THE USE OF SNPs IN CHARACTERIZING OYSTERS GENOMES AND THEIR RESISTANCE TO PATHOGENS

S. Lapègue¹, S. Heurtebise¹, E. Harrang¹, B. Morga¹, E. Flahauw¹, C. Sauvage¹, P. Boudry²

¹Ifremer, Laboratoire de Génétique et Pathologie, avenue de Mus de Loup 17390 La Tremblade
²Ifremer, UMR M100 Physiologie et Ecophysiologie des Mollusques Marins, Technopôle Brest Iroise 29280 Plouzané

Species

The Pacific cupped oyster

Crassostrea gigas

Native from Japan, introduced in many countries
Highest annual production of any aquacultured organism (4.5 million metric tons/year mainly in Asia)
Genetic improvement by selective breeding still limited but in development for the Pacific oyster

The European flat oyster

Ostrea edulis

Native from Europe, introduced in a few countries
Produced mainly in Europe (Spain, Netherland, Ireland, France)

Genomic resources

For C. gigas:
- Genome size ~824 Mb : among the smallest known mollusk genomes
- GigasDatabase (Feury et al., 2008) :
 23,36,508 base pairs, 29,745 unigenes
 27% annotated (GO)
- More than 200 microsatellite markers
- AFLPs

For O. edulis:
- Tens of microsatellites and AFLP
- EST resources from SSH libraries (Morga et al., 2010)

SNPs potential

- High polymorphism and heterozygocity
 C. gigas : 1 SNP every 60/40 bp in coding/non-coding regions (Sauvage et al., 2007)
 O. edulis : 1 SNP every 39 bp
- 500 contigs with SNPs in GigasBase
- GIGASNP (Hedgecock et al., USDA funded project under development)

Resistance to pathogens

herpesvirus OsHV-1

The virus is involved in spat summer mortality (Renault et al., 1994)
The heritability for the survival to summer mortality is high (Depront et al., 2007)
Zone of the genomes involved in the survival and virus load (QTLs) can be detected (Sauvage et al., 2010)

Bonamia ostreae

The parasite is involved in two-three years old oyster mortality (Pichot et al., 1979)
Mass and family selection improve survival
Zone of the genomes involved in the survival (QTLs) can be detected (Lallias et al., 2009)

QTLs detection in low density maps

Five QTLs detected in four linkage groups explaining 50% of the variance of the trait
Five QTLs detected in the two parental maps

SNP = Single Nucleotide Polymorphism

Conclusion

- SNPs are numerous in the oysters’ genomes
- SNPs can be genotyped with high through-put technologies but genotyping SNPs in a such polymorphic species remains a challenge
- SNPs can increase the density of the maps
- SNPs can make the link between quantitative genomics and candidate genes approaches
- SNPs can help understanding the physiology of the traits
- SNPs could become markers assisting selection

Bibliographie

Feury et al., 2009. Generation and analysis of a large scale repertoire of ESTs from the Pacific oyster Crassostrea gigas assembled in a unique clearing-house. BMC Genomics, 10, 341.
Morga et al., 2010. Developmental and Comparative Immunology.