hidden Markov chain that mimics the sequence of behavioural 268 

states and the associated movement throughout time. At the bottom of the structure, the 269 

observations are defined conditionally upon the true positions. The movement model was 270 

built on discrete time step (in accordance with the data, this time step represents 1 hour). 271 

Inspiring from Jonsen et al. (2005), the process model was built to deal with three different 272 

states of the boats (“Stopping”, “Steaming” and “Fishing”). Using the terminology defined in 273 

Morales et al. (2004), the model was defined as a “Triple-switch” model. The movement 274 

parameters are indexed by each behavioural mode. 275 

Markovian model for behaviour transitions  276 

At each time step the behavioural mode of the boat is denoted St (Fig. 2). A first order 277 

homogeneous Markovian model mimics the probabilistic switch between the three 278 



 14 

behavioural states from one step to another, given the current behavioural state. The transition 279 

kernel is defined by a 3x3 matrix of switching probability considered as constant over time, 280 

denoted P, with the pi,j’s the probability of moving from behavioural state i to behavioural 281 

state j (1 is behavioural state “Fishing”, 2 is “Steaming” and 3 “Stopping”). 282 

Movement model 283 

The movement is also defined on a discrete time step. The movement equation defines the 284 

location of the boats over regular time intervals given the previous state and location and the 285 

current behavioural mode. Let us denote Xt (a two-dimensional vectors of longitude and 286 

latitude) the position of the boat at each time step t. Conditionally upon the behavioural node 287 

St, the next location Xt+1 is built using the displacement Dt+1 computed from the speed and 288 

turning angle associated with the current behavioural state St assuming a straight line travel 289 

between Xt and Xt+1. The process error term εt+1 being bivariate Normal with a variance-290 

covariance matrix σp
2: 291 

(1) 111   tttt DXX     with   ),0(~ 2
1 pt N  

 292 

with the displacement Dt+1 vector defined as: 
 293 

(2) tttt UTVD 1  294 

t

t
t D

D
U   is an orthonormal vector that gives the direction of the previous movement. Both 295 

Vt and Tt depend upon the behavioural state of the boat during the current time step t t+1. Vt 296 

(a scalar) is the speed of trawler movement given the trawler is in state St during the 297 

movement Dt+1. Speeds are embedded within a hierarchical structure such that at each time 298 

step t, Vt is drawn in a prior with unknown mean that depend upon the current behavioural 299 

state St:  300 
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(3) )²,(~
tt SSSS  NSV tt  301 

When the boat is at behavioural mode “Stopping”, speed is set at 0, no displacement is made. 302 

Tt is the transition matrix at time t with mean turning angle t that defines the rotational 303 

component of the movement, such that tt UT   is the new direction after turning angles : 304 

(4) 














 



)cos()sin(

)sin()cos(

tt

tt

tT




 305 

Following Morales et al. (2004) and Eckert et al. (2008), turning angles are distributed a priori 306 

as a Wrapped-Cauchy distribution (Fisher 1993). W-Cauchy distributions are embedded 307 

within a hierarchical structure such that at each time step t, t is drawn in W-Cauchy 308 

distribution with concentration parameter ρ that depends upon the current behavioural state St. 309 

Following Eckert et al. (2008), location parameters of W-Cauchy were set to 0 (=0): 310 

(5) )0,(Cauchy-rapped~ 
tStt WS  311 

When the boat is at behavioural mode “Stopping” a directional vector tU  is built randomly to 312 

be able to compute the next displacement.  313 

Observation  model 314 

The observation equation links the unobservable states of the boats predicted by the process 315 

model above to the available data (i.e. the recorded position). In the most favourable case 316 

where a recorded position yt (two-dimensional vector) is available at each time step t, the 317 

observation equation is modelled using a bivariate normal distribution with variance-318 

covariance matrix 2
0  fixed a priori (variance=0.1 and covariance=0) to mimic the low error 319 

structure of the location observation (FA0, 1998) : 320 
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(6) 111   ttt Xy     with   ),0(~ 2
01  Normalt  321 

The observation equation (6) was adapted to cope with observations that are not synchronous 322 

with the time step of the state process. Following Jonsen et al. (2005), let us denote t+t the 323 

time at which an observation is available between t and t+1, t corresponding to a fraction of 324 

an entire time step. Assuming a straight line travel between Xt and Xt+t, the unobserved 325 

position of the boat at time t+t, Zt+t and the associated observation errors are defined as 326 

follows:  327 

(7a) 11 )(   tttttttt DXXXXZ
t

  328 

 (7b) 
ttt ttt Zy        with   ),0(~ 2

0  Normal
tt  329 

This observation equation (7) allows for handling several values of t in a given time step. 330 

Bayesian estimation 331 

Prior 332 

For all unknown parameters, we used rather vague priors based on some reasonable 333 

constraints (Table 1).  334 

The mean speed while steaming was drawn in a uniform distribution (with large bounds), and 335 

the mean speed while fishing was considered a priori smaller than during steaming. The mean 336 

concentration parameter for the W-Cauchy distribution of turning angles while fishing was 337 

drawn in a uniform distribution (with appropriate bounds) and the mean concentration 338 

parameter while steaming was considered a priori higher than while fishing to mimic the a 339 

priori hypothesis that the movement while fishing is more erratic than while steaming. 340 

Standard deviation for speed were drawn in uniform distributions with large bounds. The 341 
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probabilities in the transition matrix P were drawn a priori in rather vague Dirichlet 342 

distributions (Congdon, 2001), that is a multivariate generalization of the beta distribution and 343 

widely used to model proportions. p2,3 and p3,2 were assigned very low values to mimic the 344 

prior idea that the corresponding transitions are practically impossible. The matrix of 345 

variance-covariance 2
p  was drawn in a rather vague Whishart distribution (Congdon, 2001).  346 

Table 1 near here 347 

Indetermination due to interpolation and missing data  348 

Equations (7a,b) are needed to cope with time-lags between the switching instants of the 349 

Markov process and the instants at which VMS positions are available. The interpolation 350 

defining the state Zt+t is simple in theory. However, it is not so easy to cope with in practice 351 

as it may lead to a lack of statistical identifiability. In practice, it may lead to a model 352 

indetermination. The Figure 3 illustrates that different true paths (defined by the true positions 353 

{Xt}) may correspond to the same interpolated positions {Zt} and therefore to the same 354 

sequential observations {yt}. In the inferential reasoning, such kind of configuration for the 355 

observed recorded positions {yt} may in turn lead to a statistical indetermination of the true 356 

path {Xt} and therefore to the associated movement parameters.  357 

The problem has its maximum intensity when the time-lag is 0.5, and becomes worth when 358 

missing data occur. To minimize interpolation problems during estimation when missing data 359 

occur, lag-time surrounding missing values were artificially set to zero and the end of all 360 

simulated paths were fixed by adding five successive emissions at the same location 361 

simulating a “Stop” at the end of each path.  362 

Fig. 3 near here 363 
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Simulation-Estimation approach 364 

Objectives 365 

To assess the sensitivity of the model to the data structure (lack of contrast in speed and 366 

turning angles between the various behavioural modes, time-lags between the switching 367 

instants of the Markov process and the instants at which VMS positions are recorded) a 368 

simulation-estimation (SE) approach was first carried out. The chart flow of the SE approach 369 

has 4 steps: i) Simulate pathways with known parameters; ii) Given a true pathway, simulate 370 

different scenarios for observed locations with progressive degradation of the information; 371 

iii) Use the HBM framework to estimate true pathways, behavioural states and underlying 372 

parameters; iv) Measure the performance of the estimation method by comparing the 373 

Bayesian estimation of the unknowns with the values used for the simulations.  374 

Scenarios 375 

12 contrasted scenarios were tested (Table 2) to investigate how the quality of the inferences 376 

varies with several data configurations. Computation being very time-consuming it was not 377 

possible to undertake a factorial experiment considering all possible combinations of 378 

configurations for the Markov process model and the observation model.  Consequently a few 379 

scenarios were carefully selected that illustrated effects of particular parameters, so as to be 380 

the most informative on the likely performance of the method and sequentially addressing 381 

different questions following the two main axes: i) Movement process: Is it possible to 382 

accurately identify behavioural states (“Steaming” and “Fishing”), even when the contrast 383 

between the associated movements becomes weaker?; ii) Observation process: in real data set, 384 

recorded VMS positions are necessarily recorded with time lags between the instants at which 385 

the boats switch from one behavioural state to another and the recording instants. Moreover, 386 

missing data exist (long periods without any recorded position). Several scenarios were 387 
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played to assess whether such kind of data configurations enable to derive accurate 388 

inferences, and to assess the impact of increasing the frequency of the observations.  389 

For all scenarios, a pathway of 100 time steps (approx 4 days) was simulated as follow. First, 390 

a sequence of behavioural states was simulated following the Markovian model with 391 

transition matrix P. The switching probabilities were set as:  392 

 


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
















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04.06.0

1.02.07.0

P  393 

Then, at each time step, conditionally upon the behavioural states at time t, a speed Vt and a 394 

turning angle t were drawn in their distribution associated with the behavioural states, and 395 

the displacement was computed deterministically from eq. (1)-(2). A sequence of 396 

observations was then computed following the observation equation (7a,b). The Figure 4 397 

presents the simulated pathway for scenarios 1 and 2.   398 

Fig. 4 near here 399 

Scenario 1. The first scenario was built to be as close as possible from the speeds and turning 400 

angles distributions observed in real data from the French pelagic fishery in the bay of Biscay. 401 

First, Average “Fishing” speed was set to 4 knots (Fi=1.5) and average “Steaming” speed to 402 

10 knots (St=1.5). Angles were drawn in a Wrapped-Cauchy distribution with concentration 403 

parameter equal to 0.2 and 0.5 for “Fishing” and “Steaming” respectively. Observation are 404 

recorded at each time sep of the MP without time lag.  405 

Scenario 2.  This scenario mimics a case with more distinct movements characteristics 406 

behaviours between Fishing and Steaming, the distributions of angles and speed (mean for 407 

“Fishing” = 4 knots and “Steaming” = 10 knots) being more constrained around the means 408 
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(=0.1 for speed for both “Fishing” and “Steaming”, concentration parameters for the 409 

Wrapped-Cauchy distribution for turning angles equal to 0.5 and 0.9 for “Fishing” and 410 

“Steaming” respectively). Observations were recorded at each time step of the process and 411 

without time lag.  412 

Scenarios 3-8. These scenarios are based on the reference scenario 1, but the observations are 413 

blurred by adding time-lag between switching instants of the process and observations (Table 414 

2). Equations (7a,b) are used, with specified values for the time-lags t. For instance, in the 415 

scenario 8, a constant value t = 0.1 is used at all time steps. Several levels of lag-time and 416 

structure of the lag-time were tested: scenarios 3-5 are characterized by different values of 417 

constant time-lags, whereas scenarios 6-8 tested different configurations of random time-lags.  418 

Scenarios 9-11. These scenarios are based on the scenario 8, but missing data were 419 

introduced in the recorded positions to reproduce sequences of missing values typically 420 

observed in real datasets. Several levels of missing values were introduced, going from 5% of 421 

the time steps of the pathway to 20%.  422 

Scenarios 12. This scenario aims at assessing the impact of raising the level of information in 423 

a scenario where the model is not able to provide reliable estimates of the trajectory. It is 424 

based on the scenario 7, but observations were simulated at a higher frequency (3 425 

observations per time step).  426 

Table 2 near here 427 

Bayesian estimation from simulated data and performance of the estimation method 428 

The following methods were used to evaluate he performance of the estimation method. 429 

Concerning the speed, we compute the relative bias which is (E(|y) - true)/true, where E(|y) 430 
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is the expected mean of the posterior distribution and true the mean of the distribution of 431 

speed used for simulation (see Table 2). We also computed V(|y)1/2 to measure the Bayesian 432 

uncertainty around the estimates. Concerning the inferences on the behavioural states, we 433 

assessed the percentage of behavioural states which are correctly predicted along each 100 434 

steps pathway. At each time step t, the posterior credibility of each of the three behavioural 435 

states is readily obtained from posterior inferences. The behavioural state S is attributed a 436 

posteriori to the time step t if S is the most credible a posteriori of the three possible states, 437 

and the state is said well predicted if the state attributed a posteriori matches with the 438 

simulated state.  439 

Application to observed VMS data 440 

The model was then applied to real pathways of pelagic trawlers from which VMS data could 441 

be made available. A pathway of 398 time steps, containing only 9 missing data (1 missing 442 

data is considered to occur when the interval between two successive emissions is approx. 2 443 

hours) and for which VMS emission are obtained at very regular time intervals (~1 hour) was 444 

used as an example of application. At that period of the year, the fishery is essentially 445 

targeting sea bass with trawling sequences usually longer than 1 hour (around 5-6 hours and 446 

up to 8 hours (Morizur et al. 1996)). This allows us to suppose that the emission with 447 

frequency of about 1 hour are rather informative with regards to the succession of behavioural 448 

states. Posterior inferences on behavioural states were used to extract relevant measures of the 449 

fishing effort. Posterior probability distributions of, e.g., the distance covered during steaming 450 

or fishing, or the number of fishing operations per trip, were also computed. To allocate a 451 

behavioural mode to each position, the same procedure than in the SE approach was used, but 452 

a threshold probability min was introduced: the behavioural state S is attributed to the time 453 

step t if S is the most credible of the three possible states and if the posterior probability of S 454 
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is greater of equal to the threshold min. No behavioural state (“unknown state”) is allocated 455 

to time step t if none of the three states has a posterior probability greater than min. The 456 

sensitivity of the classification to the value of the threshold min was assessed with values of 457 

min varying between 0.5 to 1.  458 

Technical details 459 

The estimation was performed using the OpenBUGS software (http://www.mrc-460 

bsu.cam.ac.uk/bugs/) and the BRugs package of R (www.r-project.org) (Lunn et al. 2009). 461 

The OpenBUGS software offers huge modelling flexibility. It uses Monte Carlo Markov 462 

Chains simulations to provide estimates of the posterior distributions. Three independent 463 

MCMC chains with different initialisation points were used. For each chain, the first 20 000 464 

iterations were discarded as an initial burn-in period. Inferences were then derived from the 465 

next 30 000 iterations, but only one out of 10 iterations was kept to reduce the MCMC 466 

sampling autocorrelation, leading to 3 000 iterations by chain. Hence inferences were derived 467 

from a sample of 9 000 iterations proceeded from three chains of 3 000 iterations each. The 468 

convergence of all MCMC chains was checked via the Gelman-Rubin diagnostics. 469 

RESULTS 470 

Simulation-Estimation approach 471 

Impact of the similarity of the behavioural state parameters 472 

Comparing the inferences between scenarios 1 and 2 (Fig. 5) highlights that the Bayesian 473 

hierarchical model provides very high quality inferences, even in the case where the contrast 474 

between the behavioural states (in term of speed and turning angles) is low.   475 

http://www.r-project.org/
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For the reference scenario 1, the model is also able to reproduce the simulated pathway, 476 

estimate speed with low bias and uncertainty (Fig. 5) and is able to accurately capture mostly 477 

all the behavioural states (Table 3). In the scenario 2, the two states “Fishing” and “Steaming” 478 

are characterized by more distinct speed and turning angles distributions than in the scenario 479 

1. Logically, the estimations of all pathways characteristics have very low bias and very low 480 

uncertainty (Fig. 5 and Table 3). However, the gain in the quality of the inferences comparing 481 

to scenario 1 is only weak.  482 

Fig. 5 near here 483 

Table 3 near here 484 

Introducing time-lags 485 

Comparing scenarios 1 and 3-8 highlights that the inferences are highly sensitive to the 486 

introduction of time-lags between the discrete process movements and the recorded 487 

observations, and that inferences may rapidly become unreliable if most of the time lags are 488 

near 0.5.  489 

Scenarios with time-lags either small or high (scenarios 3, 5, 6 and 8), provide very good 490 

estimation of speed (small bias and uncertainty in the estimated speeds) (Fig. 5). By contrast, 491 

scenarios where lots of emissions are made in the middle of the time step (scenarios 4 and 7), 492 

provide very poor fits with high uncertainty in speed estimates and lots of behavioural modes 493 

are not correctly identified (Table 3). Poor capacity to predict behavioural state is linked with 494 

a poor fit of the displacement parameters with high uncertainty (Fig. 5). The problem of 495 

statistical indetermination anticipated in the Material and Methods section (Fig. 3) becomes 496 

critical in the scenario 7 where many observed positions yt are recorded with time-lags near 497 
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0.5. The estimated path Xt and the associated movement parameters are highly uncertain (Fig. 498 

5 and Table 3).   499 

Introducing missing values 500 

Fig 5 and Table 3 show that the more missing values in the pathway (scenarios 9, 10 and 11) 501 

the more bias and uncertainty in the estimation of speed and of the behavioural states. 502 

However, all behavioural states are not affected in the same proportions. For instance, with 503 

20% of missing data, respectively 85 and 92% of the “Steaming” and “Fishing” positions are 504 

correctly identified, but only 57% of the “Stopping” positions are correctly estimated (Table 505 

3). “Stopping” positions which are not correctly identified are confounded with either 506 

“Steaming” and “Fishing” positions.  507 

Raising the number of observations 508 

Comparing scenarios 7 and 12 (Fig. 5 and Table 3) shows that increasing the frequency at 509 

which VMS positions are gathered drastically increases the performance of the estimation 510 

method, even if these observations are not synchronous with the switching instants.  511 

Application to a real dataset 512 

Given the results of the simulation-estimation approach, the real data set that we analysed 513 

corresponds to a rather favourable situations (the percentage of missing values is rather low, 514 

approx. 2%, and the frequency at which the VMS positions are acquired is shorter than the 515 

mean duration of fishing operations). We therefore consider the posterior inferences as rather 516 

reliable.  517 

Each true hidden location is identified with a very low level of uncertainty. The behaviour 518 

“Stopping” is allocated to some of the time steps, and many of the associated positions match 519 
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with known geographical locations of harbours in the Bay of Biscay. The other ones are 520 

interpreted as stop at sea.  521 

The posterior distributions of the associated movements characteristics, such as speed in each 522 

behavioural states, are readily estimated. Fig 6 shows the posterior distributions of speeds 523 

while “Steaming” and “Fishing”. During these fishing trips, the estimated mean speed while 524 

“Fishing” and “Steaming” are respectively 4 and 11 knots, which is consistent with 525 

knowledge issued from previous studies (Morizur et al., 1996). Other interesting indicators 526 

can also be readily estimated, such as the time spent in each state (Fig 7) or the distance 527 

travelled in each state (Fig 8). It is worth noting that the uncertainty about these estimates is 528 

rather low.  529 

Fig. 6 near here 530 

Fig. 7 near here 531 

Fig. 8 near here  532 

The inferences are only weakly sensitive to the threshold value min chosen in the allocation 533 

rule for the behavioural states (Fig 9). Indeed, assigning behavioural modes using min=0.5 534 

leads to similar results that the method consisting in assigning the behavioural states with the 535 

highest posterior probability (as in the simulation/estimation approach). This low sensitivity 536 

reflects the fact that the behavioural states are identified with little ambiguity: most of the 537 

time, one of the three states has a posterior probability which is far greater than the two 538 

others.  539 

Fig. 9 near here 540 
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DISCUSSION 541 

This paper shows that Bayesian hierarchical models using hidden Markov process are a 542 

promising approach to describe boats movements and identify behavioural states during a trip 543 

from discrete recorded VMS positions. The method is adapted when the movement can be a 544 

priori divided in various modes (Barraquand and Benhamou, 2008). It appears therefore well 545 

suited to disentangle the time spent in different behavioural modes during a fishing trip and to 546 

analyse fishing behaviour and fishing effort. Here, we investigated the potential of HBM with 547 

hidden Markov process to analyse VMS data, using a Markov processes in discrete time for 548 

sake of simplification. In particular, our simulation-estimation approach was designed to 549 

address questions regarding the performance of the estimation method according to various 550 

parameters (synchronism between records and switches between two different states, 551 

frequency of observations and missing values). These questions are all relative to the quantity 552 

of information provided by the data relative to the process, and can be considered, at least in a 553 

first approach, as relatively independent from the modelling framework (discrete or 554 

continuous) chosen for the hidden Markov process. Hence, a hidden Markov process in 555 

discrete time, which is easier to program for Bayesian inferences, was used as a first 556 

approach.  557 

The simulation-estimation approach provides an analysis of the performance of the method, 558 

and contributes to evaluate the degree of confidence in the outputs of the model when 559 

interpreting results from real data sets. Given the multiple combinations of levels of 560 

parameters for the process and the observation model, a few scenarios were selected to 561 

illustrate the effect of particular parameter. Results highlighted that when the VMS positions 562 

are precisely recorded at the switching instants, the estimation methods performs well, the 563 

model being able to reproduce the true pathway, to capture very well the sequence of 564 
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behavioural modes, and to provide unbiased estimates of the parameters (speed and angles) 565 

characterizing the movements in each behavioural mode. The model performs remarkably 566 

well even if the behavioural modes are not associated with clearly distinct movements 567 

characteristics. However, besides these very uncourageous results, our analysis also pointed 568 

out that the estimation performances are drastically impacted when the positions are not 569 

recorded synchronously with the switching instants. In this case, reliable inferences can still 570 

be obtained if the frequency with which the data are recorded is greater than the frequency 571 

with which the process switches from one behavioural mode to another.  572 

The conclusions of the simulation-estimation approach are very insightful regarding the 573 

potential use of VMS data to track fishing boats behaviours at a fine temporal and spatial 574 

scale. VMS emissions are now routinely gathered at time interval of approximately 1 hour. It 575 

is worth noting that these data should reveal relatively non informative if the fishery under 576 

concern has fishing operations with mean duration shorter than 1 hour (e.g. trawling duration 577 

of 20’ for instance). By contrast, if the fishing operations are much longer (e.g. about 2 hours 578 

such as the purse seine tuna fishery and up to 6 hours for some trawling fisheries such as the 579 

pelagic fishery while targeting sea bass as example in this paper), then VMS emission every 580 

hour could be successfully used to efficiently track the succession of behaviours. These quite 581 

intuitive results put forward the critical question of the frequency at which VMS data should 582 

be acquired, in order to give some feed back to managers that fix the acquisition time period 583 

for different fishing boats and fishing activities practiced. Our very first conclusion is that a 1-584 

hour frequency is certainly too long to be able to correctly capture behaviours for all fishing 585 

boats and all fishing activities.  586 

This first analysis opens several perspectives for future work. As stated in the Material and 587 

Methods section, Markov processes in continuous time constitutes the general template for 588 
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modelling fishing trips behaviours. Indeed, the amounts of time spent in each behaviour 589 

certainly take values in the continuous time line. Future research should be undertaken to 590 

propose a continuous-time MP framework to analyse VMS data. Using a Markov process in 591 

continuous time would improve the switching time identification and in the same time the 592 

underlying parameters’ estimation (speed and turning angles). It is worth noting that inferring 593 

the switching points (and the associated behaviours) of a continuous Markov process from 594 

discrete recorded positions is certainly a more difficult problem than working with a discrete 595 

Markov process. Indeed, a mismatch in observation and switch point times caused by random 596 

variation in observation timing has different implications than a mismatch caused by random 597 

variation in transition times, and may certainly lead to a more complicated inferential 598 

problem. Although the effects of random variation in observation times or random variation in 599 

switch points may not be a very important distinction in situations where the frequency of 600 

observations is much higher than the frequency of possible switch points (or if the discrete 601 

MP possible switch points are as frequent the probability of remaining in the same state for 602 

multiple time units is quite high), this however, is not the general case. This constitutes an 603 

important issue to be addressed in the future.   604 

An other promising perspective would be to integrate in the model the information brought 605 

about by onboard observers. Indeed, these data provide us with invaluable information on 606 

fishers’ behaviour at sea as they record the true sequence of the onboard operations such as 607 

fishing, stopping for gear maintenance, searching, steaming. Fishing trips for which onboard 608 

observers data are available could be used to improve the definition of the different fishing 609 

behaviours and their succession in time and space, or these data could be used in a first 610 

analysis to derive informative priors distributions for further analysis. More generally, the 611 

Bayesian framework is promising as it allows to integrating multiple sources of information, 612 

including expertise, in the modelling framework. For instance, the first order homogeneous 613 
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Markovian hypothesis is very strong and could be relaxed to integrate the idea that the 614 

behaviours at each instant depends upon the whole history of the fishing trip from the 615 

departure of the boats. Also, using the spatial coordinate of all the harbours where boats are 616 

potentially landing their harvest could certainly help improving the identification of 617 

“stopping” behaviour. The framework could be further improved by including covariates such 618 

as maps of the sea bed or primary productions. 619 

Despite the limitations and all the perspective to improve the method, this study provides 620 

some insights on how VMS data could be used to characterize effort allocation during a 621 

fishing trip. Since 1998 and the beginning of VMS recording, a large amount of data 622 

concerning boats operating with different kind of gears, targeting different species in distinct 623 

areas have been registered. The diversity of the fishing activities operated requires a flexible 624 

method to accommodate a wide range of fishing behaviours. To add to the diversity of the 625 

underlying processes, trajectories can be observed throughout various emission systems 626 

(Inmarsat, Argos). Our model may be applied to evaluate quantitatively the different stages of 627 

fishing trips. Of particular importance for fisheries management is the share of a boat trip that 628 

is dedicated to fishing. More generally, this share is one of the behavioural component of 629 

fishing that determines the effective fishing effort. Of course, other components have to be 630 

taken into account to accurately estimate this effective fishing effort such as, for instance, the 631 

efficiency of the research time or the exchange of information between fishermen (Millischer 632 

et Gascuel 2006). From that point of view, the analysis of VMS data is step forward in the 633 

understanding and quantitative characterisation of fishing behaviour. 634 

Enhancing fishing effort metrics is also particularly important when assessing the impact of 635 

fishing on the seabed (Mills, 2007), the effort attraction around Marine Protected Areas 636 

(Murawski, 2005) and even fish distribution (Bertrand, 2005). Improving the description of 637 
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fishing effort would also positively impact the reliability of catch rates as stock abundance 638 

indicators (Marchal et al., 2006).   639 

VMS data should, in the future, greatly benefit studies on effort allocation and fishers’ 640 

behaviour. The statistics derived from these approaches could then be used to compute the 641 

effective fishing time and the spatial and temporal patterns of fishing activity. These 642 

descriptors could then serve as direct inputs for stock assessment (for instance in calibrating 643 

VPA on effort data) and for existing bio-economic modelling frameworks (e.g. ISIS-Fish 644 

(Mahévas and Pelletier, 2004; Drouineau et al., 2006; Pelletier et al., 2009, In Press), TEMAS 645 

(Ulrich et al., 2002 and 2007) or FLR (Kell et al., 2007)) to improve the modelling of fishery 646 

systems. These indicators may also be of direct value for management and monitoring 647 

purposes. It is for example important to distinguish between fishing and steaming when 648 

establishing Marine Protected Areas that can potentially be crossed by boats because of its 649 

location, either between fishing areas, or between the home harbour and fishing grounds. 650 

Being able to distinguish fishing from travelling is also important, in the context of input-651 

based management, to adjust fishing effort limits to management objectives. 652 
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Table 1. Prior used for Bayesian estimation (Fi=Fishing, St=Steaming). 772 
 773 

Parameters Prior used 

Speed  

Mean speed while Steaming )20,5(~1 UnifS  

                    while Fishing  )2,2(~
12

Betav

SvS


  

 

Standard deviation for speed )10,0(~1 UnifS  

)10,0(~2 UnifS  

Turning angles  

Concentration parameter of W-Cauchy   

    while Steaming )1,0(~1 UnifS  

    while Fishing  )1,1(~
* 12

Betap

SpS


  

 

Transition matrix  P )34,33,33(~),,(
3,12,11,1

Dirichletppp  

)1.0,40,50(~),,( 3,22,21,2 Dirichletppp  

)40,1.0,50(~),,(
3,32,31,3

Dirichletppp  

Variance-covariance for the movement 

process 
)2,(~2 Whishartp  
















10

01

 

 774 
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Table 2. Parameters for the simulated pathways and various scenarios. Speeds are drawn at random in Normal distributions with indicated mean and sd. Turning 775 
angles are drawn in Wrapped-Cauchy distributions with indicated concentration parameters. Symbol ‘‘ indicates that the characteristics are identical to those of 776 
the scenario 1. Symbol ‘‘‘‘ indicates that the characteristics are identical to those of the scenario 8 777 
 778 
 779 
Scenario Speeds Turing angles Lag-Time Missing- values Frequency of 

observations 
 Mean sd Concentration parameter of 

W-Cauchy 
   

 Fishing Steaming Fishing Steaming  Steaming Fishing     
1 4 10 1.5 1.5 0.5 0.2 N N 1 
2 4 10 0.1 0.1 0.9 0.5 N N 1 
3 4 10 1.5 1.5 0.5 0.2 Constant =0.1 N 1 
4 4 10 1.5 1.5 0.5 0.2 Constant =0.5 N 1 
5 4 10 1.5 1.5 0.5 0.2 Constant =0.9 N 1 

6 4 10 1.5 1.5 0.5 0.2 Variable~U(0,0.1) N 1 
7 4 10 1.5 1.5 0.5 0.2 Variable~U(0,1) N 1 
8 4 10 1.5 1.5 0.5 0.2 Variable~U(0,0.5) N 1 
9 4 10 1.5 1.5 0.5 0.2 Variable~U(0,0.5) 5% 1 
10 4 10 1.5 1.5 0.5 0.2 Variable~U(0,0.5) 10% 1 
11 4 10 1.5 1.5 0.5 0.2 Variable~U(0,0.5) 20% 1 
12 4 10 1.5 1.5 0.5 0.2 Variable~U(0,1) N 3 
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Table 3. Performance of the classification of the behavioural states using  proportion [0,1] of 781 
simulated behavioural (1 = “Steaming”, 2 = “Fishing”, 3 = “Stopping”) that were correctly (in 782 
bold) or wrongly allocated. 783 

Simulated        
behavioural state 

1 2 3 

allocated       
behavioural state 

1 2 3 1 2 3 1 2 3 

S
c
e
n
a
ri

o
 

1 0,92 0,07 0,02 0,08 0,92 0,00 0,29 0,14 0,57 

2 0,92 0,07 0,02 0,08 0,92 0,00 0,14 0,14 0,71 

3 0,98 0,02 0,00 0,08 0,92 0,00 0,00 0,00 1,00 

4 0,54 0,46 0,00 0,31 0,69 0,00 0,43 0,57 0,00 

5 0,98 0,02 0,00 0,08 0,92 0,00 0,00 0,00 1,00 

6 0,98 0,02 0,00 0,08 0,92 0,00 0,00 0,00 1,00 

7 0,81 0,14 0,05 0,23 0,69 0,08 0,14 0,43 0,43 

8 0,98 0,02 0,00 0,08 0,92 0,00 0,00 0,14 0,86 

9 0,81 0,14 0,05 0,23 0,69 0,08 0,00 0,57 0,43 

10 0,86 0,12 0,02 0,08 0,92 0,00 0,00 0,43 0,57 

11 0,85 0,14 0,02 0,08 0,92 0,00 0,14 0,29 0,57 

12 0,98 0,02 0,00 0,08 0,92 0,00 0,00 0,00 1,00 
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Figure 1. Switching time and observation process in continuous time (Panel a) and discrete 
(Panel b).  
 
Figure 2. Directed acyclic graph for the hierarchical model with hidden Markov chain for 
behavioral states (see text for the definition of the parameters and variables) 
 
Figure 3. Example of two different true paths {X1

t} and {X2
t} leading to the same interpolated 

positions {Zt} (time-lag= 0.5). The paths show sequence of two dimensional positions in a 
arbitrary Cartesian coordinate system. 
 
Figure 4. Simulated pathways and associated behavioral state (“Steaming” = solid circle,  
“Fishing” = square, “Stops” = diamond) for scenarios 1 (A) and 2 (B) (see Table 3 for the 
definition of the scenarios). 
 
Figure 5. Performance of the estimation method for the mean speed associated to the 
behavioral states “Steaming” (A) and “Fishing” (B) for each scenario 1-12. x-axis : relative 
discrepancy between the estimated and the simulated mean. y-axis : Bayesian uncertainty 
measured as the standard deviation of the posterior distribution of the mean speed. The 
scenarios (defined in Table 2) are identified  by their number. Panel A: Scenarios 4 and 7 are 
out of the range of the graph (very high bias and uncertainty). Scenario 4: rel. bias = 0.05 and 
sd = 3.7 ; Scenario 7: rel. bias = -0.15 and sd = 3.2. 
 
Figure 6. Inferences derived from a real data set. Posterior distribution of speeds while 
“Steaming” (A) and “Fishing” (B). 
 
Figure 7. Inferences derived from the real data set. Posterior distribution of time spent at 
“Steaming” (A), “Fishing” (B) and “Stopping” (C).  
 
Figure 8. Inferences derived from the real data set. Posterior distribution of distance traveled 
while “Steaming” (A) and “Fishing” (B).  
 
Figure 9. Number of time steps (over a total of 398 time steps) identified a posteriori in each 
behavioral state depending on the decision threshold. Solid line corresponds to “unknown 
state”, dashed line to “Steaming”, dotted line to “Stopping” and dot-dashed line to “Fishing”.  

Figure Captions
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