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With political commitment to restore stocks to levels where they can produce maximum sustainable yield (MSY), fisheries managers
request evaluation of management plans that include options for an FMSY policy. The procedure to estimate FMSY with dynamic-pool,
stock assessment models is well established for common stock–recruitment relationships (S–RR), and this capacity is extended to
another S –RR, a piecewise function known as the hockey stick (HS), which is frequently assumed when the data do not support
more elaborate functions. However, the HS is not continuous, which makes it problematic for this application, where differentiable
functions are required. The bent-hyperbola model proves to be an adequate continuous equivalent to the HS for estimating FMSY.
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Introduction
In the FAO fisheries glossary (http://www.fao.org/fi/glossary/
default.asp), maximum sustainable yield (MSY) is defined as
“the highest theoretical equilibrium yield that can be continuously
taken (on average) from a stock under existing (average) environ-
mental conditions without affecting significantly the reproduction
process”. This definition emphasizes that MSY not only addresses
maximization of yield (e.g. as in yield-per-recruit analyses), but
also targets preservation of a stock at a sufficiently high level to
reproduce itself. With age-structured analytical (also known as
dynamic-pool) models used in most ICES assessments, estimating
MSY reference points implies that yield-per-recruit analyses need
to be combined with stock–recruitment relationships (S–RR),
using a “classical” procedure involving the concept of replacement
line and its intercept with the S–RR curve (Sissenwine and
Shepherd, 1987; Quinn and Deriso, 1999).

Most often, however, plots of stock and recruit estimates from
fish stock assessments provide equivocal indications on the precise
form of the underlying S–RR, resulting in large uncertainties on
the plausible location of FMSY. Yet, in many applications such as
bioeconomic modelling (Clark et al., 1985), evaluations of man-
agement strategies and management plans (e.g. Daan, 2007), and
identification of precautionary reference points (ICES, 2003),
the need arises to take account of the essential feature of the S–
RR (“the sensible null hypothesis that recruitment is likely to fall
at low SSB”; Shepherd, 1982) and some degree of compensation.
This assumption is supported by empirical evidence, across taxo-
nomic groups, that recruitment tends to be poorest when spawner
abundance is low (Myers and Barrowman, 1996).

A simple depiction capturing these features is a piecewise
relation, where recruitment is set at the average value for all
spawner-stock biomasses (SSBs) above some threshold and is lin-
early reduced towards zero as SSB approaches zero (Clark et al.,
1985; Butterworth and Bergh, 1993). This is also known as a seg-
mented regression, but a popular name is the “hockey stick (HS)”
S–RR (Barrowman and Myers, 2000). A problem with the HS S–
RR is its piecewise formulation, which makes estimating MSY and
the associated fishing mortality FMSY impossible with the “classi-
cal” procedure alluded to above. A way around the problem is to
consider a continuous approximation of the HS, such as the
bent hyperbola (Watts and Bacon, 1984). The properties of the
bent hyperbola and the procedure to estimate FMSY in combi-
nation with this S–RR, with its pros and cons, are discussed here.

Material and methods
Derivation of FMSY with dynamic-pool and parametric
S–RR models
A quick reminder is provided of the procedure described in the lit-
erature (Laurec and Le Guen, 1981; Shepherd, 1982; Sissenwine
and Shepherd, 1987; Quinn and Deriso, 1999). S is used as the
symbol for SSB or any other appropriate metric of effective
fecundity. One starts with a per-recruit analysis which, for each
fishing mortality (F) value, provides a single estimate of yield
(Y/R), and one of spawning biomass (S/R). It is common to
use a discrete yield model, with this set of equations:

Ni = Rexp −
∑i−1

j=0

sjF + Mj

( ){ }
; R = 1,
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Ci =
siF

siF + Mi
1 − exp −siF − Mi( )
{ }

Ni,

Y/R =
∑

i

CiWi,

S/R =
∑

i

NiOiWi,

where i is the age, Ni the survivors at age i from a recruitment of
size R (typically unity), F a nominal fishing mortality and si its
distribution-by-age (selection pattern), Mi the natural mortality,
Ci the catch-at-age i in number, Wi the weight-at-age, Oi the frac-
tion mature at age, Y the yield in weight, and S the spawning
biomass. For a given F, there is one value of S per recruit, noted
lF hereafter.

Next, one turns to the graph of the S–RR function R ¼ f(S).
The line through the origin of slope 1/lF, referred to as the repla-
cement line, cuts the S–RR curve f for some S abcissa (getting
smaller as F increases, because the replacement line becomes
steeper). At equilibrium (the same R gives the same S, which
gives the same R), the following condition applies for all S–R
models:

Se = lF × f(Se). (1)

If f21 exists, as it does for functional forms of S–RR, this equation
can be solved for Se, and the recruitment at long-term equilibrium
is obtained as Re ¼ Se/lF. For that value of F, the equilibrium yield
Ye ¼ Re × Y/R.

All this holds for a single value of F (or F-factor). If we repeat
the calculation over an appropriate range of Fs, we obtain a curve
of Ye, which peaks for a given value of F; this F is the desired esti-
mate of FMSY, and the peak Ye is MSY. The corresponding Se is
BMSY, the spawner biomass producing MSY. FMSY can also be esti-
mated analytically as the fishing mortality where the derivative of
the yield curve is zero; hence, the need for a differentiable S–RR
function.

The HS and its continuous variants
The HS S–RR (Butterworth and Bergh, 1993; Barrowman and
Myers, 2000) is a segmented function whose curve starts with
slope a . 0 at the origin and then becomes horizontal beyond
some level of spawning abundance, S*:

R = aS, S , S∗

R∗ = aS∗, S ≥ S∗
.

{
(2)

On a plot, the curve bends sharply at the breakpoint S*. This is
known to cause mathematical difficulties for inference (likelihood
surface with flat ridges). For our purpose, the main problem is that
there is no inverse function allowing a solution to Equation (1), so
a continuous analogue is needed.

To cope with inference problems, Barrowman and Myers
(2000) proposed a smooth variant, the logistic HS (LHS), whose
properties were further analysed by Cadigan and Healey (2004).
However, Cadigan (2009) found the LHS too difficult for develop-
ing influence diagnostics, and it is also cumbersome to work with
for estimating MSY. In their extensive review of segmented
regression, Seber and Wild (1989) examined several models
accommodating a smooth transition around the join-point (or

breakpoint) between two segments. In particular, the
bent-hyperbola model (Watts and Bacon, 1984) seems to serve
the purpose well.

The general form of the bent hyperbola (in S–RR terms), as a
transition between two linear segments (“left” and “right”), is

R = f(S) = b0 + b1(S − S∗) + b2





















(S − S∗)2 + g2/4

√
, (3)

where S* is the biomass breakpoint, and g is a measure of the
radius of curvature near the breakpoint; as g approaches zero,
the curve has a sharp bend similar to the HS. If the left segment
has a slope u1, and the right segment a slope u2, the following
applies for b1 and b2:

b1 = u1 + u2( )/2,
b2 = u2 − u1( )/2

.

As we want to mimic the HS, we have u2 ¼ 0 (the right segment
horizontal), so b ¼ b1 ¼ 2b2 ¼ u1/2. Moreover, it is desirable
that the curve passes through the origin (no recruit if no
parents). This leads to the Watts–Bacon bent hyperbola:

R = f(S) = b{S +













S∗2 + g2/4

√
−





















(S − S∗)2 + g2/4

√
}. (4)

This model has the satisfactory property that it curves inside the
corner at the intersection of the asymptotes, whose slopes are

df

dS
= 2b, S � 0

0, S � 1
.

{

When fitting the model to data, the parameters to estimate are
b, S*, and g. The R* plateau is found by applying Equation (4) to
large values of S; it can also be obtained analytically as
R∗ = b(S∗ +














S∗2 + g2/4

√
). However, Seber and Wild (1989)

pointed out that there are generally too few data around the break-
point to describe the transition well, and g is likely to be estimated
with poor precision. Moreover, when g is a free parameter, the
sum-of-squares surface is poorly conditioned, leading to problems
with minimization. Hence, they advised to hold it fixed. Watts and
Bacon (1984) further noted that their estimates were insensitive to
the prior choice of g, and Toms and Lesperance (2003) observed
that a range of values of g (including a sharp model) was
equally plausible. Our experience is also that minimization algor-
ithms often do not move the starting value of g, and the returned
hessian has values of zero in rows and columns for g. Hence, we
followed the advice of Seber and Wild (1989) in our examples
and searched b and S* for fixed trial values of g. Because we
wanted to mimic assessments with a HS, we chose small values
for g (0.01, 0.1, or 0.5), but, as can be seen in an example, larger
values did not change the estimates of S* and R*.

FMSY with a continuous HS
It is easy to cast Equation (4) into Equation (1) and solve

Se = lFb Se +













S∗2 + g2/4

√
−





















(Se − S∗)2 + g2/4

√{ }

for Se, knowing the SSB-per-recruit lF for a given F. This leads to a
simple quadratic equation, the non-trivial (positive) solution of
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which is

Se =
2K/(lb) − 2S∗ − 2K

1/(l2b2) − 2/(lb)
,

where K =













S∗2 + g2/4

√
, and the F subscript to l is dropped.

When divided by lF, this root gives the level value R*, which cor-
responds to Re. However, above some threshold value of fishing
mortality, the slope of the replacement line exceeds the slope of
the ascending S–RR segment (which is u1 ¼ 2b). As with other
S–RR, this indicates that the replacement line is too steep and
has no (positive) intercept with the stock–recruit curve, such
that the stock is “heading for its graveyard” (Beverton, 2002). A
self-explanatory notation for this threshold is Fcrash. Hence, all
F values (or factors) such that 1/lF . 2b are earmarked as
non-viable for a long-term yield.

Examples
Fitting a bent-hyperbola S–RR to simulated data
A set of stock-and-recruitment data emulating a HS was generated,
30 values of spawner biomass S being obtained by randomly
sampling numbers in the range 1–2000. The corresponding
recruits were estimated from Equation (2), assuming a threshold
S* of 750 and an initial slope a of 1.25. A lognormal noise (as com-
monly assumed when dealing with recruitment) with a CV of 0.3
was then added. The bent hyperbola [Equation (4)] was fitted to
the data with a fixed g of 0.5. For comparison, a HS was also
fitted with the profiling method suggested by Barrowman and
Myers (2000), yielding parameters that differed only marginally
from those provided by the grid-search or Julious methods used
by ICES (2002). The plot of both fits is shown in Figure 1.

The bent hyperbola closely matches the HS, both for the
change-point S* and the R* plateau, although no parameter was
set to force this in any way (note that, because of added noise,
both fits give estimates that differ from the initial specification:
821 instead of 750 for S*, and 971.6 rather than 937.5 for R*).
As a small g was used, even the shape near the breakpoint is

indistinct. We also checked the lack of sensitivity to the choice
of g. Figure 1 shows that there is no visible difference in the fits
when g is extended from 0.5 to 1 or 10 and that one needs to
drag g to extreme values, .100, to change the pattern appreciably.

Estimating FMSY for Baltic cod
A case study with estimation of FMSY is hard to find in ICES
reports, so we resorted to the FAO publication by Lassen and
Medley (2000), with its annexed spreadsheets where a worked
example is presented. The example is based on eastern Baltic cod
(Gadus morhua), with stock-and-recruitment (at age 2) data for
the 1966–1994 year classes. Input data for per-recruit analyses
(natural mortality M, selection pattern s, weights W in the catch
and the stock, maturity O, all by age) are also provided. An
additional example for North Sea cod is provided in our
Supplementary material.

The bent hyperbola was fitted to the stock–recruit data with
different trial g; there was no obvious difference in parameter esti-
mates, and we kept g ¼ 1.0. Again, the fitted curve is fully super-
imposed over the HS curve. The example in Lassen and Medley
(2000) assumes a Beverton and Holt S–RR, and we also fitted
one to the data. Figure 2 illustrates one of the contentions of
Barrowman and Myers (2000) that the Beverton–Holt S–RR
tends to give higher recruitment at medium or high biomasses,
leading to overoptimistic long-term yields.

A per-recruit analysis provides yield-per-recruit and
spawning-biomass-per-recruit for a range of values of F. We
then used the procedure described earlier to estimate the equili-
brium biomass Se and the equilibrium recruitment Re, and
hence the equilibrium yield for each F. FMSY is obtained for an F
of 0.477 (mean over ages 4–7). For this value of F, the replacement
line cuts the S–RR curve to the right of the threshold, where
recruitment is constant at R*; therefore, this is the same F as for
Fmax on a yield-per-recruit curve. However, this F is only 73% of
Fcrash (0.65), where there is no intersection between the replace-
ment line and the S–RR curve. By comparison, with a
Beverton–Holt S–RR, Lassen and Medley (2000) found a
smaller FMSY of 0.317 and a much larger Fcrash of 1.36. The

Figure 1. Plot of the bent-hyperbola S–RR with g fixed at 0.5 (solid,
red), and of three alternative assumptions for the curvature
parameter g, on artificial data (open circles); a HS fit to the same
data is also plotted (dashed, blue).

Figure 2. Comparison of three stock–recruit models for Baltic cod.
Data pairs (year classes 1966–1994) are shown as open circles.
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equilibrium yield for the two S–RR is shown in Figure 3. Note the
abrupt drop at Fcrash with the bent hyperbola, whereas yield
decreases gradually with a Beverton–Holt S–RR. An advantage
of the FMSY procedure is the substantiation that yield can be anni-
hilated when a threshold in fishing mortality is exceeded, whereas
a yield-per-recruit analysis gives no such indication.

As the maximum is on a relatively flat portion of the yield curve
and FMSY is close to Fcrash, it may be of interest to consider the
uncertainty in estimating FMSY. The stock-and-recruitment data
are the results of catch-at-age analyses using models of varying
complexity, subject to intricate effects of errors in reported
catch, discards, assumed natural mortality, etc. The estimates of
F and selection pattern used in per-recruit analyses are also pro-
duced by the same channel. Without access to the original data,
it is impossible to incorporate all possible sources of noise. A
simple alternative is the jackknife approach, where the
bent-hyperbola fit and FMSY estimation are repeated with each
stock–recruit pair dropped in turn. In this instance, the jackknife
variance is extremely small, and FMSY differences occur only at the
sixth decimal place. There are indications that dropping the pairs
with high (or low) recruitment tends to reduce (or raise) the esti-
mate of FMSY, but the absolute differences are infinitesimal.

Discussion
Although the concept of MSY has been debated intensely within
the scientific community, owing to the various conceptual and
technical issues, political authorities have recently restated their
attachment to this long-standing management objective. Their
will is that fishing mortality should be brought to and maintained
near FMSY. Therefore, many European Union recovery or manage-
ment plans include an FMSY policy, and scientists are requested by
managers to evaluate the implications of fishing at FMSY relative to
alternative policy options. At a minimum, this implies that scien-
tists have the capacity to estimate FMSY. With the class of models
used by ICES, the procedure requires the specification of a trust-
worthy S–RR.

Here, the procedure to estimate the genuine FMSY established
for conventional S–RR (e.g. Shepherd, 1982; Quinn and Deriso,
1999) has been extended to an additional S–RR, the HS. This seg-
mented form of S–RR is often selected when the evidence for
more elaborate functions is weak, given the data at hand, and
goodness-of-fit statistics are at times better than those of compet-
ing models (Barrowman and Myers, 2000). Theoretical consider-
ations indicate that HS parameters (the breakpoint and the level
recruitment) are “design-robust”, i.e. less sensitive to the addition
or deletion of S–R pairs (Cadigan, 2006), although some prac-
titioners argue that adding new observations near the origin or
far from the breakpoint significantly change the parameters
(ICES, 2007). Whether such change in the S–RR parameters has
a significant impact on the estimate of FMSY needs to be checked
in each specific case.

However, if the choice is made to assume a HS S–RR, the orig-
inal formulation is not convenient for analytical estimates of MSY,
and there is a need for a continuous, differentiable alternative.
Among the several functions quoted in the literature, the
bent-hyperbola variant proposed by Watts and Bacon (1984)
proved most suitable. Although it comes from a different lineage
than the methods normally used to fit a HS, the estimated curve
is remarkably similar to the HS curve, except that, as desired, it
is continuous locally about the breakpoint. The shape of this con-
tinuity is determined by a parameter that can be varied over a
broad range without significant changes in the other parameters
of interest, viz. the breakpoint S* and the level recruitment R*
when SSB is above the breakpoint. Previously, resorting to
smooth variants of the HS was found to be a requirement for com-
puting confidence intervals based on the likelihood (Cadigan and
Healey, 2004). The bent hyperbola probed here is one of a family of
functions studied by Toms and Lesperance (2003), and it is
straightforward to carry out the same inference studies with
various error distributions, as done by those authors. It is also
trivial to perform leave-one-out simulations to check the robust-
ness of parameters when observations are added or deleted and
to include the plot in standard diagnostics, as done by ICES
(2002).

The focus here was on calculating FMSY deterministically, such
that the estimate can be carried into catch forecasts. There are indi-
cations that ICES would rather advise on ranges for FMSY, taking
account of variability around the stock–recruit curve, in growth,
natural mortality, selection pattern, etc. Nevertheless, the essential
steps in the calculation will remain as shown here, and likewise for
management plan simulations, where computations are done over
many replicates.

To estimate MSY reference points, one needs to consider an
equilibrium recruitment located at the intersection of the replace-
ment line under a given F with the S–RR curve. When the S–RR is
of the HS type, the intersection for low-to-moderate Fs takes place
where recruitment is constant at the R* plateau, so FMSY has the
same value as Fmax, the value for which the yield-per-recruit is
maximized (a distinct concept). When F . Fcrash, i.e. where
both curves have no intersection, the equilibrium recruitment
and yield drop suddenly to zero. There may be a problem with
stocks exhibiting a flat-topped, yield-per-recruit curve with a
maximum for high F values, possibly above Fcrash, depending on
the steepness of the replacement line (low SSB per recruit). In
that case, FMSY will be well beneath Fmax. This shows that Fmax

can be a risky proxy for FMSY, because it does not account for
the stock–recruitment process and may at times be dangerously

Figure 3. Comparison of equilibrium yields and positions of FMSY

(arrows) for a bent hyperbola and a Beverton and Holt S–RR
for Baltic cod.
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close to Fcrash (Punt and Smith, 2001). ICES should not rec-
ommend its use in lieu of FMSY (ICES, 2009a).

Supplementary material
Supplementary material is available at ICESJMS online for a North
Sea cod example. Two references cited only in the Supplementary
Material are included below in the list of references, for
completeness.
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