Genetics Research

Variance in the reproductive success of flat oyster Ostrea edulis L. assessed by parentage analyses in natural and experimental conditions

D. Lallias ${ }^{1, p 1}$, N. Taris ${ }^{1, p 2}$, P. Boudry ${ }^{1, p 3}$, F. Bonhomme ${ }^{2}$ and S. Lapègue ${ }^{1, *}$
${ }^{1}$ Ifremer, Laboratoire Génétique et Pathologie, Ronce-les-bains, 17390 La Tremblade, France
${ }^{2}$ Département Biologie Intégrative, ISEM, UMR 5554 CNRS-Université Montpellier II, S. M. E. L., 1 quai de la daurade, 34200 Sète, France
${ }^{p 1}$ Present address: School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK.
${ }^{\text {p2 }}$ Present address: Laboratoire 'Adaptation \& Diversité en Milieu Marin' UMR 7144 CNRS-UPMC, Station Biologique de Roscoff, Place Georges-Teissier, BP 74, 29682 Roscoff cedex, France.
${ }^{\text {p3 }}$ Present address: Ifremer - UMR M100 Physiologie et Ecophysiologie des Mollusques Marins - 29280
Plouzané, France.

*: Corresponding author : S. Lapègue, Tel: (33) 5467626 31. Fax: (33) 5467626 11, email address : Sylvie.Lapegue@ifremer.fr

Abstract

:

In order to document further the phenomena of variance in reproductive success in natural populations of the European flat oyster Ostrea edulis, two complementary studies based on natural and experimental populations were conducted. The first part of this work was focused on paternity analyses using a set of four microsatellite markers for larvae collected from 13 brooding females sampled in Quiberon Bay (Brittany, France). The number of individuals contributing as the male parent to each progeny assay was highly variable, ranging from 2 to more than 40 . Moreover, paternal contributions showed a much skewed distribution, with some males contributing to $50-100 \%$ of the progeny assay. The second part of this work consisted of the analysis of six successive cohorts experimentally produced from an acclimated broodstock (62 wild oysters sampled in the Quiberon Bay). Allelic richness was significantly higher in the adult population than in the temporal cohorts collected. Genetic differentiation ($F_{\text {st }}$ estimates) was computed for each pair of samples and all significant values ranged from 0.7 to $11 \cdot 9 \%$. A limited effective number of breeders (generally below 25) was estimated in the six temporal cohorts. The study gives first indications of the high variance in reproductive success as well as a reduced effective size, not only under experimental conditions but also in the wild. Surprisingly, the pool of the successive cohorts, based on the low number of loci used, appeared to depict a random and representative set of alleles of the progenitor population, indicating that the detection of patterns of temporal genetic differentiation at a local scale most likely depends on the sampling window.

Keywords: Ostrea edulis, microsatellite, reproductive success, temporal cohort, brooding females

1. INTRODUCTION

The mating system can greatly influence the genetic structure of populations. Crosses between relatives and selfing reduce multilocus heterozygosity and increase gametic disequilibria in the resulting progenies (Hedrick 2000). At the population level, they also lead to a reduction of effective size and an increase of inter-population differentiation. Moreover, demographic fluctuations (caused by variable ecological conditions) may result in transient bottlenecks that are expected to have the same effect on population's diversity and differentiation (Cornuet \& Luikart 1996). Marine species with high fecundity and high early mortality such as oysters (Elm-oyster model; Williams 1975), are particularly prone to display large variance in reproductive success, because of gametic (gamete quality, sperm-egg interaction) and zygotic (zygotic competition, differential viability of genotypes) effects (Boudry et al. 2002), contributing to a reduction of their effective population size. Hence, many marine species have a combination of high fecundity and narrow conditions for spawning success that may lead to wide individual variation in realised reproductive success, such that an annual cohort is the result of only a few spawning events or individuals (Hedgecock 1994).

The flat oyster, Ostrea edulis, an endemic European species, naturally occurs from Norway to Morocco in the North-Eastern Atlantic and in the whole Mediterranean Sea. It has been harvested for at least 6000 years (Goulletquer \& Héral 1997). However, overharvesting and, more recently, the successive occurrence during the 1960's of two protozoan diseases caused by Marteilia refringens and Bonamia ostreae drastically decreased its production. For example, the French production was reduced from 20,000 tons in the 1950's to 1,900 tons nowadays (FAO 2007). Hence, the native European flat oyster is listed in the OSPAR (OsloParis) Convention for the Protection of the Marine Environment of the North-East Atlantic (species and habitat protection). In the context of potential restoration along European coasts (Laing et al. 2005), it is important to assess the potential impact of hatchery-propagated stocks on the genetic variability and the effective population size of wild populations (Gaffney 2006). Therefore, information is needed about the genetic variability of hatcherypropagated stocks (Lallias et al. 2010) and the structure and dynamics of wild populations to ensure proper management of populations and aquaculture production.

The genetic structure of wild O. edulis populations has been analysed with microsatellite DNA (Launey et al. 2002) and mitochondrial DNA (12S) markers (DiazAlmela et al. 2004). Genetic differentiation based on mitochondrial data was 10 -fold greater
($\mathrm{F}_{\text {st }}=0.224$; Diaz-Almela et al. 2004) than the one established on microsatellite data $\left(\mathrm{F}_{\text {st }}=\right.$ 0.019; Launey et al. 2002). This quantitative difference of a factor of ten observed between the nuclear and mitochondrial $F_{s t}$ was proposed to be attributable to a reduced female effective population size. This could be explained by several factors: i) a biased effective sexratio towards males owing to the protandry of the species and the higher energy cost in oogenesis (Ledantec \& Marteil 1976), leading to a lower probability of becoming female. This is aggravated by the B. ostreae-caused disease (Culloty \& Mulcahy 1996) which induces high mortalities within 2-3 year-old adults, ii) a higher variance in female than male reproductive success (Boudry et al. 2002; Taris et al. 2009). Other explanations are: (1) $N_{e f}$ is one-quarter of N_{e} and (2) $F_{s t}$ is proportional to $\left(H_{S}-H_{T}\right)\left(H_{S}\right.$ being the average subpopulation Hardy-Weinberg heterozygosity, H_{T} being the total population heterozygosity) and H_{S} approached 1.0 in the microsatellites used (Hedrick 2005a).

Heterozygote deficiencies with regard to Hardy-Weinberg equilibrium expectations are common in marine bivalve populations (Zouros \& Foltz 1984; Huvet et al. 2000; Hare et al. 2006) and were reported in O. edulis for allozymes (Wilkins \& Mathers 1973; Saavedra et al. 1987; Alvarez et al. 1989) and microsatellites (Launey et al. 2002). Microsatellite markers are particularly prone to PCR artifacts such as the presence of null alleles and upper allele drop-out, which are responsible for the commonly observed heterozygote deficiencies. Moreover, a positive correlation between multi-locus heterozygosity (MLH) and life history traits such as growth or survival was reported in O. edulis based on allozymes (Alvarez et al. 1989; Launey 1998) and microsatellite markers (Bierne et al. 1998). Two kinds of arguments were mentioned to explain heterozygote deficiencies and correlations heterozygosity-growth. The first hypothesis, overdominance, implies that selection acts directly on allozymic genotypes, questioning allozymes neutrality. This hypothesis was refuted by the evidence of the same phenomenon occurring with reputedly neutral markers like microsatellites (Bierne et al. 1998; Launey \& Hedgecock 2001). The second hypothesis, associative overdominance, stipulates that marker polymorphism is neutral but reflects indirectly variation in loci linked to fitness by genetic correlations. Genetic markers, be they allozymes or microsatellites, can therefore either represent neutral loci in gametic disequilibrium with physically close loci under selection (local effect) or represent neutral markers of the overall genomic heterozygosity (general effect, David et al. 1995). Whether local or general, the associative overdominance hypothesis takes root in the characteristics of reproductive biology and dynamics of these species. Indeed, according to Bierne et al. (1998), an instantaneous reduced effective population size can induce gametic disequilibrium between genetic markers and loci
linked to fitness (local effect); whereas partial inbreeding can generate a variation in the global genomic heterozygosity between individuals (general effect). Li \& Hedgecock (1998) in Crassostrea gigas and Hedgecock et al. (2007) in O. edulis highlighted the fact that, under local circumstances, the effective population size can be drastically reduced by a high variance in reproductive success, which could in turn generate a temporary gametic phase disequilibrium (reinforcing the associative overdominance hypothesis).

Variance in individual reproductive success among parents has also been documented under experimental conditions using controlled crossing (e.g. Hedgecock \& Sly 1990; Hedgecock et al. 1992 and references therein; Petersen et al. 2008). The most direct evidence comes from studies of the Pacific oyster, Crassostrea gigas, in which changes in family representation in progenies resulting from factorial crosses were analysed using microsatellites markers for parentage analyses (Boudry et al. 2002; Taris et al. 2006). Their results showed large variance in parental contributions at several developmental stages, leading to a strong reduction of experiment-wide effective population size that could be attributed to four main factors: gamete quality, sperm-egg interaction, sperm competition and differential survival among families.

In order to document further the phenomena of variance in reproductive success both in natural and hatchery-produced populations of O. edulis, we performed two complementary studies to answer two questions: (1) Is it possible to detect a variance in reproductive success which could result in a reduced effective population size? (2) How is this variance temporally expressed? To answer these questions, brooding females were firstly sampled in the wild and the number of males fertilising each female estimated on the basis of microsatellite allele frequencies. Then, to get rid of drawbacks inherent to working with large natural populations and multiple environmental factors, parentage analyses were conducted under experimental conditions: successive cohorts were collected from a population of potential progenitors kept in hatchery, whose genotypes were known, in order to infer a posteriori the relative contribution of each. The results of these two studies are discussed in the light of previous studies of wild or hatchery-bred flat oysters.

2. MATERIALS AND METHODS

(i) Sampling and experimental design

First experiment - During summer 2001, 13 flat oysters, O. edulis, and the larvae present in their mantle cavity (i.e. brooding females) were collected when sampling individuals in Quiberon Bay (Brittany, France). This area represents a natural recruitment zone for this species. The sampling period extended from June to August:

- 26/06/2001: females F1 and F2
- 10/07/2001: females F4, F5, F6, F7 and F8
- 17/07/2001: females F9 and F10
- 08/08/2001: female F21
- 14/08/2001: females F22, F23 and F24

Second experiment - In November 2002, 62 adult oysters were sampled from a natural population in the same bay and transferred in raceways in the Ifremer experimental hatchery of La Tremblade (France). They were first anaesthetised with MgCl_{2} (Culloty \& Mulcahy 1992) to get biopsies of the gills for microsatellite genotyping. They were then conditioned for spawning, by increasing water temperature and food supply. Additional food consisted of three species of phytoplankton: Isochrysis galbana, Chaetoceros calcitrans and Tetraselmis suecica. Sieves were placed under the outflow pipe in order to collect larvae during the reproductive period (water flow: $150 \mathrm{l} / \mathrm{h}$). The term "cohort" refers to larvae that were collected, just after their release, on these sieves. Sieves were checked daily to collect the larvae that were then kept in 70% ethanol for further genetic analysis. It is known that stocks of adult flat oysters produce larvae over an extended period, contrary to the cupped oysters which are mass spawners (Helm et al. 2004).

(ii) Genotyping

DNA extraction for adult oysters (gill tissue) was performed by a classical phenol/chloroform method (Sambrook et al. 1989). Eighty larvae per brooding female or per cohort were separated under binocular lens in a Dolfuss tank, and individuals were put in a 0.2 ml Eppendorf tube with $4 \mu \mathrm{l}$ of 70% ethanol. Larval DNA extraction was performed by evaporating ethanol and adding $50 \mu \mathrm{l}$ of extraction buffer (1.5 ml of 10X PCR Buffer, $75 \mu \mathrm{l}$ of Tween 20, distilled water up to 15 ml) and $5 \mu \mathrm{l}$ of Proteinase $\mathrm{K}\left(10 \mathrm{mg} . \mathrm{ml}^{-1}\right)$ (Taris et al. 2005). Larvae were incubated one hour at $55^{\circ} \mathrm{C}$ and 20 minutes at $100^{\circ} \mathrm{C}$. Genomic DNA was kept at $-20^{\circ} \mathrm{C}$.

Four microsatellite loci were used: OeduJ12, OeduU2, OeduH15 and OeduT5 described in Launey et al. (2002). Polymerase chain reactions (PCR) were performed in a 10
$\mu 1$ reaction mix containing $5 \mu 1$ template DNA, $2.5 \mathrm{mM} \mathrm{MgCl}_{2}, 0.1 \mathrm{mM}$ dNTPs, $0.25 \mu \mathrm{M}$ of each primer, 1 unit of Goldstar Licensed Polymerase (Eurogentec) and 1X polymerase buffer (supplied by the manufacturer). The primers were synthesised by MWG Biotech with each forward primer labelled with IRD-700 (OeduJ12 and OeduU2) or IRD-800 (OeduH15 and OeduT5). Amplifications were processed as follows: pre-denaturation $\left(95^{\circ} \mathrm{C}, 5 \mathrm{~min}\right)$ followed by 30 cycles of denaturation /annealing of primers / polymerisation $\left(95^{\circ} \mathrm{C}, 20 \mathrm{~s} ; \mathrm{T}_{\mathrm{a}}, 20 \mathrm{~s}\right.$; $\left.72^{\circ} \mathrm{C}, 20 \mathrm{~s}\right)$ and a final elongation step $\left(72^{\circ} \mathrm{C}, 30 \mathrm{~min}\right)$. The annealing temperature T_{a} of the primer pair was respectively $50^{\circ} \mathrm{C}$ for $\operatorname{Oed} u \mathrm{~J} 12$, Oedu H 15 , and $\operatorname{Oed} u \mathrm{U} 2$ and $53^{\circ} \mathrm{C}$ for OeduT5. Variation in fragment size was visualised by 6.5% polyacrylamide denaturing gels run at $1500 \mathrm{~V}, 40 \mathrm{~W}, 40 \mathrm{~mA}$, at $50^{\circ} \mathrm{C}$ on a LICOR® DNA sequencer. Genotypes were scored with reference to individuals, whose alleles were of known size, and resulting data were analysed with the Gene Profiler 4.0 software.

(iii) Genetic analysis

Microsatellite genetic polymorphism within the adult population and within each temporal cohort was measured as the mean number of alleles per locus, the observed $\left(H_{o}\right)$ and expected unbiased ($H_{n b}$) heterozygosity (Nei 1978). Estimate of allelic richness (A) that uses rarefaction to correct for unequal sizes (El Mousadik \& Petit 1996) was also performed per locus and sample with the program FSTAT version 2.9.3 (Goudet 1995). A Friedman test was applied to detect differences in allelic richness among samples (Minitab 14.0): the adults and progeny cohorts were the treatments and the loci were the blocks. F-statistics described by Wright (1931) were computed according to Weir and Cockerham's estimators, using Genetix 4.1 software (Belkhir et al. 1996-2001). Deviations from Hardy-Weinberg equilibrium ($F_{i s}$) were computed in the adult population and in each cohort. Moreover, genetic differentiations between adult population and cohorts were estimated using Wright's fixation index $F_{\text {st }}$, estimated by θ (Weir \& Cockerham 1984). The significance of departures from zero of $F_{i s}$ and $F_{s t}$ was assessed by 1000 permutations of the appropriate data (alleles within individuals for $F_{i s}$, individuals among populations for $F_{s t}$).

We used three different methods for estimating the effective number of breeders $\left(N_{b}\right)$: 1) temporal moments method of Waples (1989), based on the changes of allelic frequencies between the adult population and each of the cohorts (NeEstimator 1.3 software; Peel et al. 2004; http://www.dpi.qld.gov.au/28_6908.htm), 2) excess heterozygosity method (NeEstimator 1.3 software) and 3) linkage disequilibrium (LD) method (LDNe program;

Waples \& Do 2008). For the LD method, the $\mathrm{P}_{\text {crit }}$ value is the minimum frequency for alleles to be included in the analysis. We performed the analyses using a $\mathrm{P}_{\text {crit }}$ value of 0.05 or 0.01 . There is a tradeoff between bias and precision: generally, the lower the $\mathrm{P}_{\text {crit }}$ value, the more precise but also the more biased the N_{b} estimates will be (Waples \& Do 2009).

(iv) Paternal analysis of larvae collected in brooding females

For the larvae collected in the mantle cavity of 13 wild brooding females, only mothers' genotypes and adult population allelic frequencies were available. Because of the size of the studied population, it was indeed impossible to sample all its individuals in order to obtain genotypes of all possible fertilizing males. To determine the number of males that contributed to the progeny of each female, two parental reconstruction software were used, one based on Bayesian statistics, the other on a combinatory approach. Both used multilocus genotypes of the known parent and offspring to reconstruct the genotypes of unknown fathers contributing to the progeny array.

The mean numbers of males having fertilised each of the 13 brooding females analysed, as well as the standard error over the 1000 iterations, were first estimated using PARENTAGE 1.0, a software based on Bayesian statistics developed by Ian Wilson (Emery et al. 2001; http://www.mas.ncl.ac.uk/~nijw). In the input file, several priors concerning distributions of offspring among males were stated:

- an equivalent contribution (each male contributes equally to the offspring)
- a number of fathers between 1 and 60

The mutation rate, accounting for assignation failures, was stated as equal to 0.02 .
We also used GERUD 2.0 (Jones 2005), based on a combinatory approach, which does not rely on the choice of priors. First, paternal alleles were established by subtraction. Then, an exhaustive search was performed, which tried every possible combination of paternal genotypes. The program provided all possible combinations of the minimum number of fathers. When several combinations of paternal genotypes were consistent with the progeny array, the solutions were ranked by likelihood, based on the segregation of paternal alleles in the general population according to Mendelian expectations. As this approach is computationally intensive, it is restricted to progeny arrays with less than six fathers (Jones \& Ardren 2003). Therefore, it was computed only for females whose progeny presented a low number of alleles.
(v) Parentage analysis of temporal cohorts collected in the hatchery population

For the temporal cohorts collected in the hatchery, genotypes of all potential progenitors are known, but not their sex as flat oysters are alternative hermaphrodites and can change sex during the same reproductive season (personal observations). First of all, exclusion probabilities, which correspond to the probability that a parent taken at random in a population can be excluded, were computed. It is of prime importance to compute exclusion probability prior to any parentage analysis, to ensure that the set of molecular markers used is powerful enough to achieve successfully parentage analysis. Exclusion probabilities were computed for each locus separately $\left(P_{E l}\right)$ and for all loci progressively combined ($P_{C E}$) according to Chakraborty et al. 1988:

$$
P_{E l}=1-4 \sum_{i=1}^{n} p_{i}^{2}+2\left(\sum_{i=1}^{n} p_{i}^{2}\right)^{2}+4 \sum_{i=1}^{n} p_{i}^{3}-3 \sum_{i=1}^{n} p_{i}^{4}
$$

where n is the number of alleles at locus l and p_{i} is the frequency of the i th allele.
And for L loci:

$$
P_{C E}=1-\prod_{l=1}^{L}\left(1-P_{E l}\right)
$$

Exclusion probabilities computed for the pool of 62 potential progenitors were $73.7 \%, 94.5 \%$ and 98.3% for $O e d u \mathrm{~J} 12$, Oedu U 2 and $\operatorname{Oed} u \mathrm{~T} 5$ respectively. The combined exclusion probability obtained with the three loci was 99.9%.

For parentage assignment, the "Parental pair (sexes unknown)" option of CERVUS 3.0 (Marshall et al. 1998, Kalinowski et al. 2007) was used. It is a parental pair allocation program, based on a maximum likelihood approach. The statistic Delta is defined as the difference in LOD scores between the most likely candidate and the second most likely candidate. In the simulation of parental analysis, the proportion of loci typed was 0.93 , the simulated genotyping error was set at 0.01 , the number of candidate parents was 62 and the proportion of candidate parents sampled was set at 100%. Critical values of Delta were determined for 80% and 95% confidence levels based on simulations of 10000 offspring.

3. RESULTS

(i) Genetic and paternity analyses of the brooding females collected in a natural population

Genotypes at 3 to 4 microsatellite loci were determined for 80 larvae collected in each brooding female. Beforehand, compatibility of maternal alleles was checked in each offspring; five females, respectively F4, F6, F8, F23 and F24 showed some larvae whose
genotypes were not compatible at locus $O e d u$ H15. In these cases, the five females were apparently homozygous; mismatching arose from the presence of homozygous larvae for an allele different from the one of the corresponding female. Null alleles were suspected; females were most likely heterozygous for a null allele thus making the larvae heterozygous exhibiting a paternal allele and the suspected maternal null allele. This has already been reported for this locus (Launey et al. 2002). Consequently, genotypes at OeduH15 were recoded to take into account the segregation of a null allele, before performing the paternity analyses. The number of alleles per locus was assessed in each progeny array for each female. Locus $\operatorname{Oed} u \mathrm{H} 15$ presented a lower number of alleles, always below 12. Mean number of alleles per locus was highly variable, from 4.3 for F7 to 18.5 for F10 (Table 1).

Mean numbers of male parents as determined with PARENTAGE 1.0 was highly variable among females, from 2 to more than 40 (Table 1). Software GERUD 2.0 was used for the five progeny arrays showing the lowest number of alleles: F5, F7, F8, F21 and F24. Minimum numbers of fertilizing males were obtained (Table 1), as well as the genotypes of males contributing to each array. Each paternal genotype was associated with the number of larvae compatible with this genotype. Paternal contributions showed a very skewed distribution, with some males contributing to $50-100 \%$ of the progeny assay (Figure 1).

(ii) Genetic diversity, differentiation and effective number of breeders of temporal cohorts

 collected in hatcherySix temporal cohorts were collected from the batch of adult oysters kept in the hatchery during a short period of time between the $14^{\text {th }}$ of March 2003 and the $30^{\text {th }}$ of March 2003, although the experiment was pursued until the end of June. These cohorts were named by the date of collection: $14,17,20,22,28$ and $30 / 03 / 2003$. The six cohorts were also pooled into a "Total cohort", for analysis. Multilocus genotypes (at OeduJ12, OeduU2 and OeduT5) were determined for the adult population and for 80 larvae from each cohort. The population of potential progenitors consisted of 62 adults. Linkage disequilibrium was computed for each pair of loci for the adults kept in hatchery with the option 2 of the web-based version Genepop software (genepop@wbiomed.curtin.edu.au). No significant linkage disequilibrium ($p>0.63$ for each combination) was observed in the population of progenitors: the three loci studied segregate independently.

The values of allelic richness varied from 23.00 to 27.00 for the adult population depending on the locus (Table 2). For the six temporal cohorts collected, the values of allelic
richness varied from 11.52 to 20.33 depending on the locus and the cohort. For the Total cohort (6 pooled cohorts), allelic richness was 18.70 for OeduJ12, 21.07 for OeduU2 and 18.86 for OeduT5 (Table 2). Regarding the allelic richness across loci in the adult sample and the six cohorts, there were significant differences observed (Friedman test statistic $S=13.30$, $\mathrm{df}=6, \mathrm{p}=0.04$). Values of observed and expected heterozygosity were high, above 0.9 (Table 2). Deviations from Hardy Weinberg equilibrium $\left(F_{i s}\right)$ were computed for the adults and the cohorts (Table 2). The global heterozygote deficiency was not significant for the population of progenitors. None of the heterozygote excesses observed in the cohorts was significant. The significant heterozygote deficiency observed for the cohort of 28/03/03 (p $<$ 0.05) was attributable to locus OeduJ12 ($\mathrm{p}<0.001$ for this locus after Bonferroni correction).

Genetic differentiations ($F_{s t}$ values) were computed for each pair of samples (adult/cohort; cohort/cohort). All values were highly significant ($\mathrm{p}<0.001$ or $\mathrm{p}<0.01$). Genetic differentiation ranged from 0.7% (between cohorts 20/03/2003 and 22/03/2003) to 11.9% (between cohorts $14 / 03 / 2003$ and 17/03/2003) (Table 3a). Genetic differentiations were also computed between the population of progenitors and the cohorts progressively pooled (Table 3b). With pooling, genetic differentiation became blurred, but was non significant only when all 6 pooled cohorts were compared to the progenitors.

The effective number of breeders $\left(N_{b}\right)$ was computed for each temporal cohort, using three different methods. The N_{b} estimates varied according to the method used, but were generally below 25 . The excess heterozygosity method and the linkage disequilibrium method (with a $\mathrm{P}_{\text {crit }}$ value of 0.05) gave consistently lower N_{b} estimates (Table 4). The temporal method and the linkage disequilibrium method (using a $\mathrm{P}_{\text {crit }}$ value of 0.01) gave very similar estimates. The cohort 17/03/2003 had the lowest N_{b}. For the Total cohort, the heterozygote excess and linkage disequilibrium methods gave N_{b} estimates ranging between 15 and 34, whereas N_{b} estimate was 96 based on the temporal method (Table 4).

(iii) Parentage analysis of temporal cohorts collected in hatchery

CERVUS 3.0 software was used to assign the most likely parental pair to each offspring of a progeny array. For each of six temporal cohorts collected in hatchery, the percentage of larvae that were assigned a parental pair ranged from 49% to 65% with a 95% statistical confidence, and from 68% to 88% with a 80% statistical confidence (Table 5). Out of 62 potential progenitors, 10 did not contribute, 15 contributed to only one cohort, 11 to two cohorts, 10 to three cohorts, 5 to four cohorts, 5 to five cohorts and 6 contributed to all 6
cohorts. Depending on the cohort, the number of contributing progenitors ranged from 19 (17/03/2003) to 28 (14/03/2003 and 28/03/2003) (Table 4).

It is apparent from Figure 2 that the total contribution of each progenitor, in terms of number of offspring, was very variable. For example, 10 progenitors contributed each to a single offspring (e.g. P007, P009, P018) whereas 4 progenitors contributed each to more than 40 offspring (P006, P026, P048 and P094). Also, it can be noticed that some parents contributed to successive cohorts (e.g. P014, P075 contributed to 28/03/2003 and 30/03/2003) while others contributed to cohorts spaced in time. For example, P083 contributed to two cohorts spaced by two weeks: 14/03/2003 and 28/03/2003. The contribution of this individual to these two cohorts was confirmed by the segregation of rare alleles (exhibited by only this individual): hence P083 exhibited a rare allele at locus $\operatorname{Oed} u \mathrm{U} 2$, which was found in some larvae of these cohorts. Segregation of such rare alleles was used to check qualitatively the succession of some individuals along the time found with CERVUS. Results were consistent: rare allele analysis revealed contribution of P014 in 28/03/2003 and 30/03/2003; of P028 to 5 cohorts (from 17/03/2003 to 30/03/2003); of P045 in 14/03/2003; and of P061 in 20/03/2003 and 22/03/2003.

Finally, there was a succession in time of major contributing progenitors (Figure 3). The main progenitor of $14 / 03 / 2003$ was P083, contributing to more than 20% of the progeny. P026 contributed to almost 50% of the $17 / 03 / 2003$ cohort, whereas P006 contributed to almost 30% of the $20 / 03 / 2003$ cohort. For the last three cohorts, no progenitor had a contribution over 20%.

4. DISCUSSION

The advent of molecular tools and methods for parentage analysis (reviewed in Jones et al. 2010) has greatly facilitated genetic investigation of mating systems and the evaluation of patterns and determinants of reproductive success in aquatic organisms. Genetic methods have recently added much insight into the reproductive and parental care behaviour of several fish species by analysing genetic parentage of broods collected in nature (Sefc et al. 2008, Tatarenkov et al. 2008, Byrne \& Avise 2009). Moreover, genetic parentage analyses have been employed to gain a better understanding of the spawning behaviour and reproductive dynamics of captive fish broodstock held in commercial breeding tanks (Jeong et al. 2007, Herlin et al. 2008, Blonk et al. 2009). Finally, high variance in reproductive success has previously been reported in bivalves, both in natural populations (Li \& Hedgecock 1998,

Hegdgecock et al. 2007, Arnaud-Haond et al. 2008) and in experimental conditions (Boudry et al. 2002, Petersen et al. 2008). To our knowledge, only a few studies combine experimental studies with observations in natural populations.

(i) Comparison of natural population and experimental hatchery conditions

The first part of our study allowed the estimation of the effective number of individuals contributing as fertilizing males to the progeny of brooding females in natura. Paternity analyses revealed that this number was highly variable (from 2 to more than 40 , Table 1). Our results also revealed a high variance of the relative contribution of each male within a female (Figure 1). In the studied population, the number and spatial distribution of individuals was unknown, as well as effective sex ratio or local environmental conditions. Therefore, no hypothesis could be put forward to explain why a particular female was (or was not) fertilised by a particular male, or to explain the variance in the relative contribution of the males; this highlighted the need to work under experimental conditions in a controlled environment to mimic what happens at the population level. The experimental part of the present study was therefore performed to describe mating among individuals in more detail. In this second part of our study, as individuals of similar size and physiological condition were kept under common environmental conditions (temperature, food input), we could expect that all oysters would become mature around the same time. Moreover, progenitors were moved daily inside the tank aiming to avoid spatial effect on fertilisation caused by the direction of the water flow in the raceway. Thus variance in reproductive success was expected to be low. Consequently, the variance in relative contributions observed within each cohort truly represented intrinsic capacities (physiology, genetics) of individuals to reproduce. A similar approach was successfully used in the lion-paw scallop (Petersen et al. 2008). Furthermore, a comparable experimental design was successfully used to study the hypothesis that reproductive success is randomly distributed within spawning aggregations of Atlantic cod (Rowe et al. 2008). This indicates that experimental design might be of particular interest to understand better the behaviour of wild populations.

(ii) Variance in reproductive success and effective population size: implications

There is a relationship between reproductive biology (variance in reproductive success implying a low N_{e}) and temporary disequilibrium (or markers-based heterosis). To explain
heterozygote deficiencies and heterozygosity-growth correlations, the associative overdominance hypothesis postulates that selectively neutral markers are affected by selection operating on linked loci with effects on fitness. Genetic markers, be they allozymes or microsatellites, can therefore either represent neutral loci in gametic disequilibrium with physically close loci under selection (local effect) or represent neutral markers of the overall genomic heterozygosity (general effect, David et al. 1995). Analysis of distorted segregation ratios in C. gigas confirms that these distortions are mainly attributable to selection against recessive deleterious mutations of fitness genes linked to these distorted markers (Launey \& Hedegecock 2001). David et al. (1997) suggest that even small levels of inbreeding can be sufficient to maintain disequilibrium between markers and fitness genes that causes the observed markers-associated heterosis. Moreover, the ratio N_{e} / N can be drastically reduced by a high variance in reproductive success (Hedgecock 1994, Launey \& Hedegecock 2001, Hedrick 2005b, Hedgecock et al. 2007) that could generate temporary gametic disequilibrium and markers-associated heterosis.

This study highlighted the existence of variance in reproductive success as well as a locally reduced effective size in experimental (controlled) conditions. The two combined phenomena are compatible with the possibility of temporary gametic disequilibria, which favour the local effects hypothesis of associative overdominance. Moreover, variance in reproductive success highlighted in this study could be accentuated by variations in environmental conditions in the wild. Such a variance in reproductive success has been assessed previously in C. gigas by PCR-SSCP (Li \& Hedgecock 1998) and by microsatellites (Boudry et al. 2002). This variance can be explained by asynchrony of maturation, as already observed some years in Brittany (France) with three successive spawns separated by about 23 weeks (Martin et al. 1995).

Effective number of breeders $\left(N_{b}\right)$ is a fundamental parameter for the management of genetic resources and conservation biology because it influences the magnitude of genetic drift in the closed population under scrutiny. It determines the rate of inbreeding ($\Delta F=1 / 2 N_{b}$) and hence the rate of genetic variability loss in a population. In species with overlapping generations however, the effective number of breeders per year $\left(N_{b}\right)$ can differ from the population's long term effective size N_{e}. This study demonstrated a limited effective number of breeders in the six temporal cohorts, generally below 25 (Table 4). However, N_{b} (based on the temporal method) was computed between two successive generations therefore equilibrium was not achieved. Moreover, it is important to notice that effective sex ratio in the experimental population is unknown. Some features of life history of oysters tend to limit the
effective population size: a biased sex ratio and the fact that fertilisation takes place into the mantle cavity which pleads in favour of fertilisation by nearest neighbours (Saavedra et al. 1987). Moreover, analysis of genetic variability of a cohort collected early in the reproductive season in Sète in 1993 (Hedgecock et al. 2007) demonstrated that spat collected was issued from a small number of progenitors (probably less than 20). This is in agreement with the fact that sexual maturation is not synchronous in this species (Le Dantec \& Marteil 1976) and that reproductive success can be highly variable in time, at least at the beginning of the reproductive season when only a few individuals are mature.

The occurrence of such gametic disequilibria is temporary therefore it is not always observed. These patterns of temporal genetic differentiation at the local scale were described as "chaotic genetic patchiness" (Johnson \& Black 1984; David et al. 1997) because they are transient and do not represent a permanent structure. The ability of detecting them depends on the sampling window and time. Indeed, in the Hedgecock et al. (2007) study reported above, few individuals contributed to the recruited cohort probably because of the scarcity of oysters already mature at that time of the year. However, another similar study (Taris et al. 2009) collected successive 15 -days cohorts later in the season and showed neither genetic differentiation between adults and cohorts nor temporal structuring of the genetic diversity observed with nuclear markers. This suggests that several differentiated cohorts were integrated into a wide 15 -days cohort, erasing genetic differentiation: the sampling window (15 days) was perhaps too wide. This previous result obtained in the wild is supported by the study of our experimental population where $F_{s t}$ was computed between progenitors and successive cohorts, as well as pooled cohorts. A high genetic differentiation was found between the population of potential progenitors and the first cohort ($F_{s t} 3 \%, \mathrm{p}<0.001$): this could be explained by a few individuals contributing the cohort. As soon as successive cohorts were pooled, more and more progenitors contributed to these cohorts and hence genetic differentiation faded to cancel finally when all the cohorts were pooled (Table 3b). Therefore the pool of successive cohorts appears to represent a random and representative set of alleles of the progenitor population. However, such a result is driven in a very large part by the limited power of the dataset, as $F_{s t}$ is estimated on only 3 loci. From Table 2, we can see that the allelic richness is still quite a bit lower in the pooled cohorts than in the parents. The pooled cohorts certainly seems to constitute a more representative set than any of the individual cohorts, but it would probably still be found to be differentiated from the parents if more loci had been used. The detection of this phenomenon depends probably on the sampling window: for Hedgecock et al.'s (2007) cohort, this window was 15 days in early
spring. In this study, we showed the existence of a genetic differentiation at a smaller stepping time: between two successive cohorts spaced of 2-3 days, different individuals contributed to the cohorts explaining the genetic differentiation observed.

Acknowledgements

We thank the technical team of Ifremer La Tremblade for their technical assistance, in particular Serge Heurtebise and Florence Cornette. Special thanks to Ian Wilson for his help with the PARENTAGE software. We would like to thank two anonymous referees for helpful comments on this manuscript.

References

Alvarez, G., Zapata, C., Amaro, R. \& Guerra, A. (1989). Multilocus heterozygosity at protein loci and fitness in the European oyster, Ostrea edulis L. Heredity 63, 359-372.
Arnaud-Haond, S., Vonau, V., Rouxel, C., Bonhomme, F., Prou, J., Goyard, E. \& Boudry, P. (2008). Genetic structure at different spatial scales in the pearl oyster (Pinctada margaritifera cumingii) in French Polynesian lagoons: beware of sampling strategy and genetic patchiness. Marine Biology 155, 147-157.
Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. \& Bonhomme, F. (1996-2001). GENETIX 4.02, logiciel sous Windows TM pour la génétique des populations. Montpellier, France: Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II.
Bierne, N., Launey, S., Naciri-Graven, Y. \& Bonhomme, F. (1998). Early effect of inbreeding as revealed by microsatellite analyses on Ostrea edulis larvae. Genetics 148, 1893-1906.
Blonk, R.J.W., Komen, J., Kamstra, A., Crooijmans, R.P.M.A. \& van Arendonk, J.A.M. (2009). Levels of inbreeding in group mating captive broodstock populations of Common sole, (Solea solea), inferred from parental relatedness and contribution. Aquaculture 289, 26-31.
Byrne, R.J. \& Avise, J.C. (2009). Multiple paternity and extra-group fertilizations in a natural population of California grunion (Leuresthes tenuis), a beach-spawning marine fish. Marine Biology 156,1681-1690.
Boudry, P., Collet. B., Cornette F., Hervouet, V. \& Bonhomme, F. (2002). High variance in reproductive success of the Pacific oyster (Crassostrea gigas, Thunberg) revealed by
microsatellite-based parentage analysis of multifactorial crosses. Aquaculture 204, 283296.

Chakraborty, R., Meagher, T.R. \& Smouse, P.E. (1988). Parentage analysis with genetic markers in natural populations. I. The expected proportion of offspring with unambiguous paternity. Genetics 118, 527-536.
Cornuet, J.M. \& Luikart, G. (1996). Description and evaluation of two tests for detecting recent bottlenecks. Genetics 144, 2001-2014.
Culloty, S.C. \& Mulcahy, M.F. (1992). An evaluation of anaesthetics for Ostrea edulis (L.). Aquaculture 107, 249-252.
Culloty, S.C. \& Mulcahy, M.F. (1996). Season-, age-, and sex-related variation in the prevalence of bonamiasis in flat oysters (Ostrea edulis L.) on the south coast of Ireland. Aquaculture 144, 53-63.
David, P., Delay, B., Berthou, P. \& Jarne, P. (1995). Alternative models for allozymeassociated heterosis in the marine bivalve Spisula ovalis. Genetics 139, 1719-1726.
David, P., Perdieu, M.A., Pernot, A.F. \& Jarne, P. (1997). Fine-grained spatial and temporal population genetic structure in the marine bivalve Spisula ovalis. Evolution 51, 1318-1322.
Diaz-Almela, E., Boudry, P., Launey, S., Bonhomme, F. and Lapègue, S. (2004). Reduced female gene flow in the European flat oyster Ostrea edulis. Journal of Heredity 95, 510516.

El Mousadik, A. \& Petit, R.J. (1996). High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theoretical and Applied Genetics 92, 832-839.
Emery, A.M., Wilson, I.J., Craig, S., Boyle, P.R. \& Noble, L.R. (2001). Assignment of paternity groups without access to parental genotypes: multiple mating and developmental plasticity in squid. Molecular Ecology 10, 1265-1278.
Food and Agriculture Organization of the United Nations (FAO) (2007). FishStat, http://www.fao.org/fi/statist/FISOFT/FISHPLUS.asp
Gaffney P. M., 2006. The role of genetics in shellfish restoration. Aquatic Living Resources 19, 277-282.
Goudet, J. (1995). FSTAT (vers. 1.2): a computer program to calculate F-statistics. Journal of Heredity 86, 485-486.
Goulletquer, P. \& Héral, M. (1997). Marine molluscan production trends in France: from fisheries to aquaculture. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 129, 137-164.
Hare, M.P., Allen, S.K., Bloomer, P., Camara, M.D., Carnegie, R.B., Murfree, J.,

Luckenbach, M., Meritt, D., Morrison, C., Paynter, K., Reece, K.S. \& Rose, C.G. (2006). A genetic test for recruitment enhancement in Chesapeake Bay oysters, Crassostrea virginica, after population supplementation with disease tolerant strain. Conservation genetics 7, 717-734.
Hedgecock, D. (1994). Does variance in reproductive success limit effective population sizes of marine organisms? In: Genetics and Evolution of Aquatic Organisms (ed. AR Beaumont), pp. 122-134. Chapman \& Hall, London.

Hedgecock, D., Chow, V. \& Waples, R.S. (1992). Effective population numbers of shellfish brood stocks estimated from temporal variances in allelic frequencies. Aquaculture 108, 215-232.
Hedgecock, D., Launey, S., Pudovkin, A.I., Naciri, Y., Lapègue, S. \& Bonhomme, F. (2007). Small effective number of parents $\left(\mathrm{N}_{\mathrm{b}}\right)$ inferred for a naturally spawned cohort of juvenile European flat oysters Ostrea edulis. Marine Biology 150, 1173-1182.
Hedgecock, D. \& Sly, F.L. (1990). Genetic drift and effective population sizes of hatcherypropagated stocks of the Pacific oyster Crassostrea gigas. Aquaculture 88, 21-38.
Hedrick, P.W. (2000). Genetics of populations. $2^{\text {nd }}$ edition. Jones and Bartlett Publishers, Sudbury, Massachusetts. 553 pp.
Hedrick, P.W. (2005a). A standardized genetic differentiation measure. Evolution 59, 16331638.

Hedrick, P.W. (2005b). Large variance in reproductive success and the N_{e} / N ratio. Evolution 59, 1596-1599.

Helm, M.M., Bourne, N., Lovatelli, A. (2004). Hatchery culture of bivalves. A practical manual. FAO, Fisheries Technical Paper No.471, Rome, 2004, 177p.
Herlin, M., Delghandi, M., Wesmajervi, M., Taggart, J.B., McAndrew, B.J. \& Penman, D.J. (2008). Analysis of the parental contribution to a group of fry from a single day of spawning from a commercial Atlantic cod (Gadus morhua) breeding tank. Aquaculture 274, 218-224.

Huvet, A., Boudry, P., Ohresser, M., Delsert, C. \& Bonhomme, F. (2000). Variable microsatellites in the Pacific cupped oyster Crassostrea gigas and other cupped oyster species. Animal Genetics 3, 71-72.
Jeong, D-S., Gonzalez, E.B., Morishima, K., Arai, K. \& Umino, T. (2007). Parentage assignment of stocked black sea bream Acanthopagrus schlegelii in Hiroshima Bay using microsatellite DNA markers. Fisheries Science 73, 823-830.

Johnson, M.S., Black, R. (1984). Pattern beneath the chaos: the effect of recruitment on
genetic patchiness in an intertidal limpet. Evolution 38, 1371-1383.
Jones, A.G. (2005). GERUD2.0: a computer program for the reconstruction of parental genotypes from progeny arrays with known or unknown parents. Molecular Ecology Notes 5, 708-711.

Jones, A.G. \& Ardren, W.R. (2003). Methods of parentage analysis in natural populations. Molecular Ecology 12, 2511-2523.
Jones, A.G., Small, C.M., Paczolt, K.A. \& Ratterman, N.L. (2010). A practical guide to methods for parentage analysis. Molecular Ecology Resources 10, 6-30.

Kalinowski, S.T., Taper, M.L. \& Marshall, T.C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16, 1099-1106.
Laing, I., Walker, P. \& Areal, F. (2005). "A feasibility study of native oyster (Ostrea edulis) stock regeneration in the United Kingdom". DEFRA - SEAFISH, Card project FC1016: Native oyster stock regeneration - a review of biological, technical and economic feasibility. CEFAS, UK. 95 pp.
Lallias, D., Lapègue, S., Boudry, P., King, J. \& Beaumont, A.R. (2010). Strategies for the retention of high genetic variability in European flat oyster (Ostrea edulis) restoration programmes. Conservation Genetics doi:10.1007/s10592-010-0081-0.
Launey, S. (1998). Marqueurs microsatellites chez l'huître plate Ostrea edulis L.: caractérisation et applications à un programme de sélection pour une résistance au parasite Bonamia ostreae et à l'étude de populations naturelles. Thèse de Doctorat, Institut National Agronomique Paris Grignon, France, 305 p.

Launey, S. \& Hedgecock, D. (2001). High genetic load in the Pacific oyster Crassostrea gigas. Genetics 159, 255-265.
Launey, S., Ledu, C., Boudry, P., Bonhomme, F. \& Naciri-Graven, Y. (2002). Geographic structure in the European flat oyster (Ostrea edulis L.) as revealed by microsatellite polymorphism. The Journal of Heredity 93, 40-47.
Ledantec, X. \& Marteil, L. (1976). La reproduction des huîtres. Revue des Travaux de l'Institut des Pêches Marines 2, 233-256.

Li, G. \& Hedgecock, D. (1998). Genetic heterogeneity, detected by PCR-SSCP, among larval samples of larval Pacific oysters (Crassostrea gigas) supports the hypothesis of large variance in reproductive success. Canadian Journal of Fisheries and Aquatic Sciences 55, 1025-1033.

Martin, A.G., Littaye-Mariette, A., Langlade, A. \& Allenou, J.P. (1995). Cycle de
reproduction naturelle de l'huître plate Ostrea edulis. In Rapport de groupe de travail sur "La_reproduction naturelle et contrôlée des bivalves cultivés en France" - Ifremer Nantes 14-15_novembre 1995. DRV/RA/RST/97-11 Brest. coordonnateurs : Devauchelle, Barret et Salaun. pp. 21-33.
Marshall, T.C., Slate, J., Kruuk, L.E.B. \& Pemberton, J.M. (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7, 639-655.
Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583-590.

Peel, D., Ovenden, J.R. \& Peel, S.L. (2004). NeEstimator: software for estimating effective population size, Queensland Government, Department of Primary Industries and Fisheries, Brisbane, Australia, Ver. 1.2.
Petersen, J.L., Ibarra, A.M., Ramirez, J.L., May, B. (2008). An induced mass spawn of the hermaphroditic lion-paw scallop, Nodipecten subnodosus: genetic assignment of maternal and paternal parentage. Journal of Heredity 99, 337-348.
Rowe, S., Hutchings, J.A., Skjaeraasen, J.E., Bezanson, L. (2008). Morphological and behavioural correlates of reproductive success in Atlantic cod Gadus morhua. Marine Ecology Progress Series 354, 257-265.
Saavedra, C., Zapata, C., Guerra, A. \& Alvarez, G. (1987). Genetic structure of flat oyster (Ostrea edulis [Linneo, 1758]) from the NW from the Iberian Peninsula. Investigation Pesq 51, 225-241.
Sambrook, J., Fritsch, E.F. \& Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd edition. Cold Spring Harbor Laboratory Press, New York.
Sefc, K.M., Mattersdorfer, K., Sturmbauer, C. \& Koblmüller,S. (2008). High frequency of multiple paternity in broods of a socially monogamous cichlid fish with biparental nest defence. Molecular Ecology 17, 2531-2543.
Taris, N., Baron, S., Sharbel, T.F., Sauvage, C. \& Boudry, P. (2005). A combined microsatellite multiplexing and boiling DNA extraction method for high-throughput parentage analyses in the Pacific oyster (Crassostrea gigas). Aquaculture Research 36, 516-518.

Taris, N., Boudry, P., Bonhomme, F., Camara, M.D. \& Lapègue, S. (2009). Mitochondrial and nuclear DNA analysis of genetic heterogeneity among recruitment cohorts of the European flat oyster Ostrea edulis. The Biological Bulletin 217, 233-241.
Taris, N., Ernande, B., McCombie, H. \& Boudry, P. (2006). Phenotypic and genetic consequences of size selection at the larval stage in the Pacific oyster (Crassostrea gigas).

Journal of Experimental Marine Biology and Ecology 333, 147-158.
Tatarenkov, A., Healey, C.M.I., Grether, G.F. \& Avise, J.C. (2008). Pronounced reproductive skew in a natural population of green swordtails, Xiphophorus helleri. Molecular Ecology 17, 4522-4534.

Waples, R.S. (1989). A generalized approach for estimating effective size from temporal changes in allele frequency. Genetics 121, 379-391.

Waples, R.S. \& Do, C. (2008). LDNE: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources 8, 753-756.

Waples, R.S. \& Do, C. (2009). Linkage disequilibrium estimates of contemporary N_{e} using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolutionary Applications doi:10.1111/j.1752-4571.2009.00104.x
Weir, B.S. \& Cockerham, C.C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 1358-1370.

Wilkins, N.P. \& Mathers, N.F. (1973). Enzyme polymorphisms in the European oyster, Ostrea edulis L. Animal Blood Groups and Biochemical Genetics 4, 41-47.
Wright, S. (1931). Evolution in Mendelian populations. Genetics 16, 97-159.
Williams, G.C. (1975). Sex and evolution. Princeton University Press, Princeton. NJ.
Zouros, E. \& Foltz, D.W. (1984). Possible explanations of heterozygote deficiency in bivalve Molluscs. Malacologia 25, 583-591.

Female			N_{a}		$\mathrm{n}_{\text {loci }}$	Mean N_{f} (Parentage) (Equivalent prior)	Minimum N_{f} (Gerud)	
	J12	U2	H15	T5	Mean		$35.5(4.3)$	na
F1	18	18	10	-	15.3	3	$27.3(2.9)$	na
F2	19	15	9	-	14.3	3	$24.0(2.9)$	na
F4	11	15	10	17	13.3	4	$7.7(0.7)$	4
F5	7	9	5	-	7	3	$14.2(1.1)$	na
F6	14	16	6	12	12	4	$2.1(0.3)$	3
F7	5	4	4	-	4.3	3	$6.9(0.6)$	4
F8	8	9	7	6	7.5	4	$8.4(1.5)$	na
F9	11	13	11	14	12.3	4	$44.5(3.5)$	na
F10	21	23	11	19	18.5	4	$1.7(0.9)$	2
F21	4	5	4	4	4.3	4	$34.2(1.9)$	na
F22	17	25	10	18	17.5	4	$40.0(4.1)$	na
F23	20	23	10	17	17.5	4	$6.3(0.7)$	5
F24	7	8	6	9	7.5	4		4

Table 1. Allelic polymorphism and paternity analysis of 13 brooding females sampled in a natural population (Brittany, France). Numbers of alleles (N_{a}) per locus and mean number of alleles are shown for 80 offspring of each female. $\mathrm{n}_{\text {loci }}$: number of loci used for paternity analysis. Number of fathers $\left(N_{f}\right)$ contributing to each offspring has been determined by two software, PARENTAGE 1.0 (Bayesian method) and GERUD2.0 (parental reconstruction). Equivalent prior refers to the prior stating an equal contribution of males to the progeny. na: not available (number of alleles too high).

Table 2. Genetic diversity, test for Hardy-Weinberg equilibrium for a population of 62 potential progenitors and 6 cohorts obtained in an experimental hatchery. Number of samples analysed (N), allelic richness (A), expected $\left(H_{n b}\right)$ and observed $\left(H_{o}\right)$ heterozygosity and $F_{i s}$ estimates according to Weir and Cockerham (1984). Total cohort corresponds to the pooling of the 6 temporal cohorts. Significance of $F_{\text {is }}$ tested on 1000 permutations; NS corresponds to non significant values of $\mathrm{p},{ }^{*}$ of $\mathrm{p}<0.05$; $^{* *} \mathrm{p}<0.01$ and ${ }^{* * *} \mathrm{p}<0.001$.

705

		Adults	14/03/2003	17/03/2003	20/03/2003	22/03/2003	28/03/2003	30/03/2003	Total cohort
N		62	80	80	80	80	80	80	480
Scoring success	J12	98.9\%	95\%	91.25\%	97.5\%	88.75\%	93.75\%	90\%	92.92\%
	U2	100\%	96.25\%	92.5\%	93.75\%	90\%	87.5\%	87.5\%	91.46\%
	T5	98.9\%	96.25\%	95\%	92.5\%	96.25\%	85\%	82.5\%	91.25\%
A	J12	23.00	17.68	11.52	17.21	14.85	14.82	14.84	18.70
	U2	27.00	17.67	15.62	20.20	18.56	20.33	19.82	21.07
	T5	23.00	18.14	14.36	14.32	14.30	16.55	15.87	18.86
H_{o}	J12	0.895	1	0.836	0.859	0.930	0.733	0.944	0.883
	U2	0.906	0.922	0.919	0.987	0.912	0.944	0.971	0.943
	T5	0.916	0.883	0.829	0.878	0.935	0.868	0.909	0.884
$H_{n b}$	J12	0.928	0.889	0.768	0.835	0.900	0.880	0.897	0.910
	U2	0.947	0.883	0.849	0.887	0.911	0.915	0.932	0.931
	T5	0.914	0.852	0.774	0.819	0.855	0.895	0.878	0.890
$F_{\text {is }}$ total		0.026NS	-0.069NS	-0.081NS	-0.072NS	-0.043NS	0.054**	-0.044NS	0.008 NS

(a)

	$14 / 03 / 2003$	$17 / 03 / 2003$	$20 / 03 / 2003$	$22 / 03 / 2003$	$28 / 03 / 2003$	$30 / 03 / 2003$
Adults	$3^{* * *}$	$5.5^{* * *}$	$3.1^{* * *}$	$1.5^{* * *}$	$1.3^{* * *}$	$1.2^{* * *}$
$14 / 03 / 2003$	-	$11.9^{* * *}$	$7.1^{* * *}$	$5.9^{* * *}$	$5^{* * *}$	$5.1^{* * *}$
$17 / 03 / 2003$	-	-	$9.8^{* * *}$	$6.8^{* * *}$	$7.9^{* * *}$	$7.8^{* * *}$
$20 / 03 / 2003$	-	-	-	$0.7^{* *}$	$4.2^{* * *}$	$4.5^{* * *}$
$22 / 03 / 2003$	-	-	-	-	$3^{* * *}$	$3^{* * *}$
$28 / 03 / 2003$	-	-	-	-	-	$1.8^{* * *}$

(b)

	14	$14+17$	$14+17+20$	$14+17+20+22$	$14+17+20+22+28$	$14+17+20+22+28+30$
Adult	$3^{* * *}$	$1.1^{* * *}$	$0.6^{* *}$	$0.6^{* *}$	0.3^{*}	0.2^{NS}

Table 3. (a) Genetic differentiation between and within the population of potential progenitors and 6 cohorts obtained in an experimental hatchery. (b) Genetic differentiation between the population of potential progenitors and the 6 cohorts progressively pooled. $F_{s t}$ values per population pair (Weir \& Cockerham 1984) are expressed in percentage and their significance tested by 1000 permutations: ${ }^{* * *} \mathrm{p}<0.001$; ** $\mathrm{p}<0.01$; ${ }^{*} \mathrm{p}<0.05$; NS non significant.

	$N_{b}($ Temporal $)$	$N_{b}(\mathrm{H}$ excess $)$	$N_{b}\left(\mathrm{LD}_{0.05}\right)$	$N_{b}\left(\mathrm{LD}_{0.01}\right)$	N_{g} (Real)
$14 / 03 / 2003$	$21.0[12.4-36.2]$	10.9	$3.5[2.2-8.0]$	$21.8[17.5-27.4]$	28
$17 / 03 / 2003$	$12.5[7.8-19.6]$	8.0	$9.6[3.8-17.7]$	$13.2[9.6-17.8]$	19
$20 / 03 / 2003$	$21.0[12.3-36.5]$	9.0	$5.7[2.8-11.6]$	$18.2[14.2-23.2]$	21
$22 / 03 / 2003$	$22.3[12.9-39.6]$	9.9	$9.5[4.1-15.5]$	$20.7[15.8-27.4]$	27
$28 / 03 / 2003$	$33.2[17.8-70.1]$	27.0	$14.3[8.4-23.5]$	$20.9[15.8-27.9]$	28
$30 / 03 / 2003$	$29.6[16.3-58.9]$	5.4	$12.5[7.4-20.2]$	$23.2[17.5-31.2]$	25
Total cohort	$95.9[43.7-347.4]$	15.0	$19.2[13.2-26.5]$	$33.6[29.8-37.9]$	48

Table 4. Estimated effective number of breeders N_{b} for each cohort by temporal and heterozygote (H) excess methods (using NeEstimator 1.3 software) and linkage disequilibrium (LD) method (using LDNe program). Variance intervals are given in brackets. $\mathrm{LD}_{0.05}$: with lowest allele frequency used ($\mathrm{P}_{\text {crit }}$ value) of $0.05 ; \mathrm{LD}_{0.01}$: with $\mathrm{P}_{\text {crit }}$ value of 0.01 . N_{g} (Real) is the number of progenitors having contributed to each cohort, determined by parentage analysis with CERVUS 3.0 software (80% statistical confidence). Total cohort corresponds to the pooling of the 6 temporal cohorts.

Table 5. Number of parentage assignments for 6 temporal cohorts collected in hatchery, using CERVUS 3.0 software. $\mathrm{N}_{\text {total }}$: number of larvae included in the analysis (genotyped for at least 2 loci). The critical Delta scores and expected number of parentage assignments were determined by simulation of parentage analysis (see text).

Cohort	$\mathrm{N}_{\text {total }}$	Confidence level of assignment	Critical Delta	Observed assignments	Expected assignments
14/03/2003	79	95\%	1.38	40 (51\%)	43 (54\%)
		80\%	0.00	64 (81\%)	63 (80\%)
		Unassigned		15 (19\%)	16 (20\%)
17/03/2003	75	95\%	2.18	49 (65\%)	26 (34\%)
		80\%	0.69	53 (71\%)	42 (57\%)
		Unassigned		22 (29\%)	33 (43\%)
20/03/2003	80	95\%	1.41	48 (60\%)	36 (45\%)
		80\%	0.69	57 (71\%)	52 (65\%)
		Unassigned		23 (29\%)	28 (35\%)
22/03/2003	77	95\%	2.25	44 (57\%)	34 (44\%)
		80\%	0.09	68 (88\%)	57 (73\%)
		Unassigned		9 (12\%)	20 (27\%)
28/03/2003	75	95\%	2.02	37 (49\%)	31 (42\%)
		80\%	0.32	56 (75\%)	52 (70\%)
		Unassigned		19 (25\%)	22 (30\%)
30/03/2003	75	95\%	2.67	37 (49\%)	27 (36\%)
		80\%	0.69	51 (68\%)	49 (65\%)
		Unassigned		24 (32\%)	26 (35\%)
Total cohort	461	95\%	2.97	252 (55\%)	143 (31\%)
		80\%	0.69	325 (70\%)	289 (63\%)
		Unassigned		136 (30\%)	172 (37\%)

Figure 1. Variance of reproductive success between males, determined with a parental reconstruction software, GERUD2.0 (Jones 2005), for brooding females showing few alleles in their offspring. First male refers to the male with the highest contribution to the offspring, second male is the male with the second highest contribution. For each female, first to fifth males refer to different males.

Figure 2. Total contribution of progenitors (in terms of number of offspring) to each of six cohorts collected in an experimental hatchery. Parentage analysis was performed using a parental pair categorical allocation software, CERVUS 3.0 (Marshall et al. 1998, Kalinowski et al. 2007), with an 80% statistical confidence.

Figure 3. Percentage of contribution of each potential progenitor to each temporal cohort, visualising the succession of major contributors over time. Parentage analysis was performed using a parental pair allocation software, CERVUS 3.0 (Marshall et al. 1998, Kalinowski et al. 2007), with an 80% statistical confidence.

[^0]

17/03/2003

20/03/2003

22/03/2003

28/03/2003

30/03/2003

[^0]: Genitors

