

fremer

Philipp Hess Presentation of the Habilitation to Direct Research Ifremer, Atlantic Centre – University of Nantes

Harmful Algal Blooms

Efflorescences d'algues toxiques

Phycotoxins – micro-algal toxins

Contents

- ✓ CV and scientific productivity
- ✓ Analysis of phycotoxins, natural products
- ✓ Quality Control (calibrants & reference materials)
- ✓ Comparison of detection techniques
- ✓ Characterisation of toxin hazards
- ✓ Outlook

Contents

- CV and scientific productivity
- ✓ Analysis of phycotoxins, natural products
- ✓ Quality Control (calibrants & reference materials)
- ✓ Comparison of detection techniques
- ✓ Characterisation of toxin hazards
- ✓ Outlook

Univ. Saarland, DE (Vordiplom Chemie)	1987 – 1990	BSc general chemistry
EHICS, FR (Diplôme d'Ingénieur)	1990 - 1993	Chemical engineering Specialisation analytical chemistry
Robert Gordon Univ. Aberdeen, UK (PhD)	1993 - 1998	Chemical contaminants marine environment
Marine Laboratory phycotoxins	1998 - 2001	Team leader,
 Marine Institue, IE phycotoxins	2001 - 2008	Team leader,
Ifremer, FR	2008 – 2010	Head of Dept. Environnement Microbiology & Phycotoxins

Sec. 2

-

Academic achievements & activities

- Over 40 peer-reviewed publications, > 130 scientific contributions
- (Co-)supervision of 1 postdoc, 4 PhD, 2 MSc and 23 undergraduate students completed, 2 PhDs ongoing
- 9 multi-disciplinary projects managed in 10 years
- Co-organised 4 intl. conferences, 12 natl. workshops
- Expertise for many natl. & intl. food safety organisations (EFSA, ECVAM, FAO/IOC/WHO, AOAC, ANSES, QUASIMEME, MSSC, FSAI, UK-COT, FSA-UK, FSA-Scotland)
- ✓ Editorial board member of "Marine Drugs"

43 Publications – partitioned by journal published in

BioMed Experts geographical networking plot

Hirsch-index a quantitative measure of the <u>impact</u> of publications

Documents (43)	h Index (14) Citati	ons (497)						
Graph Docum	ient List							
Index = 14 The	h Index is based upon the	number of documents and r	umber of citations.					
nalyze documents pu	ublished between 1996	▼ and 2010 ▼	Exclude self-citations Upda	te Graph				
50 45 40 35 30 25 20 15 10 5 -			*****					
0	5	10	15	20 Decument	25	30	35	40

Source: http:/www.scopus.com

Evolution of citations

Docum	nents (43)	h Index (14)	Citations (497)								
Citati	Citations per year The Citations Graph shows the total number of citations received per year for an author's published works.										
Analyze	e document	s published betw	een: 1996 🛛 🕶 and	l 2010 ▼ U	Jpdate Graph						
120	-								,	-	
110	-										
100									/		
90 Z	-							/	, 		
umt 80											
er 70 of											
Cita								/			
tions 50	1										
40											
20						/					
10											
0				•							
-	1998	1999 20	00 2001 2	002 2003	2004	2005	2006	2007	2008	2009	2010
					Year						

Contents

- ✓ CV and scientific productivity
- ✓ Analysis of phycotoxins, natural products
- ✓ Quality Control (calibrants & reference materials)
- ✓ Comparison of detection techniques
- ✓ Characterisation of toxin hazards
- ✓ Outlook

Chemical Structures of Phycotoxins

 $= NH_2^+$

-соон

СООН

OH $^{\prime}R_{3}$

CH₂

Acute Effects (within 30 min to 4 h)

HILIC Chromatography of Saxitoxins

рΗ

Table 2.1.2. Estimated detection limits (LOD, S/N = 3) for saxitoxin group toxins (nanomolar concentration, 5 µL injected on column) for tandem MS (Dell'Aversano et al., 2005) and LC with post-column oxidation and fluorescence detection (Oshima, 1995).

	MS-SRM	LC-FLD
<u>Toxin</u>	AP14000 F	Post-column
STX	20	60
NEO	30	60
GTX2	20	20
GTX3	10	5
GTX1	10	20
GTX4	5	30
B1	10	100
C1	20	30
C2	10	20

Influence of matrix on ion suppression in LC-MS analysis of azaspiracids - BIOTOX (EU FP7)

Fux E., Rode D., Bire R., Hess P. (2008) Food Addit. Contam. 25 (8), 1024-1032. →Matrix effect not necessarily easy to measure by any technique

Influence of sample strength on matrix effect in LC-MS BIOTOX (EU FP7)

Figure 2.2.9. Post extraction addition of AZA (left graph) and OA (right graph) analysed using step gradient HPLC conditions and Q-Tof detection. Bold lines represent the precision obtained

Fux E., Rode D., Bire R., Hess P. (2008) Food Addit. Contam. 25 (8), 1024-1032.

→Large dilution necessary to overcome matrix effects in crude extracts (< 1 mg sample / mL extract) !!</p>

Influence of ionisation mode on between laboratory variability BIOTOX (EU FP7) – 17 Participants, round 1

Negative ionisation mode necessary for Okadaic Acid

Contents

- ✓ CV and scientific productivity
- ✓ Analysis of phycotoxins, natural products
- ✓ Quality Control (calibrants & reference materials)
- ✓ Comparison of detection techniques
- ✓ Characterisation of toxin hazards
- ✓ Outlook

Purification of Azaspiracids – preparative scale

Н Н Н Н ОН Н Н ОН Н ОН Н OH ОН ОН ОН ОН Н Н Н Н Н Н Н Н

9 % overall recovery 400 µg from 4.5 mg

Rehmann et al., Rapid Commun. Mass Spectrom. **2008**; 22: 549–558 McCarron *et al.*, 2009, *J. Agric. Food Chem.* **2009**, *57*, 160–169

Abbreviation	Chemical name				
AZA1	Azaspiracid	841.5	н	CH3	н
AZA2	8-methyl-azaspiracid	855.5	CH3	CH3	Н
AZA3	22-desmethyl-azaspiracid	827.5	н	Н	Н
AZA4	22-desmethyl-3-hydroxy-azaspiracid	843.5	н	Н	ОН
AZA5	22-desmethyl-23-hydroxy-azaspiracid	843.5	Н	Н	Н
AZA6	22-desmethyl-8-methyl-azaspiracid	841.5	CH3	Н	Н
AZA7	3-hydroxy-azaspiracid	857.5	Н	СНЗ	ОН
AZA8	2 3-hydroxy-aza spiracid	857.5	Н	СНЗ	Н
AZA9	22-desmethyl-3-hydroxy-8-methyl-azaspiracid	857.5	CH3	Н	ОН
AZA10	22-desmethyl-23-hydroxy-8-methyl-azaspiracid	857.5	СНЗ	Н	Н
AZA11	3-hydroxy-8-methyl-azaspiracid	871.5	СНЗ	СНЗ	ОН
AZA12	23-hydroxy-8-methyl-azaspiracid	871.5	СНЗ	СНЗ	Н
AZA13	22-desmethyl-3,23-dihydroxy-azaspiracid	859.5	Н	Н	ОН
AZA14	3,23-dihydroxy-azaspiracid	873.5	Н	СНЗ	ОН
AZA15	22-desmethyl-3,23-dihydroxy-8-methyl-azaspiracid	873.5	СНЗ	Н	ОН
AZA16	3,2 3-dih ydroxy-8-methyl-aza spiracid	877.5	СНЗ	СНЗ	ОН
<u>AZA17**</u>	carboxy-22-desmethyl-azaspiracid	871.5	н	COOH	Н
AZA18*	ca rboxy-azaspira ci d	885.5	Н	СНЗ	Н
AZA19**	carboxy-22-desmethyl-8-methyl-azaspiracid	885.5	CH3	COOH	Н
AZA20*	carboxy-8-methyl-azaspiracid	899.5	СНЗ	СНЗ	Н
AZA21**	carboxy-22-desmethyl-3-hydroxy-azaspiracid	887.5	н	COOH	ОН
AZA22 *	carboxy-3-hydroxy-azaspiracid	901.5	Н	СНЗ	ОН
AZA23**	carboxy-22-desmethyl-3-hydroxy-8-methyl-azaspiracid	901.5	CH3	COOH	OH
AZA24*	carboxy-3-hydroxy-8-methyl-azaspiracid	915.5	СНЗ	СНЗ	ОН

* these analogs have not been detected in samples

** these tentative structures are based on in-direct evidence from D/H switching experiments as part of these studies

Certification

- Assessment of purity
 - > NMR
 - > LC-MS

National Research Conseil national Council Canada de recherches Canada

Primary Calibrants: Quantitative NMR

I.W. Burton, M.A. Quilliam and J.A. Walter *Analyt. Chem.* 77, 3123-3131 (2005).

Council Canada

de recherches Canada

Certification – LC-MS/MS

Fig. 4 LC-MS analysis of NRC CRM-AZA1 (a), -AZA2 (b) and -AZA3 (c) using MRM at m/z 842.5>672.5, 856.5>672.5 and 828.5>658.5, respectively. The three MRM transitions were monitored in all three CRMs to assess potential contamination from other AZAs in the CRMs

Perez R., Rehmann N., Crain S., LeBlanc P., Craft C., MacKinnon S., Reeves K., Burton I.W., Walter J.A., Hess P., Quilliam M.A. and Melanson J.E. (2010) The preparation of certified calibration solutions for azaspiracid 1, -2 and -3, potent marine biotoxins found in shellfish. Accepted for publication in Analytical and Bioanalytical Chemistry on 22-08-2010.

Operational Estimate of AZA1-use by LC-MS

If 50 laboratories use 10 μ g per year

 \clubsuit 500 μg per year total consumption

4 2.5 mg / 500 μg = 5 years

Surrent AZA-1 is used up < 5 years

A. Laboratory reference materials (LRMs)

- Method validation (precision)
- Routine QC
- B. Interlaboratory RMs (ILRMs)
 - Intercomparison exercises
 - Proficiency testing
- C. Certified reference material (CRMs)
 - Method validation (accuracy)
 - Calibration

Optimised procedure for wet in-house LRMs

SOP#: BCT-58

Hess P., McCarron P., Quilliam M.A. (2007) Fitfor-purpose Shellfish Reference Materials for Phycotoxins in Internal and External Quality Control. *Anal. Bioanal. Chem.* 387, 2463-2474.

Procedure for freeze-dried RMs @

Homogeneity testing of DA materials

Material	Average DA conc µg/g	SD	%CV	
Wet	10.4	0.3	2.0	
Freeze dried	56.5	1.6	2.8	

Homogeneity testing of OA/AZA materials (n=10)

		AZA-3 [µg/g]	AZA-1 [µg/g]	AZA-2 [µg/g]	AZP equiv. (µg/g)	OA [µg/g]	DTX-2 [µg/g]	OA equiv. (µg/g)
θπ	Average	0.10	0.86	0.35	1.64	0.96	2.16	3.12
eez rie(Stdev	0.01	0.03	0.02	0.05	0.08	0.11	0.15
Pr D	%CV	5.7	3.5	4.8	2.9	7.9	5.0	4.9
	Average	0.02	0.18	0.07	0.34	0.17	0.38	0.55
Vet	Stdev	0.00	0.01	0.00	0.02	0.01	0.04	0.04
>	%CV	12.4	4.9	4.2	4.5	4.4	9.3	7.6

- Good homogeneity
- Higher RSD due to LC-MS method used

Azaspiracid 1 in wet and freeze dried

AZA short termstability studies

- AZA-1 stable in both materials over short term
- AZA-2 stable over short term (data not shown)

im

• AZA-3 unstable in both materials (data not shown)

DA short term stability studies

- No degradation of DA detected in wet RM at -20°C or +4°C
- Degradation of DA at higher temperatures in wet RM
- No degradation of DA at any temperature in freeze-dried RM

Overview of materials prepared

- A total of 18 OA/AZA RMs prepared
- Materials have been used for a variety of applications:
 Single Laboratory Validation
 Proficiency Testing
 Interlab/Collaborative studies (12 BIOTC
 Feasibility of CRM production

Wet Shellfish Tissue Test Materials for Proficiency Testing

				Homogeneity		Stab	ility	
	Material	Matrix	Analyte	CV (%)	Frozen (-20°C)	+4 °C	+20 °C	+40 °C
	1	Scallop Adductor	DA	2.1	30 days	30 days	n/a	4 days *
	2	Whole Scallop	DA	3.7	30 days	30 days	16 days	4 days
DA	3	Whole Mussel	DA	2.7	30 days	30 days	n/a	8 days
	4	Oyster	DA	2.1	30 days	30 days	n/a	30 days
	5	Clam	DA	2.2	30 days	30 days	n/a	4 days *
	6	Whole Scallop	OA	6.2	30 days	30 days	n/a	30 days
	7	Oyster	DTX1	6.2	30 days	30 days	16 days	16 days
OA group	8	Mussel	DTX2	4.6	30 days	30 days	30 days	n/a
	9	Clam	DTX2	6.3	30 days	30 days	n/a	30 days
AZA group	10	Mussel	AZA1	3.1	30 days	30 days	30 days	30 days
AZA group	11	Mussel	AZA1	4.9	30 days	30 days	30 days	30 days
						n/a: no data was a	acquired for this c	ondition

Materials sufficiently homogenous and stable

Proficiency testing – Essais d'aptitude

Proficiency Tests for DA

Overview of all 6 exercises within QUASIMEME

Methods used include LC-UV, LC-MS and ELISA

DA	Year	Participants	Returns	100%	>75%	% 100%
DE9-R34	2003	40	36	21	28	58
DE9-R36	2003/4	42	34	20	27	59
DE9-R39	2004/5	38	33	22	25	67
DE9-R41	2005	41	38	29	33	76
BT7-R43	2005/6	34	31	20	20	65
BT7-R45	2006	35	32	27	27	84

 \rightarrow PT can work for Shellfish Toxins !

Collaboration with National Research Council of Canada (NRCC) on candidate CRM for AZAs

Acquired on 2795 Waters HPLC coupled to a Micromass Q-TOF Ultima (Z-spray ESI). Isocratic elution on C_{18} ACE (30 mm x 2.1 mm) using 60 % B (Binary mobile phase with A (100 % aqueous) and B (95 % acetonitrile) each containing 2 mM ammonium formate and 50 mM formic acid).

Operational Estimate of AZA1-tissue CRM use

If 50 laboratories use 12 portions / year

♦ 600 portions / year total consumption

♦ in 5 years, 3000 portions used

♥ Current CRM is used up < 5 years</p>

Marine Institute, IRMM and NRCC collaboration on multitoxin CRM (2007)

- Supply of tissues, composition of material, adjusting **MI:** concentrations and bulk mixing, initial stabilisation (heat treatment/additives).
- IRMM: Adjustment of water contents, freeze-drying, grinding, milling, sieving, packaging, KFT and PSA.
- **NRCC:** Contribution of some materials, toxin characterisation of material, stability studies, certification, storage and distribution.

<u>Composition of multi-toxin material (100 – 150 kg wet)</u>								
Material	Country	Institute	Harvest Year	Toxins	Quantity (ca.)			
Mussels	Canada	NRCC	1989	DA	4 kg			
Mussels	Ireland	MI	2005	AZAs	24 kg			
Mussels	Ireland	MI	2004	OA/DTX2 & esters	65 kg			
Mussels	Norway	MI	2006	DTX1	7 kg			
Algal Paste	Canada	NRCC	n/a	SPX 13 - desMe - C	tbc			
Algal Paste			n/a	YTX	tbc			
Algal Paste			n/a	PTX2	tbc			

Projected toxin concentrations

DA (µg/g)	OA (µg/g)	DTX1 (µg/g)	DTX2 (µg/g)	AZA1 (µg/g)	AZA2 (µg/g)	AZA3 (µg/g)	SPX 13- desMe-C (µg/g)	YTX (µg/g)	PTX2 (µg/g)
25.00	0.33	0.04	0.62	0.74	0.18	0.18	0.30	0.5	0.1

Contents

- ✓ CV and scientific productivity
- ✓ Analysis of phycotoxins, natural products
- ✓ Quality Control (calibrants & reference materials)
- Comparison of detection techniques
- ✓ Characterisation of toxin hazards
- ✓ Outlook

Biological detection methods

Physico-chemical analytical Methods

MBA for AZAs –

Study design

Tissue dissections and mixtures

Tissue A: Mussels from southwest Ireland Autumn 2007, AZA-only event

Tissue B: Mussels from east coast of Ireland Typically AZA-"free" production zone

Hess et al., *Toxicon* 2009, 53, 713-722.

Homogeneity

Table 1. Homogeneity study.Relative standard deviations (RSDs) in [%], n=5.

Level	1	2	3	4	5	6	7
RSD	n/a*	3.5	1.8	5.2	6.6	4.0	4.6

n/a = RSD is not applicable where concentrations were not quantifyable

Accuracy of assigned values

Table 2. AZA1-equivalents determined in mussel hepatopancreas (HP) and whole flesh (WF) homogenates. All concentrations expressed in whole flesh AZA1-equivalents $[mg/kg]^*$, n=3. Sample-to-solvent ratios were 1 : 62.5 (diluted HP extracts), 1 : 12.5 (crude HP extracts) and 1 : 12.5 (WF extracts).

Level	1	2	3	4	5	6	7
AZA1-Equiv. (dilute HP extracts)	<loq< th=""><th>0.06</th><th>0.12</th><th>0.19</th><th>0.24</th><th>0.30</th><th>0.34</th></loq<>	0.06	0.12	0.19	0.24	0.30	0.34
AZA1-Equiv. (crude HP extracts)	<loq< th=""><th>0.05</th><th>0.09</th><th>0.13</th><th>0.17</th><th>0.20</th><th>0.23</th></loq<>	0.05	0.09	0.13	0.17	0.20	0.23
AZA1-Equiv. (reconst. WF extracts)	<loq< th=""><th>0.06</th><th>0.11</th><th>0.15</th><th>0.19</th><th>0.26</th><th>0.32</th></loq<>	0.06	0.11	0.15	0.19	0.26	0.32

*An average HP content of 15.25% was used for transformation of the AZA1-equivalents determined in HP into whole flesh equivalents. As the reconstituted whole flesh samples had an actual HP content of 20%, the concentrations were also back-calculated to reflect the average HP content of 15.25%.

Prevalence of death [% dead mice per level] -10

Concentration – lethality response curve

Mouse Bioassay Detection Capability expressed as Probability of Detection of Positive at regulatory limit

Table 5. Calculation of the probability (Pr) of a positive (pos) or negative (neg) mouse bioassay for shellfish at the current regulatory limit (0.16 mg/kg). A mouse bioassay is positive when 2 or 3 mice are dead after 24 h observation.

mouse	mouse	mouse	Pr of i	ndividua	al	Pr (scenario)		
1	2	3	mouse	e to live	or die			
dead	dead	dead	0.865	0.865	0.865	0.647		
dead	dead	alive	0.865	0.865	0.135	0.101		
dead	alive	dead	0.865	0.135	0.865	0.101		
alive	dead	dead	0.135	0.865	0.865	0.101	Pr(pos)	0.95
dead	alive	alive	0.865	0.135	0.135	0.016		
alive	dead	alive	0.135	0.865	0.135	0.016		
alive	alive	dead	0.135	0.135	0.865	0.016		
alive	alive	alive	0.135	0.135	0.135	0.002	Pr(neg)	0.05
					Total	1.00		

@ RL of 80 µg/kg, the probability of detecting a positive decreases to 5% !

Natural detoxification of mussels and processing

Contents

- ✓ CV and scientific productivity
- ✓ Analysis of phycotoxins, natural products
- ✓ Quality Control (calibrants & reference materials)
- ✓ Comparison of detection techniques
- Characterisation of toxin hazards
- ✓ Outlook

Stability of AZA to acids in solution

Figure 6.1.3. Degradation of AZA1 under different pH conditions: pure standard in MeOH kept for 48 h at 45°C (top left), standard in aqueous acetonitrile exposed to acetic acid (0.1 %) for 48 h at 45°C (top right), standard in aqueous acetonitrile exposed to NaOH (50 mM) for 24 h at room temperature (bottom left), standard in aqueous acetonitrile exposed to formic acid for 48 h at 45°C (bottom right). Alfonso C., Rehmann N., Hess P., Alfonso A., Wandscheer C., Abuin M., Vale C., Otero P., Vieytes M., Botana L.M. (2008) Anal. Chem., 80 (24) 9672-9680.

Stability of carboxy-AZAs to heat

> AZA-group toxins increase by 30 - 100 % in processing !

Hess et al., 2005 *Toxicon* 46, 62-71

Stability of carboxy-AZAs to heat

 $\begin{array}{c} \text{AZA-1} (\text{R}^{1} = \text{H}, \text{R}^{2} = \text{Me}) \\ \text{AZA-2} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{Me}) \\ \text{AZA-2} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{Me}) \\ \end{array} \xrightarrow{} \begin{array}{c} \text{Oxidative metabolism} \\ \text{in mussels} \end{array} \xrightarrow{} \begin{array}{c} \text{AZA-17} (\text{R}^{1} = \text{H}, \text{R}^{2} = \text{CO}_{2}\text{H}) \\ \text{AZA-19} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{CO}_{2}\text{H}) \\ \hline \text{or storage}) \end{array} \xrightarrow{} \begin{array}{c} \text{AZA-3} (\text{R}^{1} = \text{H}, \text{R}^{2} = \text{H}) \\ \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{Me}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{H}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{H}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{H}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{H}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{H}, \text{R}^{2} = \text{H}) \\ \hline \text{AZA-6} (\text{R}^{1} = \text{H}, \text{R}^{2}$

Figure 6.1.12. Proposed oxidative metabolism of AZA1 and -2 in shellfish to form 22-carboxylated metabolites (AZA17 and -19), which undergo decarboxylation when heated to form AZA3 and -6, respectively, adapted from McCarron et al., 2009.

McCarron et al., 2009 J. Agric. Food Chem. 57, 160-169.

Acid-constants of some toxins

Toxin	Predicted pK _a	Experimental pK _a
AZA1	4.90, 9.20	5.8 ± 0.2
AZA2	4.90, 9.20	5.8 ± 0.2
OA	3.80	4.9 ± 0.5
DTX1	3.80	4.9 ± 0.5
DTX2	3.80	4.9 ± 0.5
PTX2	No acidic function	No apparent pK _a observed
YTX	na	6.9 ± 0.5

Lipophilicity of some toxins

Toxin	Predicted logPow	Experimental logP _{ow}
AZA1	4.06 ± 2.20	7.54 ± 1.01
AZA2	4.32 ± 2.33	8.18 ± 1.28
OA	4.45 ± 2.60	5.05 ± 0.72
DTX1	4.79 ± 2.67	6.88 ± 1.41
DTX2	4.46 ± 2.55	5.61 ± 0.81
PTX2	4.45 ± 1.99	6.47 ± 2.37

Characterising AZA - toxicity

A lot of symptoms and findings from *in-vivo* & *in vitro* studies overlap:

Characterising AZA - toxicity - 2

A lot of symptoms and findings from *in-vivo* & *in vitro* studies overlap:

Lipid-metabolism path

Relative toxicity of DTX2 compared to OA in mice

Figure 6.3.1. The prevalence of death as a function of A) DTX2 dose and B) OA dose $[\mu g]$, as predicted by the use of a second degree polynome.

Aune T, Larsen S., Aasen J., Rehmann N., Satake M. and Hess P. (**2007**) Relative toxicity of dinophysistoxin-2 (DTX-2) compared with okadaic acid, based on acute intraperitoneal toxicity in mice. *Toxicon* 49 1-7.

	-			
в		to		
1	2	Y		X
7	31	13	117	
X	3	1	-35	to
14	SE	Ya	2	-X

	<u>R1</u>	<u>R2</u>	<u>R3</u>	<u>R4</u>	<u>K5</u>	<u>R6</u>
OA	н	н	CH3	Н	Н	н
DTX1	н	н	CH3	CH3	Н	н
DTX2	н	н	н	Н	CH3	н
DTX3	н	acyl	as parent	as parent	as parent	н
Diol-ester	diol	H/acyl	as parent	as parent	as parent	н
DTX4	Diol-ester	н	as parent	as parent	as parent	н
DTX5	Diol-ester	н	as parent	as parent	as parent	н
27-O-acyl	н	н	CH3	Н	Н	acyl

Molecular models of okadaic acid analogues docked to protein phosphatase-1 (PP1), based on the crystal structure of okadaic acid bound toPP1 (PDBid:1JK7). A, okadaic acid; B, dinophysistoxin-1; C, dinophysistoxin-2. Adapted from Larsen et al., 2007

International Expert Consultation - Risk Evaluation

The EFSA Journal (2009) 1306, 1-23

SCIENTIFIC OPINION

Marine biotoxins in shellfish – Summary on regulated marine biotoxins¹

Scientific Opinion of the Panel on Contaminants in the Food Chain

(Question No EFSA-Q-2009-00685)

Adopted on 13 August 2009

Summary - 1

 \checkmark

- An array of studies have led to improvements in the chemical analysis of phycotoxins, notably domoic acid, saxitoxins and lipophilic toxins. Particular progress was made in the area of azaspiracids where certified calibrants, reference materials and proficiency testing have been made available to scientists and risk managers in this domain.
- Efforts in surveillance, method validation and several large scale risk evaluation exercises have contributed to a change in legislation for domoic acid and lipophilic toxins.
- The understanding of metabolism and chemical stability of toxins in shellfish has been addressed for the azaspiracid and pectenotoxin groups. This knowledge has been translated into recommendations for risk managers and the shellfish industry.

E. Nezan

Better comprehension and management of existing hazards

M. Robin & collaborators Satellite imagery _

Microbial ecology and novel approaches of surveillance

C. Compère & collaborators Molecular probes

Identification of emerging or new hazards

Taxonomy of recently described dinos: F. duplocampanaformeae Prorocentrum spp. Vulcanodinium sp. etc.

> A. Menesguen & collaborators Modelling of HABs

M. Geiger Bioactivity in recently discovered taxa and shellfish monitoring (bacterial, larval and cytotox assays

Better comprehension and management of existing hazards

Microbial ecology and novel approaches of surveillance

> Identification of emerging or new hazards

ASTOX2 – PhD: Physiology of *Azadinium spinosum*

Thierry Jauffrais Supervisors: C. Herrenknecht, V. Séchet, L. Barillé

> Physiology of A. spinosum Recovery of cells Production of toxic biomass Isolation of toxins Accumulation of toxins in shellfish

Large-scale bioreactor: Maintained for several weeks

Culture optimisation and recovery of cells

Tangential filtration over 500L of culture harvested
Toxic biomass for isolation of toxins

Large-scale bioreactor:

improvement of factor 5 compared to initially reported to initially reported

Currently > 600 L culture harvested \rightarrow ca. 100 g pellet !

Isolation from this material should give better recovery thanks to higher toxin : matrix – ratio !!

Identification of emerging or new hazards

Accumulation along trophic web

→ Mussels love Azadinium !!

Better comprehension and management of existing hazards

Chemical profiling of algae and shellfish

Identification of emerging or new hazards

Particle Size Evolution

10 min

Late 1960's 40µm pellicular non-porous coated 100-500 psi (7-40 bar) 10,000 plates/meter

10 min

Early 1970's 10µm Irregular micro-porous 1000-2500 psi (70-180 bar) 40,000 plates/meter

1980's to present day 3.5 - 5µm spherical micro-porous 1500-4000 psi (110-280 bar) **80,000 - 115,000 plates/meter**

10 min

Particle Size Evolution

Smaller Particles *The enabler of productivity*

The promise of the van Deemter plot

Analysis of the lipophilic biotoxins by UPLC-MS

HPLC-QTof

Conditions:

BDS Hypersil C8 (50×2mm, 3µm)

2mM ammonium formate, 50mM formic acid

Gradient conditions

Flow rate 0.2mL/min

UPLC-QqQ

Conditions:

Acquity C8 (50×2mm, 1.7μm)

2mM ammonium formate, 50mM formic acid

Gradient conditions

Flow rate 0.4mL/min

Fux E., McMillan D., Bire R., Hess P., (2007) Development of an Ultra Performance Liquid Chromatography – Mass Spectrometry method for the detection of lipophilic marine toxins. J. Chromatogr. A 1157, 273-280.

→ Highly cited paper award (cited 35 times in 3 years) !!

Analysis of the FDMTmaterial by LC-MS/MS

Conditions:

API5500 Q-Trap

Kinetex C18 (50×2mm, 2.7 μm)

2mM ammonium formate, 50mM formic acid , temperature: 40°C

Gradient, flow rate 0.5mL/min

Ifremer, 2010 Unpublished data

Influence of sample strength on matrix effect in LC-MS BIOTOX (EU FP7)

Figure 2.2.9. Post extraction addition of AZA (left graph) and OA (right graph) analysed using step gradient HPLC conditions and Q-Tof detection. Bold lines represent the precision obtained

Fux E., Rode D., Bire R., Hess P. (2008) Food Addit. Contam. 25 (8), 1024-1032.

→Large dilution necessary to overcome matrix effects in crude extracts (< 1 mg sample / mL extract) !!</p>

Comparison of sensitivity : API4000 and API5500

→ Gain of factor 5 ! → Dilution is the solution !!

Table 1: Precision data for AZA1						
	Mean value (in µg/kg)	Repeatability conditions	Intermediate conditions	Reproducibility conditions	HORRAT (uncorr.)	HORRAT (corr.)
Samples 1/3: Blue mussels, cpoked						
Laboratories after outlier elimination [Outliers]: 13 [0]						
Homogenate	96.36	11.8%	14.1%	21.2%	0.93	0.96
Sample 5 (Extract of samples 1/3)						
Laboratories after outlier elimination [Outliers]: 11 [2]						
Extract	111.74	8.0%	9.6%	23.2%	1.04	1.05
Samples 6/8: Oysters, raw						
Laboratories after outlier elimination [Outliers]: 13 [0]						
Extract	99.46	10.5%	11.9%	22.6%	1.00	1.03
Sample 4: Blue mussels, cooked						
Homogenate	< LOD					
Sample 7: Clams, raw						
Laboratories after outlier elimination [Outliers]: 12 [1]						
Extract	82.50	9.9%	10.7%	14.7%	0.63	0.67
Samples 9/11: Blue mussels, cooked						
Laboratories after outlier elimination [Outliers]: 7 [0]						
Extract		5.1%				
Homogenate	17.42	10.4%		37.9%	1.29	1.72
Samples 10/12: Blue mussels, cooked						
Laboratories after outlier elimination [Outliers]: 7 [0]						
Extract		3.6%				
Homogenate	71.86	4.9%		30.8%	1.30	1.40
Sample 13: Blue mussels, raw						
Laboratories	after outlier	elimination [Ou	ıtliers]: 15 [0]			
Homogenate	127.54	9.7%		15.2%	0.69	0.69
Sample 14: Blue mussels, raw Laboratories after outlier elimination [Outliers]: 15 [0]						
Homogenate	64.92	7.5%		16.3%	0.67	0.74
Sample 15: Blue mussels, raw						

Better comprehension and management of existing hazards

Untargeted profiling example of yeast metabolome HRLC – scanning on MS API 5500

Translation of 1000s of signals into 100s of compounds !

COLNACOQ - Bioactivity of fungal and microalgal metabolites in the environment surrounding shellfish

Thèse Marie Geiger: Development of a bioassay suite for bioguided fractionation Supervisory team: YF. Pouchus, O. Grovel, J. Boustie, V. Séchet, J. Dupont 2 Objectives:

To develop and validate a series of bioassays for the discovery of lipophilic bioactive compounds in the marine environment

To apply these bio-assays to the screening of various marine microorganisms (focus on micro-algae and micromycetes) and contaminated shellfish - 3 types tests -

- Antibacterial activity
- Cytotoxicity
- Insect larval toxicity

Discovery of antibacterial activity in P. expansum Marie Geiger, 2010

Figure 6: Preliminary antibacterial assay with crude extracts of *A. spinosum* and *P. expansum* tested on *V. crassostreae* (concentrations are given in mg dry residue crude extract per mL of final well volume)

Better comprehension and management of existing hazards

> Mechanisms of toxicological action

Identification of emerging or new hazards Biomonitoring/ biodiscovery

Mechanisms of toxicological action as link between food Safety & biodisovery approach

Food Safety

Drug Discovery

Toxin – protein interactions Elodie Nicolau, 2010

Summary - 2

- Networking efforts combined with a systematic approach allow for multiple studies, as long as funding is available and priorities can be agreed upon.
- Recent legislative developments and industry requirements require further efforts in the following areas:
 - ✓ Production of purified toxins (to calibrate & establish TEFS)
 - ✓ Production of RMs & method validation
 - Biological surveillance techniques: High-throughput screening of multiple activities
 - Better understanding of shellfish metabolism and mechanism of action of toxins in mammals
 - More efficient detection of new or emerging toxins (HTS HRLC – HRMS techniques)
 - More efficient monitoring of algae (satellite, flow cytometry, probes, taxonomy)

Un grand merci à tous mes collaborateurs, particulièrement à Henri Loréal, Patrick Lassus et Martial Catherine pour la révision du manuscrit !

Ifremer

Merci pour votre attention !!