FN Archimer Export Format PT J TI Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength BT AF GUILLOT, N. SHEN, H. FREMAUX, B. PERON, Olivier RINNERT, Emmanuel TOURY, T. DE LA CHAPELLE, M. Lamy AS 1:1;2:2;3:1;4:3;5:3;6:2;7:1; FF 1:;2:;3:;4:PDG-DOP-DCB-RDT-IC;5:PDG-DOP-DCB-RDT-IC;6:;7:; C1 Univ Paris 13, Lab CSPBAT FRE 3043, UFR SMBH, Equipe LBPS, F-93017 Bobigny, France. Univ Technol Troyes, Inst Charles Delaunay, LNIO, UMR CNRS 6279, F-10010 Troyes, France. IFREMER, Dept Rech & Dev Technol Serv Interfaces & Capteur, F-29280 Plouzane, France. C2 UNIV PARIS 13, FRANCE UNIV TROYES, FRANCE IFREMER, FRANCE SI BREST SE PDG-DOP-DCB-RDT-IC IN WOS Ifremer jusqu'en 2018 copubli-france copubli-univ-france IF 3.841 TC 95 UR https://archimer.ifremer.fr/doc/00011/12240/8970.pdf LA English DT Article DE ;gradient index optics;lenses;metamaterials;microwave photonics;optical design techniques;optical fabrication;particle size AB We here emphasize that the surface enhanced Raman scattering (SERS) intensity has to be optimized by choosing the appropriate gold nanoparticles size for two excitation wavelengths; 632.8 and 785 nm. We discuss the role of the position and of the order of the localized surface plasmon resonance (LSPR) in such optimization for both wavelengths. At 632.8 nm, the best SERS intensity is reached for a LSPR located between the excitation and Raman wavelengths whereas at 785 nm, the LSPR should be placed outside this range. The third order of LSPR is shown to have no influence on the SERS intensity. (C) 2010 American Institute of Physics. [doi:10.1063/1.3462068] PY 2010 PD JUN SO Applied Physics Letters SN 0003-6951 PU American Institut of Physics VL 97 IS 2 UT 000279999800063 DI 10.1063/1.3462068 ID 12240 ER EF