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Variational Region-Based Segmentation
Using Multiple Texture Statistics

Imen Karoui, Ronan Fablet, Jean-Marc Boucher, Senior Member, IEEE, and Jean-Marie Augustin

Abstract—This paper investigates variational region-level crite-
rion for supervised and unsupervised texture-based image segmen-
tation. The focus is given to the demonstration of the effective-
ness and robustness of this region-based formulation compared to
most common variational approaches. The main contributions of
this global criterion are twofold. First, the proposed methods cir-
cumvent a major problem related to classical texture based seg-
mentation approaches. Existing methods, even if they use different
and various texture features, are mainly stated as the optimiza-
tion of a criterion evaluating punctual pixel likelihoods or simi-
larity measure computed within a local neighborhood. These ap-
proaches require sufficient dissimilarity between the considered
texture features. An additional limitation is the choice of the neigh-
borhood size and shape. These two parameters and especially the
neighborhood size significantly influence the classification perfor-
mances: the neighborhood must be large enough to capture tex-
ture structures and small enough to guarantee segmentation accu-
racy. These parameters are often set experimentally. These limita-
tions are mitigated with the proposed variational methods stated at
the region-level. It resorts to an energy criterion defined on image
where regions are characterized by nonparametric distributions of
their responses to a set of filters. In the supervised case, the segmen-
tation algorithm consists in the minimization of a similarity mea-
sure between region-level statistics and texture prototypes and a
boundary based functional that imposes smoothness and regularity
on region boundaries. In the unsupervised case, the data-driven
term involves the maximization of the dissimilarity between re-
gions. The proposed similarity measure is generic and permits op-
timally fusing various types of texture features. It is defined as
a weighted sum of Kullback–Leibler divergences between feature
distributions. The optimization of the proposed variational criteria
is carried out using a level-set formulation. The effectiveness and
the robustness of this formulation at region-level, compared to clas-
sical active contour methods, are evaluated for various Brodatz and
natural images.

Index Terms—Active regions, level sets, nonparametric distri-
butions, supervised and unsupervised segmentation, texture sim-
ilarity measure.
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I. INTRODUCTION

T EXTURE describes a visual information which is related
to local spatial variations of color, orientation and inten-

sity in an image. It is usually described by qualitative adjec-
tives such as smooth or rough, coarse or fine, homogeneous or
random, etc. This information is fundamental in image anal-
ysis and interpretation and the segmentation of an image into
homogeneous regions, in terms of textural features, remains a
complex issue. An effective and efficient texture segmentation
method is of key interest in numerous domains such as biomed-
ical image analysis, industrial inspection, analysis of remote
sensing images, sonar or aerial imagery [1]–[4], etc.

Pixel-based and region-based techniques can be seen as the
two major categories of approaches for image segmentation.
Whereas pixel-based schemes, such as k-means [5], standard
Markov random fields [6], [7], consider image segmentation
as a labeling issue at pixel-level, region-based approaches di-
rectly search for a relevant image partition. The main methods
belonging to this second category are split-and-merge tech-
nique [8], [9], region-based Bayesian segmentation [10], active
contours or deformable models [11]–[13]. As far as texture seg-
mentation is concerned, region-based techniques appear more
adapted, since texture characteristics are by nature nonlocal
characteristics. Region-based approaches, especially active
contours associated with a level-set setting, offer an efficient
manner to cope with texture and geometrical features at the
region-level. Recently, there has been a considerable amount
of work that places texture segmentation in the framework
of optimization theory using curve evolution techniques [2],
[11], [14]–[17]. The reported results are very encouraging.
In general, these methods state the segmentation problem as
the minimization of an energy composed of
a data-driven term, denoted by , and a regularization term
denoted by . The goal is to determine the image partition

that minimizes , where are image regions.
Formally, the segmentation problem is expressed as follows:

(1)

Texture segmentation based upon active contour techniques in-
volve two main categories of approaches.

• Methods that rely on the optimization either of informa-
tion theoretical criteria mainly the entropy and the mutual
information or of the product of pixel likelihoods. These
methods assume that textural features are independent and
identically distributed (i.i.d.) [11], [14]–[17].
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Fig. 1. Two-class Brodatz mosaic. (a) Considered Brodatz textures D102 and
D68. (b) Two-class mosaic. (c) Response of the mosaic to a Gabor filter.

• Methods that exploit image neighborhoods and optimize
criteria based upon neighborhood statistics [2], [3], [18],
[19].

Without loss of generality, the data-term associated to all
these methods can be expressed as follows:

(2)

where is the punctual likelihood. For the first category, this
likelihood depends only upon pixel feature: . For the
second category, it depends upon feature distribution in the
pixel’s neighborhood (that we denote by ): . is
a function that defines the optimized criterion:

• for likelihood maximization based crite-
rion;

• for entropy based criterion;
• for distance based criterion, where is

a metric.
The existing methods differ in the computation of the proba-
bility . Some methods are based upon parametric models.
In [14], pixel likelihoods are computed according to
a Gaussian mixture of filter response statistics (Gaussian and
Gabor filters). In [11] and [15], the distribution of texture fea-
tures (wavelet coefficient) are modeled by generalized Gaussian
models. In [19], generalized Laplacian models are considered
to describe the statistics of various linear filters (the discrete
cosine transform, steerable pyramids, and various orthogonal
wavelets). In [17], Gaussian distributions are used to model
feature channels extracted from structure tensor, etc. Other ap-
proaches rely on nonparametric distributions to evaluate pixel
likelihoods such as in [18], where nonparametric neighborhood
statistics were combined to an entropy-based metric. In [3],
Kadir et al. use a nonparametric model for image intensities
and in [20], the authors use nonparametric statistics to optimize
image entropy and mutual information, etc.

These methods work well when texture feature distributions
are disjointed and may fail when these distributions signifi-

cantly overlap. Fig. 1 shows an example of a mosaic composed
of two Brodatz textures [21]: D102 and D68. D102 has a coarse
and regular periodic texture and D68 a weakly ordered one
(wood grain). These two textures depict overlapping histograms
of their response to a Gabor filter (Fig. 2). Approaches based
upon the punctual likelihood [11], [14]–[17] computed
from these histograms cannot correctly segment such an image.
Feature distributions depict an overlap corresponding to bright
patches. As the local likelihood or similarity of these bright

Fig. 2. Histograms of the response of the two textures (D102 and D68) to a
Gabor filter.

Fig. 3. Segmentation of the two-class mosaic (Fig. 1) by a classical variational
approach [11], [14], [15] relying on the computation of pixel-level likelihoods
of the Gabor feature.

patches in texture D102 is maximal for the model extracted
form texture D68, these patches are misclassified as shown in
Fig. 3. This example also stresses the dependence upon the
choice of the analysis window when criterion actually ex-
ploits information in pixel neighborhoods [19] (Fig. 4).
A 3 3 analysis window (neighborhood) is not large enough
to capture the structures of texture D102, whereas a 33 33
window leads to inaccurate boundaries. seems to
be a good tradeoff. In the general case, it is however difficult to
determine an optimality criterion for the choice of the analysis
window especially when the image is composed of several
textures, each with a given coarseness.

The approach proposed in this paper addresses these issues as
illustrated in Fig. 5. Our method uses a global criterion that com-
bines the advantages of an efficient texture characterization with
global region variational methods. The two key features are: a
region-level characterization using nonparametric texture statis-
tics and the definition of a variational observation-driven cri-
terion from a texture-based similarity measure at region-level.
Following recent works [4], [9], [22]–[24], we consider texture
features computed as nonparametric statistics of filter outputs
w.r.t. a varied set of filters. Observation-driven term is then
defined as

(3)
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Fig. 4. Segmentation of the two-class mosaic (Fig. 1) by a classical approach
[19] exploiting pixel neighborhood for different sizes of square analysis win-
dows � (a) � � �� � (b) � � ��� �� (c) � � ��� ��.

where is a similarity measure. refers to the considered
texture statistics estimated from training samples for class and
feature and , the observed global texture statistics for
region for feature .

Energy is minimum when the segmented regions depict
texture statistics similar to prototype models. In contrast to the
pixel-level formulation, our energy cannot be broken down as a
sum of potential over image sites and a given site contributes
to the proposed data-driven term through its participation to the
computation of region-level statistics.

The gradient-based minimization of exploits the shape
derivative tools introduced in [25]. In [25], the Gâteau deriva-
tive was applied to a two class image segmentation based
upon matching intensity histograms using Hellinger distance.
The paper is organized as follows. Texture features and the
similarity measure detailed in our previous work [26], [27]
are briefly introduced in Section II. The proposed supervised
segmentation criterion and its differences with classical ones
are detailed in Section III. Its generalization to unsupervised
case is described in Section IV. Experiments and comparisons
with classical variational approaches are reported and discussed
in Section V and conclusions are outlined in Section VI.

II. TEXTURE BASED SIMILARITY MEASURE

Many texture features have been proposed in the literature.
Co-occurrence matrices, wavelet frames, quadrature mirror
filter-banks and Gabor filters have been shown to be the most
effective descriptors [28]. But none of these feature classes
outperforms the others for all texture categories. Each feature
computed for certain parameters may emphasize particular tex-
ture characteristics (scale, direction, smoothness, periodicity,
etc.). Here as described in our previous work [26] dealing with
supervised texture discrimination, we use a large set of various
features computed for different parameters and we select the
most discriminating ones. The following set of textural filters
is considered:

• 121 co-occurrence distributions with parameters
, where and

Fig. 5. Segmentation of the two-class mosaic (Fig. 1) by the proposed method.

refers, respectively, to the horizontal and vertical
displacement;

• 50 distributions of the magnitude of Gabor filter responses,
computed for six radial frequencies , and
five orientations: ;

• 48 distributions of the energy of the image wavelet packet
coefficient computed for different bands (we used different
wavelet types: Haar, Daubechies and Coiflet).

Formally, we characterize each texture sample by a set of the
first-order statistics of its responses to the predefined filters

. Note that accounts both for given filters and
associated parameterizations. Subsequently, index will refer
to a given filter category with some parameterization. Given ref-
erence texture statistics , the similarity mea-

sure between texture sample and the tex-
ture class indexed by is defined as

(4)

where is the Kullback–Leibler divergence [29] and weights
verify . The estimation of the weights

can be issued from the maximization of a supervised margin
criterion detailed in [26].

III. LEVEL SET SEGMENTATION

We detail in the following the proposed region-level segmen-
tation framework. Regarding the curvature-driven regulariza-
tion criteria and the multiclass image partition constraints,
we use classical functionals detailed in [27]. The numerical im-
plementation relies on is based upon a level set setting [30]. The
proposed approach relies on the definition of the data-term
at region-level according to the similarity measure be-
tween reference statistics and region statistics

:

(5)

where, and is the marginal
distribution of the image response to the filter indexed by es-
timated on the region .

Using the Gâteaux derivative introduced in [25], the evolu-
tion equations of the level set functions denoted by [27]
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associated to the energy are the following (see Appendix A
for details):

Global term

Local term

(6)

where is the filter response indexed by (for instance,
for a co-occurrence matrix with parameters ,

and
where is the gray value at pixel and the total gray
level number), is a centered Gaussian kernel with standard
deviation and denotes the convolution symbol.

In contrast to classical functionals related to classical func-
tionals described in Section I (2) which are of the form

(7)

the evolution equations related to the proposed method involve
a global term and a local one.

• The global term : this term is always
negative or null. It is a contraction force that reduces
the size of heterogeneous regions: the lower the het-
erogeneity, the lower the force. This term will avoid
to converge towards a local minimum that doses not
give regions with the correct statistics mainly on mul-
timodal features (see videos http://public.enst-bretagne.
fr/rfablet/Demos/demoIKaroui/classic.avi and http://
public.enst-bretagne.fr/rfablet/Demos/demoIKaroui/pro-
posed.avi)

• The local term

this term compares locally the feature values at each pixel
. This term can be positive or negative and tends to locally

fit region statistics to the prototype statistics. The contribu-
tion of each descriptors is weighted by .

We use as level set functions signed distance
functions. The initial segmentation is computed from a moving
window approach: each image pixel is characterized by a set

of features estimated on an analysis window centered at that
we denote by and the initial pixel-based classification is
given by

label(s) (8)

where is the set of distributions
associated to the different filters which are estimated locally
within the neighborhood of pixel .

IV. UNSUPERVISED TEXTURE SEGMENTATION

For the unsupervised case, proposed approaches are also usu-
ally based upon energy criterion evaluated as a sum of punctual
statistics [20], [31]. The most popular criteria are the entropy
or mutual information maximization [20], [31] and likelihood
maximization alternating class feature estimation and segmen-
tation [13], [17], [32]. Here, we use the region based similarity

to define an unsupervised segmentation criterion that con-
sists in the maximization of the similarity measure between
regions

(9)

For the unsupervised case two strategies might be considered:
a uniform prior, , or iterations between region-

level image segmentation and the estimation of weights
from segmented regions.

We showed (Appendix B) that the proposed criterion allows
to separate the image into homogeneous regions. Using the
Gâteau derivative tools, the evolution equations associated with
the proposed criterion in (10), shown at the bottom of the page.
These evolution equations, involve a global term and a local

one.
• Global term : the

larger the dissimilarity between the region and the others,
the larger the contraction force: this term will penalize
the expansion of the regions when the dissimilarities in-
crease. This global constraint does not appear in classical
approaches [20], [31].

• Local term:

. This term is quite similar to those of clas-
sical approaches. It compares punctual pixel likelihoods
for the different regions: it tends to assign the pixel to the
region with the maximal likelihood.

(10)
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Fig. 6. Test images: I1, I2, I3, and I4 are, respectively, 2, 3, 5, and 16 Brodatz mosaics, I4 is a real sidescan image and I6 and I7 are, respectively, natural zebra
and leopard images.

Here we consider the fully unsupervised case: neither the class
number nor the class prototypes are known. For the estimation
of the number of classes we use the method proposed in [33]
and [34] based upon a two-term criterion: the intracluster dis-
tances and an entropy term. In our case, the intraclass distance
is evaluated according to our similarity measure .

V. RESULTS AND DISCUSSION

We report segmentation results on four Brodatz texture mo-
saics [21] with different complexities and on three natural im-
ages. The first image, denoted by I1, is a mosaic involving one
homogeneous Brodatz-texture (D32) and a coarse Brodatz-tex-
ture (D20). The second image I2 is composed of three Brodatz
textures (D34, D3, and D16). The third image I3 is a five-texture
mosaic with histogram equalized Brodatz-textures (D77, D84,
D55, D53 et D24). The fourth image I4 is a more complex mo-
saic composed of sixteen histogram equalized Brodatz textures
(D3, D4, D5, D6, D9, D21, D24, D29, D32, D33, D54, D55,

D57, D68, D77, and D84) and is denoted by I3. The latter two
images were used in a comparative study carried out by Randen
et al. [28] to evaluate several feature selection methods. Image
I5 is a real sidescan sonar image composed of three seafloor
types [35]: a coarse texture of rock, an homogeneous class of
mud and oriented texture associated to sand ripples (Fig. 6). The
last images I6 and I7 are, respectively, a zebra and a leopard
image often used in previous works [11], [14], [17], [18].

For the supervised case, for each test image, we first
select the most discriminant feature statistics keeping
only features that account for more than 90% of the
total weight sum. For image I1, three Gabor energy
based distributions computed for parameters

are selected,
for image I2, only two Gabor energy based distributions com-
puted for parameters
are selected with weights 0.45 and 0.42. For image I3,
two co-occurrence distributions computed for
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TABLE I
SEGMENTATION ERROR RATES (%) COMPUTED FOR THE PROPOSED AND

CLASSICAL APPROACHES: MEAN AND STD ARE THE MEAN AND THE

STANDARD DEVIATION ERROR RATE

and a Gabor filter computed for parameters
are selected with weights 0.4, 0.3

and 0.1. For image I4, the segmentation is carried out using
only three co-occurrence matrices computed for parame-
ters: with weights 0.25,
0.25, and 0.4. For image I5, the selected features are the
two co-occurrence distributions computed for parameters

. For all the images, the selection
step allows a drastic decrease in the dimension of feature space:
an average of three selected features among the initial set of
219 features.

A comparative analysis in terms of classification error rates
is reported in Table I. Several approaches are considered.

• The best segmentation results reported in the comparative
study on texture feature discrimination power carried out
by Randen et al. in [28]. These results are denoted by
Randen.

• Classical variational approaches for which we use the en-
ergy form proposed by the authors but the texture features
issued from our selection/fusion step.
— The Heiler et al. [19] method applied for three different

sizes of square neighborhood, namely 3, 9, and
33. This method is denoted by .

— A variational level set setting, denoted by , using a
pixel based data-driven energy term (2) with

, where is the distribution of tex-
ture response to the filter indexed by . This varia-
tional setting is the one exploited in [11] and [14]–[17]
but with other texture features.

— The proposed region-based variational setting, denoted
by for the supervised case and for the unsuper-
vised case with .

1) Performance of the Proposed Similarity Measure: Im-
ages I3 and I4 were used in [28] for the evaluation of a variety
of texture feature selection methods. In [28], Randen et al.
perform a comparative study on several filtering approaches
including Laws masks, ring/wedge filters, dyadic Gabor filter
banks, wavelet transforms, wavelet packets, wavelet frames,
quadrature mirror filters, discrete cosine transform, eigenfilters,
optimized Gabor filters, linear predictors, and optimized finite
impulse response filters and nonfiltering approaches that are
based upon co-occurrence and autoregressive features. We
obtain better results than the most effective methods reported in
[28]. For image I3, the obtained error rate is 4.9% whereas the
best error rate reported in [28] is about 8.2% and the average
classification error rate for all compared methods is about

Fig. 7. Gabor energy based distributions for textures of image I1 (texture D32
in red and D68 in blue).

Fig. 8. Segmentation of image I1. (a) Classical approach �� �. (b) Proposed
method �� �.

Fig. 9. Segmentation of image I3. (a) Classical method �� �. (b) Proposed
approach �� �.

23.6%. For image I4, the error rate for the proposed segmen-
tation is about 14% and it is about 38% for the best method
evaluated in [28] and the average error rate is 53.8% for this
image. These results stress the relevance of the proposed sim-
ilarity measure fusing various texture feature types. They also
motivate the use of the feature sets issued from this selection
step in the implementation of the different variational segmen-
tation settings. More examples are given on our previous work
[26].

2) Region-Based Versus Classical Approach : Using
the same texture descriptors, segmentation results reported in
Table I show that the proposed region-level setting significantly
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Fig. 10. Segmentation of image I4. (a) Original image. (b) Classical method �� �. (c) Proposed approach �� �.

outperforms the classical methods : the mean misclassifica-
tion rate is about for the proposed method
where it is of for . significantly out-
performs in all cases, except for image I3. Significant im-
provements are brought in all cases compared to , es-
pecially 2.7% versus 11% and 13.9% versus 63% for images
I1 and I4, respectively. For image I3, the classical pixel-level
variational scheme slightly outperforms the proposed ap-
proach (3% versus 4.9%). For this special case, image textures
are well seperated in the feature space. In such case, the max-
imization of the pixel-level likelikood performed by the clas-
sical method may achieve a sligtly better detection of the region
boundaries than the region-level scheme which seeks to repro-
duce region feature statistics similar to the reference class sta-
tistics. In contrast, when texture classes partially overlap in the
considered feature space such as for images I1 and I4, the former
strategy is misleading and poor segmentation performances may
be achieved. For image I4, the misclassification rate is greater
than 60% for where the region-level criterion reachs a
satisfactory misclassification rate of only 13.9%. In the case of
image I1, even if the mosaic is simple and the image contains
only two textures, the classical method fails in discriminating
between textures (Fig. 8) because of the overlap between the
selected texture descriptors (Fig. 7).

3) Region-Based Versus Heiler et al. Approach : In con-
trast to classical methods based upon punctual pixel likelihoods

, Heiler et al. approach exploits pixel neighborhood [19].
Segmentation results show that this method can be more rele-
vant than if we use optimal analysis window size: the mean
misclassification rate is about for with
where it is of for . However, results issued
from greatly depend upon the choice of the scale or window
parameter: the mean misclassification rate is about
for with and it is about for .
Great values of this scale parameter produce better estimates of
the texture statistics. But, they can also lead to undesirable sit-
uations where multiple texture classes are present in a common
window [Fig. 4(c)]. In contrast, smaller analysis windows are
less likely to contain multiple classes. But, the limited coverage
may, however, produce misleading features [Fig. 4(a)].

Fig. 11. Segmentation of image I5. (a) Classical method �� �. (b) Proposed
approach �� �.

The proposed variational region-level segmentation circum-
vents the problem related to the choice of the neighborhood
size and accurately detects region boundaries (see Fig. 5) and
significant improvements are brought in all cases compared to
method , especially 2.7% versus 6%, 0.9% versus 4.6%, and
7.5% versus 13% for images I1, I2, and I5, respectively.

Overall the performances of the two pixel-level approaches
greatly depend upon the potential overlapping of the distribu-
tions of the considered feature and on the scale of the texture
patterns. In contrast, the proposed region-level approach cir-
cumvent these limitations and satisfactory results are reported
in all cases.

4) Robustness to Initialization: The proposed variational
region-level segmentation is robust to initialization as illus-
trated in Figs. 12–14, where different initializations for the
segmentation of I2 are considered namely a random initializa-
tion, an initialization with a maximum-likelihood segmentation
using and an initialization according to the
maximum-likelihood segmentation using .
Similar results (classification error rate of about 1%) are ob-
tained in all cases (see http://public.enst-bretagne.fr/rfablet/
Demos/demoIKaroui/Initialization1.avi, http://public.enst-bre-
tagne.fr/rfablet/Demos/demoIKaroui/Initialization2.avi and
http://public.enst-bretagne.fr/rfablet/Demos/demoIKaroui/Ini-
tialization3.avi).

5) Performance of the Unsupervised Criterion: As in the su-
pervised case, the proposed unsupervised region-level method
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Fig. 12. Segmentation of image I2 using the proposed approach with a random
initialization. (a) Random initialization. (b) Region based segmentation (� �

��� ���� iterations), � � ����.

Fig. 13. Segmentation of image I2 using the region-level approach with an ini-
tialization issued from a maximum-likelihood criterion. (a) Using a 3� 3 anal-
ysis window. (b) Region-level segmentation � � ������� iterations), � �

����.

Fig. 14. Segmentation of image I2 using the region-level approach with an
initialization issued from a maximum-likelihood criterion. (a) Using 33� 33
analysis window. (b) Region based segmentation (� � ������ iterations),
� � ����.

is shown to reach good classification performances even com-
pared to classical supervised approaches. For example for the
image I2, the error rate with the unsupervised method is about
1% whereas the average rate is about 5% for classical super-
vised approaches (see Table I). Good resulats were obtained for
the other images (see Fig. 16).

The unsupervised criterion is however more dependent upon
initialization and feature separability than the supervised case.
Regarding the latter, the reference statistics are known and the
method converges toward regions that conform these statistics
regardless of the initialization. In contrast, the unsupervised case
does not exploit any reference statistics and the partition that

Fig. 15. Segmentation of natural images I6 and I7 using the proposed region-
level approach. (a) Segmentation of image I6. (b) Segmentation of image I7.

Fig. 16. Unsupervised segmentation. (a) I3. (b) I6.

Fig. 17. Unsupervised segmentation of I4.

maximizes the dissimilarity between region statistics depends
upon the separability of region in the chosen feature space. For
example, for image I4 (see Fig. 17), only six classes were de-
tected, quite similar textures were grouped:

• D29, D84, D3, and D55;
• D24, D57, D9, D77, and D57;
• D68, D5, and D54;
• D32 and D33.

The segmentation of the mosaic on the six detected classes is
homogeneous and the segmentation rate of the proposed unsu-
pervised segmentation is about 60% (if we consider 16 classes)
which is still satisfactory compared to the classical supervised
approaches (80% for Heiler supervised method using an ana-
lyzing window of 9 9 and pixel-likelihood based approaches
63%).
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VI. CONCLUSION

In this paper, we propose and evaluate a region-level varia-
tional approach for supervised and unsupervised texture-based
segmentation. Texture characterization is issued from nonpara-
metric distributions of their responses to a set of filters. The vari-
ational segmentation consists in the minimization of an energy
criterion defined over the set of image partitions and comprising
two terms: a similarity measure between regions features and
texture models and a boundary based functional that imposes
smoothness and regularity on region boundaries. The proposed
similarity criterion, is generic and permits optimally fusing var-
ious types of texture statistics and dealing with different image
types. For example, in [27], an application to sidescan sonar
images is considered. Experiments were carried out to com-
pare our approach to previous work exploiting variational ap-
proaches [2], [3], [11], [14]–[19]. The following conclusions
can be drawn.

• The proposed method defines an efficient similarity mea-
sure that naturally and optimally fuses a wide variety of
texture features.

• The region-based observation-driven term is more ro-
bust than pixel-level formulation used in the classical
approaches. Existing methods are mainly stated as the
optimization of a criterion evaluating punctual pixel
likelihoods or similarity measure computed within local
neighborhood. These approaches require sufficient dis-
similarity between used feature statistics and need the
choice of the neighborhood size which may have a con-
siderable impact on segmentation accuracy. The proposed
variational setting solves for these two major drawbacks.

In [27], a complementary experimental comparison to Mar-
kovian pixel-level segmentation techniques was carried out for
sonar images. Similar conclusions were drawn on the superi-
ority brought by the variational region-level setting.

We have shown that the proposed region-level scheme could
also be applied to unsupervised image segmentation. The re-
gion-level criterion then consists in the dissimilarity maximiza-
tion between the texture statistics of the different regions. As
perspectives for future work, we may mention that the proposed
method can integrate automatically other texture features, it can
also deal with other computer vision applications such as tex-
tured object tracking or detection, etc.

APPENDIX A
EVOLUTION EQUATION COMPUTATION

Using the shape derivative tools, we want to differentiate the
functional

(11)

The Gâteaux derivative of in the direction of a vector
field is then given by

(12)

Replacing by its expression, we get

(13)

(14)

Theorem [25]: The Gâteaux derivative of a functional of
the type is given by

(15)
where is the shape derivative of , is an

area element and the inward unit normal vector of .
does not depend upon the domain , so its Gâteaux

derivative is null, and we have

(16)

(17)

, so

(18)

The Gâteaux derivative of is

(19)

As does not depend upon the domain , its
shape derivative is null. So, we have

(20)

So

(21)
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Fig. 18. Left: “true” segmentation. Right: random partition.

We have , so we get

(22)

Finally, according to (12), we get

(23)

APPENDIX B
UNSUPERVISED CRITERION

We show that image partition that maximizes (9) corre-
sponds to the “right” segmentation. Without loss of generality
we consider the two-class case, the generalization to multiclass
case is straightforward. Let be the true partition
with statistics and .

For an arbitrarily image partition with
region statistics denoted and denoted

, (see Fig. 18), we have

where For we also have

where . For two class-case, our crite-
rion is the following:

The Kullback–Leibler divergence is convex with
respect to (can easily demonstrated using Jensen in-
equality), so

or can be expressed as follows:

In the same way

So

Similarly, we show that

Finally, our functional can be majored as follows:

The equality is reached for et , i.e.,
and or for and , i.e., and

.
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