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Abstract:

Many questions remain unanswered regarding RNAi-based mechanisms and dsRNA-induced antiviral
immune responses in penaeid shrimp. In this study, we report the characterization in the white leg
shrimp Litopenaeus vannamei of RNAI pathway associated proteins Lv-Ago 1 and Lv-Ago 2, two
members of the Argonaute family of proteins, as well as Lv-sid 1, the first shrimp homologue of Sid-1,
a membrane channel-forming protein implicated in the cellular import of dsRNA. To decipher their
functional implication in RNAi-related phenomena, we monitored their relative expression following
stimulation by specific and non-specific RNA duplexes of diverse length. The findings show that the
length of small RNA duplexes plays a critical role in the activation of both RNAi-related and innate
antiviral responses. They also suggest that these two mechanisms of antiviral response may activate
the same pathway, requiring Lv-Sid 1 and Lv-Ago 2 induction.
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1. Introduction

RNA interference (RNAI) is a nucleic acid-based mechanism widely conserved among all
higher eukaryotes studied so far, that mediates sequence-specific targeted gene silencing.
This process is initiated by double-stranded RNA (dsRNA), which is processed by a
member of the Dicer family of RNase-Ill-like enzymes into small effector RNA duplexes
(e.g. short-interfering RNAs or siRNAs, microRNAs or miRNAs, etc). The siRNAs are
incorporated into a multimeric protein complex, the RNA-induced silencing complex
(RISC) and related complexes, of which an Argonaute (Ago) family protein forms the
catalytic core. The incorporated RNA then directs the targeted sequence-specific
degradation, translational repression, and other silencing phenomena by means of
complementary base-pairing. The RNAiI mechanism is involved in a variety of biological
phenomena including developmental processes (Grishok et al., 2001), heterochromatin
remodelling (Riddle and Elgin, 2008), suppression of transposon activity (Aravin et al.,
2007) and antiviral immunity (Li and Ding, 2005). Because dsRNA or siRNAs can be
supplied exogenously to trigger specific gene silencing, RNAI has rapidly become the most
widely used gene-silencing tool in a broad variety of eukaryotic organisms (Campbell and
Choy, 2005).

In penaeid shrimp, exploiting this process is becoming increasingly important as an
experimental tool to unravel gene function in vivo. This is exemplified by the increasing
number of studies which have recently resolved gene functions involved in molting (Hui et
al., 2008), osmo-regulation (Tiu et al., 2007), reproduction (Treerattrakool et al., 2008),
glucose metabolism (Lugo et al.,, 2006) or immune responses (de la Vega et al., 2008;
Shockey et al., 2009) in shrimp by using gene-specific dsRNA technology. RNAi-based
applications have also offered new opportunities for experimental blockade of viral
infections in shrimp by injecting animals with virus-specific RNA duplexes (as first
described by (Robalino et al., 2005), providing thus a potential approach for virus control in
the shrimp farming industry (Shekhar and Lu, 2009). An additional promising avenue of
this technology is the observed partial protection from viral infection induced by dsRNA of
diverse length, sequence, and base composition (Robalino et al., 2004). Development of
methods for induction of this dsRNA-induced innate immunity could be of great interest for
aquaculture.

The existence of an intact RNAi machinery in shrimp was first supported by the
identification of RNAi pathway homologues such as Pem-AGO in the black tiger shrimp
P. monodon (Dechklar et al., 2008) and Pm-Ago, another isoform of the Argonaute protein
family (Unajak et al., 2006), as well as Pm Dcrl, a member of the Dicer family (Su et al.,
2008). However, although a substantially impaired RNAi was observed in Pem-ago-
depleted cells, suggesting its functional involvement in the silencing process (Dechklar et
al., 2008), many questions remain unanswered regarding RNAi-based mechanism in
penaeids. First, the core of this machinery and its regulation remain poorly understood.
Second, it is still not known whether cross-talk and/or interactions occur between RNAI
and the sequence-independent antiviral immunity observed following dsRNA injections.
Finally, important efficiency discrepancies to promote gene-silencing have been reported
following siRNA injections ( Li et al., 2007; Robalino et al., 2005; Westenberg et al., 2005;
Wu et al., 2007; Wu et al. 2008). These inconsistencies need to be explored to improve
efficacy in RNAIi-based applications in shrimp aquaculture.

This study was therefore aimed at characterizing RNAi-pathway associated components in
the white leg shrimp L. vannamei. Specifically, the present work was designed i) to
decipher the functional implication of these components in both innate and RNAi-related
phenomena by monitoring their relative expression following stimulation by small RNA



duplexes and ii) to determine the effect of dSRNA length on targeted genetic interference
and general antiviral protection.

2. Materials and methods

2.1. Animals and RNA extractions

L. vannamei shrimp from specific pathogen-free (SPF) lines were used for all experiments.
Gills were collected in RNA later reagent (Ambion) and stored at -20°C until use. Total
RNA was extracted using RNeasy columns (Qiagen) according to the manufacturer's
instructions. RNA quantity, purity and integrity were verified spectrophotometrically
(Azs0/A280) @and by electrophoresis on 1% agarose gels.

2.2. Cloning of Lv-ago 1, Lv-ago 2 and Lv-sid 1 full-length cDNAs

To isolate a cDNA of Lv-ago 1, specific primers (G-3524 and G-3525, Table 1) were
designed on a consensus sequence of Argonaute proteins and used for PCR amplification
from gill cDNA. PCR was performed as follows: initial denaturation at 95°C for 5 min;
followed by 30 cycles at 95°C for 30 s; 52°C for 1 min; 72°C for 1 min. The full-length
cDNA of Lv-ago 1 was obtained by performing 5'- and 3-RACE-PCR with the SMART™
RACE cDNA Amplification kit (Clontech/BD Biosciences) using the supplied universal
primer mix in combination with either 5’RACE-primer G-3597 or 3'RACE-primer G-3595
(Table 1). Amplification profiles for RACE-PCR consisted of 30 cycles of 94°C for 30 s,
68°C for 30 s and 72°C for 3 min.

Based on L.vannamei expressed sequence tag (EST) sequences homologous to
Argonaute and Sid-1 proteins, available at www.marinegenomics.org (O’Leary et al.,
2006), 5’RACE-primer G-3816 and 5’RACE-primer G-3780 were designed to obtain the
5'end cDNA sequences of Lv-Sid 1 and Lv-Ago 2 proteins by RACE-PCR, as described
above. Finally, the full-length cDNAs of Lv-ago 1, Lv-ago 2 and Lv-sid-1 were amplified by
PCR using specific primers (G-3608/G-3609, G-3822/G-3823 and G-3853/G-3854,
respectively) designed at 5' and 3' extremities (Table 1) with the BD Advantage 2
polymerase mix (Clontech).

2.3 Phylogenetic tree constructions

A list of known sequences of the members of Argonaute and Sid-1 proteins was obtained
from GenBank and EMBL databases using the BLAST (Basic Local Alignment Search
Tool) program (Altschul et al., 1997). Trees were built using the MEGA 4 software
(Molecular Evolutionary Genetics Analysis, version 4.0) applied to the Neighbor-Joining
method (Tamura et al., 2007). Multiple alighments of amino acid sequences were created
using the Piwi and multiple transmembrane conserved domains for Argonaute and Sid-1-
like proteins, respectively. Bootstrap values (%) of 10000 replicates were calculated for
each node of the consensus tree obtained.
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2.4 Preparation of dsRNA

Double-stranded RNAs (dsRNA) were generated as previously described (Robalino et al.,
2004). The DNA templates used for in vitro transcription were pCR4 vectors (Invitrogen)
hosting different size fragments (50, 100, 150 and 200 bp) amplified either from the full-
length CDP (CUB domain protein) cDNA (GenBank acc. no. AY907539) or from a 309-bp
portion of the immunoglobulin u (Igu) cDNA from the duck, Anas platyrhynchos
(AJ312200), using specific primers indicated in Table 1. Synthetic siRNAs with UU 3'
overhangs specific for duck Ige (Igv SIRNA, GGGTTGCCCATGAGGTTCA) and for CDP
(CDP SiRNA 1, ACTCACCTGGCTGATGTTC; CDP SiRNA 2,
CACAACCAAGGAACTGATC; CDP siRNA3, ATTCCACAGCAACAGTGCT) were
purchased from Ambion. Finally, sSiRNA and dsRNAs were diluted to a final concentration
of 250 ng/ul in sterile saline solution (10 mM Tris—HCI pH 7.5, 400 mM NacCl) and stored at
-80°C.

2.5 Preparation of viral inoculum and experimental infection

The bioassay system, experimental animals, and white spot syndrome virus (WSSV)
inoculum used here have been previously described (Prior et al.,, 2003; Robalino et al.,
2004). Briefly, 1.0-1.5g SPF L. vannamei shrimp (30 shrimp/treatment) were
intramuscularly injected with 5 pg (20 pl volume) of either siRNA, dsRNA or sterile saline,
and 48 h later injected again with either saline (negative controls) or a WSSV inoculum
used at a 5 x 10 dilution (weight of infected tissue:volume of saline), to typically yield
mortalities close to 80% of injected but otherwise untreated shrimp. Shrimp were kept in
culture flasks for 10 days following infection. Cumulative mortality was recorded daily.

2.6 Quantitative real-time PCR

Quantitative real-time RT-PCR (gPCR) was performed on an ABI 7500 system as
previously described (Labreuche et al.,, 2009). Amplification efficiencies for all gPCR
primers were determined according to Pfaffl and collaborators (Pfaffl et al., 2002) and the
specificity of the PCR amplification verified from the melting curve. Each run included the
cDNA control, negative controls (total RNA treated with DNase [), and blank controls
(water). The relative mRNA expression levels were determined using the two standard
curve methodology (QuantiTect® SYBR Green PCR Handbook) and S3A ribosomal
protein (BF023924) was used as the internal reference (normaliser) mRNA. Primer
sequences are indicated in Table 1.

2.7 Statistical analyses

All numerical data were expressed as the mean + standard error. Differences in mortality
levels between treatments were analyzed by Kaplan—Meier log-rank x2 tests using
GraphPad Prism 3.00 for Windows (GraphPad Software, USA) computer software. One-
way analysis of variance (ANOVA) or the Kruskal-Wallis test was used for mRNA
expression analysis. These statistical analyses were performed with Statgraphics Plus 5.0
software.



3. Results

3.1 Identification of RNAi components

A full-length cDNA of a L. vannamei putative Argonaute was first isolated by PCR and
RACE, with an open reading frame (ORF) of 2820 bp, a 5' untranslated region of 84 bp,
and a 3' untranslated region of 355 bp (HM234689). Homology searches revealed a high
degree of homology between the deduced protein and other Argonaute family proteins,
including Penaeus monodon Argonaute 1 Pem-AGO (DQ663629, 99% overall amino acid
identity), Pmago (DQ343133, 93% identity) as well as Drosophila Argonaute-1
(NM 166020, 85% identity). Therefore, this L.vannamei-Argonaute protein was
designated Lv-Ago 1. Expressed sequence tag analyses resulted in the identification of
three non-overlapping clones (EE096200, FE146474 and FE144758) that showed strong
sequence similarities to Argonaute proteins from Caenorhabditis elegans (BlastX E-value
9 x 107®%), Gobiocypris rarus (6 x 107%%) and P.monodon (8 x 107%°), respectively.
Following reverse transcription of gill RNA, PCR reactions performed with specific primers
designed at the 5' and 3' extremities of each clone indicated that these 3 EST sequences
belonged to the same transcript (data not shown). Full-length cDNA cloning by RACE-
PCR revealed the presence of a 2633 bp transcript (HM234690) containing a 2556 bp
ORF and a 5’untranslated region of 77 nucleotides. Following a BlastX search, this
L. vannamei Argonaute protein was shown to display higher similarity to G. rarus
Argonaute 2 (EE636801, 40% identity) than P. monodon Argonaute 1 Pem-AGO (39%).
Accordingly, this putative protein was designated Lv-Ago 2. Analyses of the amino acid
sequence deduced from these two putative Argonaute proteins using the Conserved
Domain Search Service (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cqi) identified
the presence of two distinctive domains, PIWI/Argonaute/Zwille (also named PAZ) and
Piwi, that are signature motifs for the Piwi/Argonaute family of proteins (Cerutti et al.
2000). The PAZ domain is involved in dsRNA binding activity, while the Piwi domain
displays RNase activity. The PAZ domain of Lv-agol and Lv-ago 2 extended from
residues 280 to 400, and 240 to 352 respectively, whereas the Piwi domain was located at
residues 445-897 and 398-814, respectively (Fig. 1). To study the molecular evolution of
Lv-ago 1 and Lv-ago 2, Argonaute family homologous protein sequences from invertebrate
organisms were used to construct a phylogenetic tree, based on Piwi domain alignments
(Fig. 2). Argonaute proteins can be divided into four groups: the proteins interacting with
trigger-derived sense and antisense RNAs to initiate RNAi (the RNAi pathway), the
proteins implicated in the miRNA pathway, the proteins involved in transcriptional
silencing, and finally the proteins involved in generation of dsRNA from aberrant RNAs.
Phylogenetic tree analysis separated Lv-Ago 1 and Lv-Ago 2 into two clusters, Lv-Ago 1
being clearly orthologous to P. monodon Argonaute 1 (Pem Ago) and more generally to
the miRNA class Argonautes, while Lv-Ago 2 clustered on a separate branch from all
MiRNA class members.

L. vannamei EST database analyses also identified 2 non-overlapping clones (EE073135
and FE152240.1) displaying strong sequence similarities to Sid 1-like proteins from
Taeniopygia guttata (BlastX E-value 8 x 10™!) and Tribolium castaneum (BlastX E-value
4 x 107%°) respectively. PCR reactions performed with specific primers designed at the 5' and
3' extremities of each clone indicated that these 2 EST sequences belonged to the same
transcript (data not shown). Amplification by 5-RACE PCR of this L. vannamei putative
Sid-1 generated a 2809 bp full-length cDNA with an ORF of 2730 bp encoding a putative
protein of 909 amino acids (HM234688). Blast search revealed that the deduced protein is
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similar to Bos taurus Sid-1 (NM_001024530, 26% identity, E-value 8 x10°®) and Pan
troglodytes Sid-1 (XP_001154535, 26% identity, E-value 7 x10°"). Prediction of
transmembrane (TM) helices in the deduced putative structure was performed with
TMHMM server version 2.0 (http://www.cbs.dtu.dk/services/ TMHMMY/). Like C. elegans
Sid-1, Lv-Sid-1 was shown to contain 11 TM domains (Fig. 3), with a large (348 amino
acids) extracellular N-terminal domain and a 150 amino acid loop residing between the
first and second predicted TM helices. A scan of the sequence against the PROSITE
database did not identify additional motifs or domains. Phylogenetic analysis of the
carboxy-terminal TM domain (corresponding to the TM2-TM11 region) of 15 Sid-1 like
proteins demonstrated a close phylogenetic relationship for all mammalian Sid-1 proteins,
while Lv-Sid-1 clustered on a separate branch (Fig. 4).

3.2 Lv-sid-1 and Lv-ago 2 mRNA expression is up-regulated by dsRNA but not by
SiRNAs.

Because Lv-sid-1, Lv-ago 1 and Lv-ago 2 are putative core components of a shrimp RNAI
pathway, we investigated whether their expression might be transcriptionally regulated
following injection of RNA duplexes of diverse length and specificity. To this end, shrimp
were injected with either specific or non-specific sSiRNAs or dsRNA of varying lengths. As
indicated in Fig. 5, Lv-sid-1 mRNA levels were significantly induced in animals challenged
with >50 bp specific (Fig. 5 A) and non-specific dsRNA (Fig. 5 B), compared to shrimp
injected with saline only (P < 0.05). Synthetic siRNAs (specific and non-specific) did not
cause any significant variation in Lv-sid-1 mRNA levels, as assessed by comparison with
saline-injected animals (P > 0.05). As indicated in Fig. 6, 100-bp specific and non-specific
dsRNA led to a significant up-regulation of Lv-ago 2 expression profiles (P < 0.05),
whereas Lv-ago 1 mRNA levels remained stable, compared to saline-injected animals,
whatever the length and specificity of tested dsSRNA. Synthetic siRNAs failed to induce any
significant effect on Lv-ago 1 and Lv-ago 2 expression levels, independently of their
specificity (Fig. 6).

3.3 Only > 50 bp-dsRNA, but not siRNAs, induce targeted genetic interference and
general antiviral protection when injected into shrimp.

Experiments were conducted to explore the influence of dsRNA length on specific
depletion of cognate mRNA. To this end, shrimp were injected with either different size
dsRNA or synthetic siRNAs targeting the CDP gene. As shown in Fig. 7, injection of gene-
specific dsRNA of varying lengths (ranging from 50 to 200 bp) led to a statistically
significant depletion of the cognate mRNA in gills, as determined by gPCR (ANOVA, P <
0.05), while none of the 3 CDP-specific sSiRNAs induced a down-regulation of CDP gene
expression when compared to injection of saline only (ANOVA, P > 0.05).

Finally, we investigated the influence of non-specific dsRNA length to mediate antiviral
protection during a WSSV challenge. For this experiment, animals were injected with either
duck Igv synthetic siRNA or duck Igv dsRNA of varying sizes (ranging from 50 to 200 bp).
Confirming previously reported results (Robalino et al., 2005), non-specific siRNAs
completely failed to protect shrimp from viral infection, cumulative mortality for this
treatment reaching 100 % at 5 days post injection (dpi) (Fig. 8). All tested dsRNA afforded
a statistically significant antiviral protection from WSSV infection 9 dpi, compared to
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siRNA-injected and saline-injected shrimp (Kaplan—Meier log-rank x2: 62.21, P < 0.0001).
The degree of protection did not significantly vary with the length of dsRNA injected to the
shrimp (Kaplan-Meier log-rank x2:0.4753, P = 0.9243).

4. Discussion

RNAi-based methodologies and technologies are still in their infancy in penaeid shrimp
and some questions need to be addressed before the whole promise of RNAi can be
utilized to improve aquaculture. Among these questions, the almost certain role of the
RNAi machinery in the observed sequence-specific down-regulation of endogenous or
viral gene expression after dsRNA administration remained to be clarified in L. vannamei,
as well as the receptor(s) involved in dsRNA uptake. In this study, we report for the first
time in a marine crustacean the cloning and characterization of a Sid-1 homologue, Lv-
Sid-1, and the identification of two putative shrimp Argonaute, Lv-Ago 1 and Lv-Ago 2, a
protein family described as the principal protein component of RNA silencing pathways.

4.1 Shrimp Argonautes , Lv-Ago 1 and Lv-Ago 2, may be implicated in distinct
pathways.

The inferred amino acid sequences of Lv-ago 1 and Lv-ago 2 cDNAs revealed that these
putative proteins possess the two distinctive features of Argonaute family proteins, i.e. a
PAZ domain involved in dsRNA binding and a PIWI domain, reported to possess RNase
activity. Homology searches indicated that Lv-Ago 1 showed high sequence similarities to
Drosophila Argonaute-1, while Lv-ago 2 deduced aa sequence displayed higher
similarities to Argonaute 2 protein members. Similarly to this observation, several paralogs
have been identified in insects, nematodes, mammals and plants, suggesting specific
roles associated with each one of them, when they are recruited into the RISC or effector
complexes. For instance, among the several Argonaute family proteins characterized in
mammals, only Argonaute 2 is catalytically competent and responsible for mRNA cleavage
activity (Liu et al., 2004). Of the 27 Argonaute proteins discovered in C. elegans, RDE-1
binds to many classes of small RNAs (Corréa et al., 2010), while ALG-1 and ALG-2
exclusively bind miRNAs, a class of endogenously produced ~ 22-nt RNAs, that associate
Argonaute proteins to direct mMRNA degradation or translational repression (Grishok et al.,
2001). Phylogenetic analyses performed to determine the evolutionary relatedness of
these shrimp proteins with invertebrate Argonaute-related genes demonstrated the
orthologous relationship of Lv-Ago 1 with miRNA class Argonautes, while Lv-Ago 2
localized to a separate branch. An exclusive association of Argonaute gene family with
either the miRNA or RNAIi pathway has been reported in many organisms, and we
addressed whether Lv-ago 1 and Lv-ago 2 display the same functions. If one or both of
these shrimp Argonaute proteins was involved in the dsRNA-inducing gene silencing
mechanism, their expression would be modified following dsRNA administration, as such
regulation has been shown to be important for optimal efficiency of the RNAIi pathway
(Choudhary et al., 2007). Monitoring Lv-ago 1 and Lv-ago 2 transcript accumulation by
gPCR following dsRNA injection into shrimp allowed us to demonstrate a strong induction
of Lv-ago 2 mRNA expression only. Taken together, these results suggest i) that these two
Argonautes do not play redundant roles in sequence-specific gene silencing, and ii) that
Lv-Ago 2 may be specifically implicated in the RNAi pathway. In Penaeus monodon,



knock-down of Pem-ago (which shows 99% overall amino acid identity with Lv-Ago 1) with
sequence-specific dSRNA was reported to partially reduce the efficiency of RNAI for an
endogenous shrimp gene (Dechklar et al., 2008). Because RNAi was still functional at a
certain level (= 50% of the original activity), it was hypothesized that other Argonaute
family members may be involved in this mechanism. The data obtained in this work further
support this assumption. Interestingly, a conserved D-D-H motif, shown to be essential for
the “slicing” activity in the RNase H-related Piwi domain, was identified in both proteins
(Rivas et al., 2005) (Fig. 1), indicating that they may both display a catalytic activity. The
phylogenetic analysis and the existence of these critical residues for endonucleolytic
activity in Lv-Ago 1, in relation to the observed lack of induction by exogenous dsRNA and
siRNAs, suggest that Lv-Ago 1 may selectively recruit certain classes of small RNA
duplexes, as reported in Drosophila (Baumberger and Baulcombe, 2005; Tomari et al.,
2007) and in C. elegans (Jannot et al., 2008). Although no confirmed miRNAs have been
reported to date in penaeid shrimp, they are known to be widely expressed in metazoa,
playing key regulatory roles in embryogenesis, stem cell division, neurogenesis and
haematopoietic cell differentiation (Bushati, 2007). Further investigations are thus needed
to determine the potential existence and role of miRNAs in shrimp and whether Lv-Ago 1
may be involved in a potential miRNA-directed RNA silencing mechanism.

4.2 The shrimp Sid-1 homologue, Lv-Sid-1, responds to dsRNA stimulation

Previous studies in penaeid shrimp have reported the systemic spread of the RNAI effect
throughout the entire body, although the mechanistic details of this phenomenon remained
undetermined. In animals, two distinct mechanisms responsible for systemic RNAIi have
been described: a channel-mediated mechanism based on a multispan transmembrane
protein called Sid-1 (systemic interference defective) (Winston et al., 2002) and an
endocytosis-mediated mechanism based on scavenger-like pattern recognition receptors
(Saleh et al., 2006). Using an expressed sequence tag analysis approach in L. vannamei,
a Lv-sid-1 mRNA encoding a putative protein with strong sequence similarity to Sid-
1 proteins characterized in animals was found. In keeping with this protein family, Lv-Sid-1
was predicted to contain 11 transmembrane domains, suggesting that it may function as a
transmembrane channel (Fig. 3). Considering the critical role of this protein in C. elegans,
and the occurrence of systemic RNAi in most organisms exhibiting Sid-1 homologues, it
has been suggested that import of silencing signals via this protein is an ancient
conserved function (Winston et al., 2002). However, recent work in Tribolium castaneum
reported 3 sid-1 like genes which did not seem to be required for the systemic RNAI
response (Tomoyasu et al., 2008). To provide a clue about Lv-sid-1 function in shrimp, we
therefore analyzed its relative expression following shrimp injection with RNA duplexes.
Administration of dsRNA into the shrimp body cavity elicited a substantial increase of Lv-
sid-1 mRNA levels, showing that dsRNA induces the transcriptional activation of this gene,
and suggesting thus its potential role as a channel for dsSRNA. Knock-down experiments of
Lv-Sid-1 message with sequence-specific dsSRNA induced mortality in this assay system,
up to 80 % shrimp dying within the first 2 days post-injection (data not shown).
Interestingly, silencing of other genes obtained from L.vannamei libraries and
presumptively associated with the RNAIi pathway (like armitage) resulted in a similar lethal
phenotype in shrimp (J. Robalino, pers. com.), suggesting that these components,
including Lv-Sid-1, may be involved in other essential for live functions. Considering these
data and the unavailability of clonal cell lines in marine invertebrates, further investigations
of Lv-sid-1 molecular properties are needed in in vivo conditions and may require
expression in heterologous tissue culture systems (Feinberg and Hunter, 2003).



4.3 dsRNA-induced specific gene silencing in L. vannamei is length-dependent

Discrepancies in the ability of siRNAs to promote targeted genetic interference and
general antiviral protection have been reported in shrimp (Li et al., 2007; Robalino et al.,
2005; Westenberg et al., 2005; Wu et al., 2007; Wu et al., 2008). In this study, we clearly
showed that only >50-bp specific dsRNA induced a significant depletion of cognate
MRNA. Several hypotheses have been evoked to explain the inconsistencies between
these results and other published data, among which the differences between methods
used to select and design target sequences for RNAIi. However, this size-dependent
silencing effect has been reported not only in shrimp, but also in other organisms, and
demonstrated to be independent of the nature of siRNA sequences (Feinberg and Hunter,
2003). This observation is confirmed by our experimental data since 3 different siRNAs
were tested in this work with the same result. It has also been proposed that the lack of
biological activity of siRNAs in shrimp was linked to the existence of mechanisms for
uptake of long dsRNA that do not act on very short ones (Robalino et al., 2005;
Westenberg et al., 2005). The absence of Lv-sid-1 transcriptional response observed in
this study following siRNA injection into shrimp tends to support this assumption.
Interestingly, Shih and collaborators have recently demonstrated in C. elegans that the
reduced silencing efficiency associated with siRNAs could not be explained by size-
selective transport through Sid-1, but would rather be linked to the fact that these short
RNA duplexes are poor substrates for RISC complexes (Shih et al., 2009). Here we found
that injection of sSiRNAs completely failed to induce Lv-ago 2 expression, further supporting
this idea that siRNA may not be incorporated into the shrimp RNAI machinery, explaining
thus their observed inability to induce knock-down of the target gene.

4.4 the non-specific antiviral response to arbitrary dsRNA is length-dependent and
may rely on RNAi pathway components

Double-stranded RNA, a molecular structure commonly encountered during the virus
replication cycle, is a well-known inducer of innate antiviral immune responses in
mammals but also, and more surprisingly, in shrimp (Robalino et al., 2004; Robalino et al.,
2007). In vertebrates, dsRNA is sensed by different families of pattern recognition
receptors (PRRs), among which the TLRs (Takeuchi and Akira, 2010), and triggers the
transcription-based antiviral interferon (IFN) response (Haller et al., 2006). For most of
these PRRs, a length dependence was observed for dsRNA to bind to the receptor and
elicit innate immunity (Kato et al.,, 2008; Okahira et al., 2005). Genes encoding
homologues of interferons and IFN-regulated genes are absent in sequenced invertebrate
genomes, and the mechanistic details of the shrimp immune response to dsRNA are
unknown. Data presented here provide evidence for the occurrence of a length-dependent
antiviral response in shrimp, and suggest the existence of immune mechanisms
analogous, at least to some extent, to those described in vertebrates. Recently, a TLR
(IToll) was characterized in L. vannamei, but shown to play no role in dsRNA-induced
antiviral immunity (Labreuche et al., 2009). Searches of available EST sequences for other
PRRs capable of binding dsRNA have not yet yielded homologues for these components,
and further investigations are needed to uncover the mechanisms of this sequence-
independent immunity. In mammals, several studies have demonstrated the existing link
between the PKR pathway (a central player in the innate immune response to viral
infections known, to be activated by dsRNA in a length-dependent manner), and
components of the RNAI machinery (Haase et al., 2005; Laraki et al., 2008). The existence



of similar interactions between RNAI and innate immunity by dsRNA to mount antiviral
protection has also been suspected in shrimp (Robalino et al., 2005). Our study, showing
that non-specific long dsRNA trigger the same induction of Lv-sid-1 and Lv-ago 2 mRNA
expression as sequence-specific dsSRNA provides further support to this assumption.

Conclusion

The results presented in this study expand the biochemical framework for the
understanding of RNAi-based mechanisms in shrimp, and reveal, through the identification
of a Lv-ago multigene family, the probable existence of different forms of RNA silencing in
this animal model. They also support the idea that the mechanisms involved in dsRNA-
induced immunity and RNAI converge to mount an efficient antiviral response in crustacea.
Further research is needed to find out the mechanisms influencing the activation and/or
switching between these processes but also to what extent selective recruitment of these
Argonaute proteins plays a role in shrimp physiology.
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Figure 1. Multiple alignment of the catalytic center of the PIWI domains from the shrimp
Argonaute Lv-Ago 1 and Lv-Ago 2 and representative Ago 2 homologous proteins by
ClustalW. The position of the Mg®* coordinating residues in the DDH motif, critical for
slicing activity, are indicated in bold and marked with a solid circle (s). GenBank accession
number are : Drosophila melanogaster, Dm-Ago 2 (Q9VUQ5); Mus musculus, Mm Ago 2
(NP_694818.3); Bostaurus, BtAgo2 (NP _991363.1); Xenopus laevis, Xl Ago 2
(NP_001086988.1); Homo sapiens, Hs Ago 2 (NP_036286) and Gobiocypris rarus,

Gr Ago 2 (ABV22635).
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Figure 2. Phylogenetic analysis of Argonaute proteins. Multiple alignments were created
and curated in MEGA 4.0. The Neighbor-Joining tree is based on the alignment of the
conserved PIWI domain. The tree is drawn to scale, with branch lengths in the same units
as those of the evolutionary distances used to infer the phylogenetic tree. GenBank
accession number are : Drosophila melanogaster, Dm-Ago1l (GenBank acc. no.
BAA88078), Dm-Ago 2 (Q9VUQ5), Dm-Ago 3 (EF688531), Dm-Aub (CAA64320.1), Dm-
Piwi  (AADQ8705); Caenorhabditis elegans, Ce-Alg1l (NP_510322.2), Ce-Alg2
(NP_493837), Ce-RDE 1 (AAF06159.1), Ce-Ergo (NP_503362), Ce-Prg 1 (NP_492121),
Ce-Prg 2 (NP_500944); Neurospora crassa, Nc-QDE 1 (CAB42634), Nc-QDE 2
(AAF43641.1), Nc-QDE 3 (AAF31695.1).
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Figure 3
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Lv-Sid-1 GGEVGGTMSEGSRREGVSQERPFVSASLSDGHLSRNVSNEPYGRLQIDNGSRDLQPLPYA 478
Ce-Sid-1 KQDSLSERGQMEQYP - -~~~ ——— — -~ -~ VAL ILPVEN 443
Lv-Sid-1 VPSTYAPHHAVLNFSASFNPRLVCWWKRLAVYELRTADAQVAENGFQNNVL IMAVETALP 538
Ce-Sid-1 HTA 1 EFHKWT TSTMANRDEMCFHNHACARPLGELRAWNNIRTNIGYTEYCAIFIVESICR 503
Lv-Sid-1 TTELVRSYLKLLLYHGQEDQCFFNSRCLTAFGTLPDFARVFTNIGYLLCGAAFI I IVKEH 598
Ce-Sid-1 R-—————- GRHENSHVEGTYECTEEDVTIGVENMVIIQS I ASATYH I CPSDVAEQEDTPCIQ 556
Lv-Sid-1 KKFTEN 1LRQYGANNSVGVSRHYGLFMSVGYGLFIQGVMSSLYHTCPNSVT IRFDMMEVY 658
Ce-Sid-1 VICGLLMVRQWFVRH-ESPSPAYTNILLVGVVSLNFLISAFSKTSYVRFITAVIHVIWG 615
Lv-Sid-1 VVAVAAVVSMWGFRHGDVTHHVYPTMVMVGM I LLMAEAREWVSQAAFWTVLSLCYVFLMV 718
Ce-Sid-1 S ICIAKERSLGSEKLKTREFINMAESMG - - —- - —-——-- NFA 645
Lv-Sid-1 TNTILLTKYGVWSFSPYKMLMVWKGWRPVAEKLRNELWGSATTAKPLQIVRIVIGLWNS 778
Ce-Sid-1 AIVMYLTESAFHLNQUATYCETINCIMYLMYYGCMKVLHSER I TSKAKLCGALSLLAWAY 705
Lv-Sid-1 ALILFGCLADPNIYSY ILMVCL INMGLYFLNYV IAK ICERESVRALPSIALGISLILWIL 838
Ce-Sid-1 AGFEFFEQDDTDWTRSAAASRALNKPCLLLGFFGSHDIMHIFGARAGEETEIEVSEVDDDL 765
Lv-Sid-1 ALAAFFFHSTDPEASPSMSRAKNSPCEFFGVFDTHDAWHLMSALALFTFFVGILTLDDDL 898
Ce-Sid-1 INTRKTSINIF 776

Lv-Sid-1 CHTRSDKIHVF 909

Figure 3. Alignment of Sid-1 transmembrane proteins. Predicted transmembrane domains
from L. vannamei Lv-Sid-1 and C. elegans Ce-SID1 (AF478687) are respectively indicated
in gray and in green. Numbers indicated on the right side represent the amino acid
position in the corresponding species.
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Figure 4
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Figure 4. Phylogenetic tree based on amino acid sequences of multiple transmembrane
(TM) domain (corresponding to TM2-TM11 portion of C. elegans Sid-1) from Sid-1-like
genes. GenBank accession number are : Homo sapiens, Hs-SIDT1 (GenBank acc. no.
AAI17223.1), Hs-SIDT2 (AAI14523.1); Mus musculus, Mm-SIDT1 (AAH25888.1), Mm-
SIDT2 (AAH06873.1); Bos Taurus, Bt-SIDT1 (XP_585013.3), Bt-SIDT2
(NP_001019701.2); Aphis gossypii, Ag-SIL1 (EE533711); Apis mellifera, Am-SID1
(XP_395167.3); Tribolium  castaneum, Tc-SILA (NP_001099012.1), Tc-SILB
(NP_001103253.1), Tc-SILC (NP_001099128.1); Bombyx mori, Bm-SIL1 (BAF95805.1),
Bm-SIL2 (BAF95807.1), Bm-SIL3 (BAF95806.1); C. elegans, Ce-SID1 (AF478687)
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Figure 5
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Figure 5. Lv-Sid-1 transcript abundance in shrimp gills 48 hrs following treatment with
either specific or non-specific sSiRNAs or dsRNA of varying lengths (ranging from 50 to
200 bp). Shrimp (1 to 1.5 g, n = 10) were injected with saline or 5 pg of specific dsRNA or
siRNAs targeting: CDP (CUB domain protein, AY907539), a shrimp endogenous gene (A),
or the immunoglobulin u (Igu) gene from the duck, Anas platyrhynchos (AJ312200) (B).
Five animals were randomly sampled in each group and Lv-Sid-1 expression was
determined in gill tissues of each individual shrimp by quantitative real-time gPCR.
Expression values are presented as relative abundance in relation to S3A ribosomal gene.
Bars represent + standard error of the mean. Different lower-case letters indicate
significant difference between treatments.
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Figure 6. Lv-Ago 1 and Lv-Ago 2 transcript abundance in shrimp gills 48 hrs following
treatment with either specific or non-specific SIRNAs or dsRNA of varying lengths (ranging
from 50 to 200 bp). Shrimp (1 to 1.5 g, n = 10) were injected with saline or 5 pg of specific
dsRNA or siRNAs targeting CDP (A) or the duck immunoglobulin u (Igu) gene (B).
Five animals were randomly sampled in each group. Lv-Ago 1 and Lv-Ago 2 expression
values determined by quantitative real-time qPCR are presented as relative abundance in
relation to S3A ribosomal gene. Bars represent + standard error of the mean. Different
lower-case letters indicate significant difference between treatments.
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Figure 7. CDP transcript abundance in shrimp gills following treatment with sequence-
specific siRNAs or dsRNA of varying lengths (ranging from 50 to 200 bp). Shrimp (1 to
1.59g, n = 10) were injected on day 0 with saline or 5 ug of siRNAs or dsRNA targeting
CDP. At 48 h after this initial injection, 5 animals were randomly sampled in each group.
CDP expression values determined by quantitative real-time gqPCR are presented as
relative abundance in relation to S3A ribosomal gene. Bars represent + standard error of
the mean. Different lower-case letters indicate significant difference between treatments.
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percent cumulative mortality

Figure 8
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Figure 8. Shrimp mortality following treatment with non-specific siRNAs or dsRNA of
varying lengths and experimental infection with WSSV. Shrimp (n =30) were injected
intramuscularly with either saline (positive [-] and negative [e] controls) or non-specific
RNA duplexes (siRNAs or dsRNA ranging from 50 to 200 bp). At 48 h after this initial
injection, animals were infected with WSSV. Differences in mortality levels between
treatments were analyzed by Kaplan—Meier log-rank x2 tests.
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Tables

Table 1. List of primers used in this study. ® forward and reverse primers used to perform
PCR and RACE-PCR to clone Lv-ago1, Lv-ago2 and Lv-sid 1 full-length cDNAs. °
forward and reverse primers used for measuring the expression of S3A (housekeeping
gene, F023924) and Lv-ago 1, Lv-ago 2 and Lv-sid 1 by SYBR® Green real-time RT-PCR.
¢ forward and reverse primers used to amplify different size fragments (50, 100, 150 and
200 bp) from the full-length CDP (CUB domain protein) cDNA (AY907539) or from a 309-
bp portion of the immunoglobulin u (Igu) cDNA from the duck, Anas platyrhynchos
(AJ312200).
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Table 1

PCR and

, , Primer
RA(_:E-PCaR Sequence (5* —> 37) Target gene information
primers
G-3524 CCATGT TCC GTT ACC TGA AG gene cloning
G-3525 TCC CAC AGT ACGTGG TAG TG Lv-ago 1 gene cloning
G-3597 TGT CTG GGT CGC GAG CCG TCACTG GCACT RACE
G3595 AGTGCCAGTGACGGCTCGCGACCCAGACA RACE
G-3816 CCGTAG TTCATAGACTGCCAATCGCTTCCACCA  Lvsidl RACE
G3780 GGCATTTCCATCCATGATCT Lv-ago2 RACE
G-3608 CAC AGG AAG TCC CAT AGA ACG CCA Lv-ago 1 confirming sequence
G-3609 CTT GAG GCAGACTAG GTAAGGAGAGA % confirming sequence
G-3822 ATG CCTTGG ATATCAGAAGTCCTTC Lv-ago 2 confirming sequence
G-3823 GAGATATCTGCCGCAGAACCTGCT  —"™"%  confirming sequence
(G-3853 ATG ATG GCT CCA AAT CAC AGA GGT Lv-sid 1 confirming sequence
G-3854 AAA CAC ATG AAT TTT ATC GGA GCG confirming sequence
gRT-PCR primers"®
G-3832 GCA GAG ATGCCCCTT CAACTT CDP forward
G-3833 AGGTAGCCCACGGAAGCAA .~ reverse
G-3644 TGC GTCATTTGC CATCCAT Lv-ago 1 forward
G-3645 GCCATCTGGAGCGGAGAAG =79+ reverse
G-3851 GAT GGC ATGAAGTCTGCAGTTG Lv-ago 2 forward
G-3852 TGCGCACGACCATCACTAAG ™% reverse
G-3845 GAA GCG ATT GGC AGT CTATGA AC Lv-sid 1 forward
G-3846 TGG AAG CCTATCTCTGCAACTTG =77~ reverse
G-3430 GGCTTG CTATGG TGT GCT CC S3A forward
(G-3431 TCATGCTCT TGG CTC GCT G reverse
PCR primers for preparation of different size dsRNA © amplligg)length
G-2544 GGA TCA AAC TCA CCT GGC TGA
G-3836 GCA GTC GGT GCACCT CTCCA 50 bp with G-2544
G-3837 ATCAGTTCCTTGGTTGTG TTG cDP 100 bp with G-2544
G-3838 ATG ATG TCA TAG TGG GAG G 150 bp with G-2544
G-3839 . ATAGTTTCTAGCACTGTTGC 200 bp with G-2544 __
G-3840 CTG GCA GGG CGG CGT GTCCT
G-3841 GCA ACCCTT CGT GGA CCA CCA 50 bp with G-3840
G-3842 GAT GTC CAG CTC GGG GGT CT Igv 100 bp with G-3840
(G-3843 CAG AGCCCGTCCAGTTCT TG 150 bp with G-3840
G-3844 TGT AGC AGA CGC TGA GGA GG 200 bp with G-3840
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