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Abstract

To progress in the understanding of the impact of non-linear wave
profiles in scattering from sea surfaces, a non-linear model for infinite
depth gravity waves is considered. This model, termed the “Choppy Wave
Model” (CWM), is based on horizontal deformation of a linear, reference
random surface. It is numerically efficient and enjoys explicit second-order
statistics for height and slope, which makes it well adapted to a large
family of scattering models. We incorporate the CWM into a Kirchhoff
or Small-Slope Approximation and derive statistical expressions for the
corresponding incoherent cross section. We insist on the importance of
“undressing” the wavenumber spectrum to generate a non-linear surface
with a prescribed spectrum. Interestingly, the inclusion of non-linearities
is found to be practically compensated by the spectral undressing process,
an effect which might be specific to the CWM and needs to be investigated
in the framework of fully non-linear models. Accordingly, the difference
between the respective NRCS is rather small. The most noticeable changes
are faster azimuthal variations and a slight increase of the radar returns
at nadir. A statistical analysis of sea clutter in the framework of a Two-
Scale Model is also performed at large but nongrazing incidence. It shows
a pronounced polarization dependence of the distribution of large back-
scattered amplitudes, the tail being much larger in horizontal polarization
and for small resolution cell. Surface non-linearities are shown to increase
the tail of the amplitude distribution, as expected. Less obviously, their
relative impact is found lesser in horizontal polarization. This raises the
question of the actual contribution of non-linearities in radar sea spikes
at nongrazing angles.

1 Introduction

The modeling of electromagnetic wave scattering from sea surfaces has been a
constantly evolving field of research since more than half a century [1], trig-
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gered by a large number of ocean remote sensing applications. For near-nadir
geometry in the upper bands of the microwave regime, radar back-scattering
measurements exhibit very little polarization dependency but some evidences
of frequency sensitivity. Accordingly, the Physical Optics or Kirchhoff approxi-
mation (henceforth referred to as KA) has been invoked to interpret radar back
scatter measurement. At larger but still moderate angles, more elaborate mod-
els must be invoked to account for the polarization dependence, but many of
them are based on local curvature corrections to the KA, which is essentially a
tangent plane approximation (e.g. [2, 3]).

As the scattering models gain in reliability, it becomes all the more crucial to
consider an accurate statistical description of the sea surface. One key issue is
to better take into account the non-linearity of surface waves and the resulting
non-Gaussian heights and slopes distributions. The non-Gaussian features of
the surface distribution have two important consequences. First, they affect the
value of the incoherent NRCS which are usually calculated within a Gaussian
framework. Second, they modify the modeling and interpretation of sea clutter.
The purpose of this paper is to address both issues in a unified framework.

The aforementioned KA scattering solution, as well as other more elaborate
scattering models, directly depends upon the two-points characteristic function
of elevations. In the case of a Gaussian distribution, the characteristic function
can simply be expressed in terms of the correlation function. To incorporate
non-Gaussian effects in scattering calculations, third or fourth order cumulant
functions, which involve the so-called skewness and peakedness functions, must
be considered. These functions are generally unknown and have only been
treated in the limit of Geometrical Optics (GO), by fitting their asymptotic form
around zero with slope distribution ([4]). Ad hoc, rather arbitrary, analytical
expressions have then been assumed for these functions away from zero ([2, 5,
6, 7]). Other attempts have been made to incorporate the geometrical effect
of steep (but non-breaking) waves in approximate scattering models through a
modification of the shadowing function [8] or the facet slope distribution in the
Two-Scale Model [9]. Another approach is purely numerical and consists in a
Monte-Carlo average of the NRCS over a large number of non-linear samples
sea surfaces ([10, 11, 12, 13, 14]). This technique, however, remains essentially
limited to one-dimensional surfaces or small sea patches.

In the last few years, there has been a renewal of interest in Lagrangian
description of sea surface, after the pioneering work of Pierson [15, 16]. This
representation has proved to be advantageous in several respects. It allows fast
and accurate numerical generation of fully two-dimensional sample sea surfaces,
together with the analytical derivation of some statistical properties of the sea
surface. In this framework, the authors recently analyzed a simple non-linear
model [17] for infinite depth gravity waves, referred to as the Choppy Wave
Model (CWM), whose main properties are recalled in section II. It is based
on first-order expansions of particle trajectories in Lagrangian coordinates. At
first order in surface curvature, this representation is found equivalent to other
existing weakly non-linear solutions. Moreover, CWM is numerically efficient
and enjoys explicit second-order statistics. It is thus particularly well adapted
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to the calculation of NRCS with analytical methods involving the two-point
characteristic function (section III and IV). A similar Lagrangian model was
already considered in the framework of a KA approximation [18]. However, a
crucial aspect was seemingly omitted. Indeed, it is essential to consider a pre-
liminary step, which we refer to as the “undressing procedure” of the initial
spectrum (section V). This enables one to generate non-linear waves with a pre-
scribed spectrum and to provide “fair” comparisons between the NRCS from
linear and non-linear waves (section VI). As we will show, changing a linear
to a non-linear model induces only small modification of the magnitude of the
incoherent NRCS. This is due to the undressing effect which partly cancels the
effect of more peaky waves. Yet, a modified azimuthal behavior is obtained,
with an increased directivity. In addition to the analytical tractability of the
CWM for the incoherent NRCS, the numerical efficiency of the model allows
one to simulate a two-dimensional sea clutter for realistic sea surfaces (section
VII). As we will show, the clutter statistics of the CWM exhibit some differences
with respect to the case of linear surfaces. In particular, the occurrence of burst
or “sea spikes” is enhanced at large incidence angles, a phenomenon which is
mirrored by a slower decay of the distribution of field amplitudes. This phe-
nomenon is more pronounced for small resolution cell, where the deviation from
the classical Rayleigh distribution for the field amplitude is very marked, espe-
cially in horizontal polarization. However, the relative contribution of surface
non-linearities to the tail of the distribution is found smaller in horizontal than
vertical polarization, a result which is far from being obvious.

2 The choppy waves model

The terminology of the CWM originates from the choppy aspect of the waves
generated by this technique. The model is not properly new, as it has been used
for years by the computer graphics community.

The CWM is based on a Lagrangian approach and takes into account the
horizontal displacement of particles. Thus it can logically be expressed as an
horizontal deformation of a reference linear surface, instead of vertical one as
most weakly non-linear models do. Assuming a representation of the linear sea
surface as a function z = h(r, t), where r = (x, y) is the horizontal coordinate,
the CWM is obtained by the following transformation:

(r, h(r, t)) 7→ (r̃, h̃(r̃, t)) (1)

where the new coordinates are defined by:

r̃ = r+D(r, t) (2)

h̃(r̃, t) = h(r, t) (3)

The displacement D is the so-called Riesz Transform of the function h:

D(r, t) =

∫
dk i

k

k
eik·rĥ(k, t) (4)
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where

ĥ(k, t) =
1

(2π)2

∫

R2

dr e−ik·rh(r, t) (5)

is the two-dimensional spatial Fourier transform. The transformation (1) im-
plicitly defines a modified process h̃(r̃, t), which has been shown to possess
non-Gaussian height and slope distributions, as well as a modified spectrum. A
complete statistical description of the resulting process has been established in
[17], whenever the reference surface is a stationary centered Gaussian process
and will be partly used in the following.

3 Scattering under the Kirchhoff/Small-Slope Ap-
proximation

3.1 The scattering amplitude

Consider an incident linearly polarized monochromatic plane wave Ei(R) =
eiK0·RE0 impinging on the sea surface at incidence angle θ0 and giving rise to a
scattered field Es above the surface. The geometry of the problem is depicted
on Figure 1.

As usual, a e−iωt time dependence is implicitly assumed. Following the
standard notation, we decompose the wave vectors into horizontal and vertical
components,

K0 = k0 − q0ẑ, K = k+ qẑ, (6)

with q, q0 > 0 and k20 + q20 = k2 + q2 = K2
0 = (2π/λ)2. It is also convenient to

introduce the Ewald vector Q = K − K0 and its components QH = k − k0,
Qz = q + q0. The scattering amplitude in the KA approximation is written:

S(K,K0) =
N(K,K0)

Qz

1

(2π)2

∫

R2

dr̃ eiQH ·̃reiQzh̃(r̃), (7)

where N(K,K0) is a kernel depending on the frequency, the polarization, the
scattering angles and the complex permittivity of the lower medium. The ex-
pression of the kernel can be found for example in the Appendix E of [1].

To calculate the scattered amplitude (7), the idea is to perform a change
of variables r̃ = r+D(r), assuming this change of variables to be univocal (no
loop). This turns the integrand into explicit quantities:

S(K,K0) = N(K,K0)
1

(2π)2

∫

R2

dr eiQH·reiQzh(r)+iQH·D(r)J(r), (8)

where the Jacobian of the transformation is given by:

J(r) =

∣∣∣∣
1 + ∂xDx(r) ∂xDy(r)
∂yDx(r) 1 + ∂yDy(r)

∣∣∣∣
The numerical evaluation of the KA scattering amplitude for a sample sea

surface requires the generation of the processes h(r),D(r) and J(r). These

103



quantities can be generated efficiently by Fast Fourier Transform (FFT). While
a linear surface only necessitates one two-dimensional FFT (2D-FFT), the CWM
requires 5 additional 2D-FFT: 2 for the displacement vector D and 3 for the
Jacobian components (note that ∂xDy = ∂yDx). Altogether, the generation of
a non-linear sample surface for scattering purpose is only 6 times as long as in
the linear case. The validity of the formula (8) is conditioned by the univocity of
the change of variables, that is J(r) > 0. This is not a drastic condition as the
derivatives of D have the same magnitude as the corresponding slope process
and are therefore a few times smaller than one.

The expression (8) of the scattering amplitude can also be used for another
common asymptotic theory, namely the first-order Small-Slope Approximation
(SSA1) of Voronovich [19]. We recall that KA and SSA1 only differ by the
geometrical kernel N(K,K0), which depends solely on the scattering angles and
the complex permittivity. In the following , we will refer to KA-CWM or SSA1-
CWM to designate the KA or SSA1 NRCS in the framework of the CWM.

3.2 Derivation of the incoherent NRCS

The reference linear surface is modeled by a Gaussian stationary process, with
given spectrum (Γ) and correlation function (C). The incoherent NRCS is the
limit of the statistical average

σ(0) =
4π

|A|
(〈

|S|2 − |〈S〉|2
〉)

(9)

for an infinite illuminated area |A|. In the framework of the KA/SSA1 approx-
imation it is given by

σ(0) = 4π

∣∣∣∣
N

Qz

∣∣∣∣
2

Ψ (10)

with

Ψ =
1

(2π)4
1

|A|

∫

A×A

dr̃ dr̃′ eiQH·(r̃−r̃′)
(〈

eiQz(h̃(r̃)−h̃(r̃′))〉 − 〈eiQzh̃(r̃)
〉〈

e−iQzh̃(r̃
′)
〉)

(11)
Performing the double change of variable r̃ = r+D(r) and r̃′ = r′ +D(r′) lead
to

Ψ =
1

(2π)4
1

|A|

∫

A×A

dr dr′ eiQH·(r−r′)
(〈

J(r)J(r′)eiQz(h(r)−h(r′))+iQH.(D(r)−D(r′))
〉

−
〈
J(r)eiQzh(r)+iQH.D(r)

〉〈
J(r′)e−iQzh(r

′)−iQH.D(r′)
〉)

(12)

Since the underlying Gaussian process is stationary, the quantity under brackets
depend only the difference r − r′ and the double integral can be reduced to a
single one:

Ψ =

∫

R2

dr

[〈
eiQz(h(r)−h(0))+iQH.(D(r)−D(0))J(r)J(0)

〉
−

∣∣∣
〈
eiQzh(r)+iQH.D(r)J(r)

〉∣∣∣
2
]
eiQH.r

(13)
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Discarding the quadratic terms in Dx, Dy (which are of the order of the mean
square slope) we may approximate:

J(r) = 1+∇ ·D(r)+ ∂xDx(r)∂yDy(r)− ∂xDy(r)∂yDx(r) ≃ 1+∇ ·D(r) (14)

leading after tedious but straightforward calculations (using the statistical ex-
pressions recalled in the Appendix) to the following expression of the functional
Ψ̃:

Ψ =

∫

R2

dr eiQH·r

[
exp

(
−Q2

z

2
S0

)
F(r)− e−Q2

z
σ2

0F(∞)

]
(15)

where

F = exp

(
−Q2

H

2
S
Q̂H

)(
[1− iQH.∇C]

2 −∆C +
Q2

z

4
S2
1

)
(16)

The functions S0, S1 and S
Q̂H

are auxiliary functions recalled in the Ap-
pendix. They are related to the spectrum Γ of the reference linear surface.

4 Spectral undressing

Following a terminology introduced by [20] we will qualify by “dressed” a spec-
trum which is actually measured experimentally, including non-linearities (h̃).
The “bare” or “undressed” spectrum pertains to the linear surface that underlies
the non-linear process (h). The dressed spectrum has a richer high-frequency
content that the undressed one. One of the major difficulties in using non-linear
models based on transformation of a reference process is to control the dressed
spectrum at high frequencies. For this, it is necessary to rely on a transfor-
mation from undressed to dressed quantities, an equation which we will call a
“dressing formula”. In the following we will write with a tilde superscript any
function referring to a dressed quantity. Whenever the reference linear surface is
a stationary Gaussian process, the transformed surface after the CWM is again
stationary but non-Gaussian, with power spectrum Γ̃:

Γ̃(k) =
1

(2π)2

∫

R2

dr eik·r (γ(r;k)− γ(∞;k)) , (17)

where

γ(r;k) =

[−S0

2

(
(1− ik · ∇C)2 −∆C

)
+

S2
1

4

]
e−

k
2

2
Sk (18)

Again, the functions S0, S1 and Sk are auxiliary functions recalled in the Ap-
pendix. They are related to the undressed spectrum Γ of the reference linear
surface. Note that γ is not a true correlation function, but only a convenient
auxiliary function. As it depends on the k variable itself it is not the Fourier
transform of the spectrum Γ̃. We note in passing that the actual dressed cor-
relation function does not enjoy a simple analytical expression. The undressing
procedure, i.e. the extraction of the original spectrum Γ from this relation, can
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be realized efficiently by an iterative procedure (see section 3.3 of [17] for the
details). In the case of anisotropic spectra, it is important to note that both
the omnidirectional curvature and spreading functions must undergo simulta-
neously the undressing procedure. We will here limit the study to spectra with
a second harmonic:

Γ̃(k) =
B̃(k)

2πk4
(1 + ∆̃(k) cos(2ϕk)), (19)

where B̃(k) is the omnidirectional curvature, ∆̃(k) the spreading function and
ϕk the azimuthal angle with respect to the wind direction. Assuming a similar
form for the undressed spectrum with some other quantities Γ(k), B(k) and
∆(k), one can define the curvature transfer function (CTF) and the spreading
transfer function (STF) by:

CTF (k) =
B(k)

B̃(k)
, STF (k) =

∆(k)

∆̃(k)
(20)

Figures 2 and 3 show the curvature and spreading transfer function for a di-
rectional Elfouhaily spectrum [21]. As can be seen, the effect of undressing is
very pronounced for the spreading function at high wave numbers, but remains
within a few percent correction for the omnidirectional curvature. This rel-
atively small effect might be due to the specific properties of the CWM and
should not be understood as evidence that the spectral undressing procedure
need not be considered. Today, the question of undressing effect according to a
fully non-linear model is an open problem.

4.1 Scattering diagrams

The incoherent NRCS in the KA-CWM approximation has been implemented
after formula (15) for a directional Elfouhaily spectrum. An accurate evaluation
of this expression is non-trivial and requires the use of polar coordinates and
special functions (see the Appendix). For a fair comparison with the linear
case, the spectrum has been preliminarily undressed. In the following we will
denote simply by KA the Kirchhoff NRCS calculated for a linear surface with a
prescribed spectrum and KA-CWM the Kirchhoff NRCS for a non-linear surface
with a dressed spectrum identical to the prescribed spectrum.

The most notable change of the KA-CWM with respect to KA is a tilt of
the angular dependence of the exponential exp(−Q2S0), where the factor Qz

is replaced by Q. The main consequence is to accelerate the damping effect of
the exponential as one leaves the specular direction. This is, however, partly
compensated for by the undressing of the spectrum, which makes the input
structure function S0 actually smaller than the one used under the linear as-
sumption. Altogether, this appears to be a subtle compensation effects. Figures
4 and 5 display the upwind unpolarized monostatic NRCS as a function of the
incidence and azimuth angle for the KA and KA-CWM. The diagrams in the
incidence plane show little difference between the two models for a wind speed
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of 7 m.s−1, with a maximum variation of the order of 1 dB. Note, however,
that the small difference (about half dB) observed may result in important bias
when it comes to the estimation of the mean square slope from a Geometrical
Optics fit. Moreover, even if the azimuthal variation amplitude of the NRCS
is reduced in the KA-CWM, the azimuthal diagram (figure 5) shows a stronger
sensibility of the NRCS to the wind direction, in the sense that the angular
variation rate is increased. These observations are consistent with the afore-
mentioned property of undressing, which affects essentially the directionality of
the spectrum but not its magnitude, even for light winds.

For multiscale surfaces such as the sea surface in the microwave regime, it is
well known that the Physical Optics approximation is an incomplete theory, as
it is unable to account for the diffraction by small ripples and the polarization
dependence. While the Physical Optics is sufficiently accurate at small angles,
the need for a unified theory is crucial at higher scattering angles. Traditionally,
one resorts to a Two-Scale Model (TSM) to incorporate the effects of both
large scale tilting and small-scale Bragg scattering. In the TSM, the surface is
represented by a superposition of a large- and small-scale processes, respectively
whose power spectra are the restriction of the surface spectrum to its low- and
high-frequency content, respectively. In the traditional TSM, the incoherent
NRCS writes as a superposition of the Geometrical Optics (GO) cross-section
of large scales and a Bragg cross-section in the local reference plane of the tilted
rough facets, average over the distribution of facet slopes. The separation scale
is usually set around the Bragg frequency QH . The arbitrariness of this cut-off
has been for a long time an issue of the TSM. Recently, it was shown that an
improved TSM based on a combination of the GO and a tilted SSA1 (rather
than GO and a tilted Bragg) is quasi insensitive to the cut-off. The model was
termed GO-SSA [22].

The adaptation of a TSM to non-linear surfaces is problematic in view of
the hydrodynamic modulation of small- by large-scales which does not allow to
separate the scales. For this reason we did not succeed in deriving a statistical
formula for the NRCS in the GO-SSA model for CWM. However, tilting effects
can be re-introduced in the framework of Monte-Carlo averaging over rough
facets, as will be done in the next section for the clutter analysis.

5 Sea clutter under the Two-Scale Model

Even through the CWM might be less accurate than existing higher-order non-
linear theories, a big asset of the model is its numerical efficiency. This makes
it possible to generate realistic sea surfaces with ordinary numerical facilities.
One can thus describe the non-linear wave interactions over the full range of
scales, including the peak waves and the short gravity waves. We have used this
possibility to simulate the sea clutter in L band as it can for instance be observed
on a RAR image or in the temporal fluctuation of the cross-section measured
over a single small patch of sea as was done in [23]. The reason for choosing the
L band (1.3 GHz) is the possibility to consider sample surface larger than a few
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peak wavelengths and thus the ability to take into account the hydrodynamic
modulation of small waves by larger waves. Sample surfaces of 220 m × 220
m by a wind speed of 11 m/s have been generated with a sampling rate of 3
cm, which sets the shortest wave to 6 cm. For this, the numerical generation
technique described in [17] has been applied to a directional Elfouhaily spectrum
with preliminary undressing. Every pixel of the image can be simulated by
associating a back-scattering cross-section to every small patch of the surface.
This can be realized by means of a tapered, moving incident beam. Specifically,
we have used the technique developed in [24] to calculate the cross-section of
deterministic rough surface illuminated by Gaussian beams, in the framework
of Kirchhoff-like scattering models. The KA-CWM or SSA1-CWM scattering
amplitude for a finite illumination is given by

S(K,K0) = N(K,K0)
1

(2π)2

∫

R2

dr eiQH·reiQzh(r)+iQH·DJ(r)g(r)dr, (21)

where g is a Gaussian window which limits the area of illumination. This expres-
sion was shown to be accurate at non-grazing incidence as soon as the footprint
is a few times larger than the incident wavelength. The Gaussian window has
been regularly translated and re-centered over every cell of the surface, to sim-
ulate the contribution of every elementary patch of the surface. The footprints
of the translated beams overlap in such a way that the total illumination on the
surface is quasi-uniform. We have gradually set the standard deviation of g to
0.62, 1.25 and 2.5 m, so that every single beam practically isolates resolution
cells of 2.5, 5 and 10 m diameter, respectively. We have not investigated the
grazing regime, which necessitates very large footprints and is numerically too
demanding.

For simplicity, the cell is assumed to be square, even though range resolved
cells are usually much wider in the azimuthal direction. We do not, however,
claim to simulate a realistic SAR image which is distorted by several artifacts
linked to the Doppler processing (essentially velocity bunching) and cannot be
modeled in such a simple manner. Our simulation is more relevant in the context
of a RAR image or to model the time series than can be obtained from the echo
of a unique resolution cell (assuming that the temporal fluctuations of a single
cell are statistically identical to the spatial variations of many different cells in
a larger footprint).

For large angles, it is well known that the radar return exhibits a strong
polarization dependence, making KA irrelevant. On the other hand, SSA1 does
not comply to the tilt-invariance property of the scattering amplitude ([1]) and
is not adapted to fully developed sea surfaces, which can have non-negligible
local facet slopes, especially at large scattering angles. This results in an over-
estimation of the polarization ratio. To introduce a nontrivial polarization de-
pendence, it is necessary to account for the facet tilting in the expression of
the SSA1-CWM. This can easily be done by replacing the geometrical kernel
in front of the Kirchhoff integral (21) by the Bragg kernel B associated to the
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reference frame of the rough facet of normal n̂:

N(K,K0) → B(K,K0; n̂) (22)

The expression of the tilted Bragg tensor can be found e.g. in [22]. In the
numerical simulations n̂ is taken as the normal vector of the mean facet inside
the pixel. As a consequence, the distribution of such normal vectors depends
on the size of the resolution cell. The resulting scattering model will be termed
TSSA1-CWM (“T” for “tilted”).

Figures 6 displays the image that can be obtained by calculating the el-
ementary back-scattering cross-section in the TSSA1-CWM model (including
undressing and tilting kernel) at an incidence angle of 70 degrees for the HH
polarization. The elementary cross-sections have been normalized by their mean
value over the entire footprint. In the top panel, the color scale has been thresh-
olded to 4.5 times the average value to obtain a better contrast. In the bottom
panel, the color scale ranges from 4 to 6.5 times the average value to better
evidence the bright spots, corresponding to occurrence of large echo usually re-
ferred to as “sea spikes”. The modulation by the large scales is visible on the
top panel through the alternating bright and dark regions. The occurrence of
sea spikes is visible on the bottom panel, where only extreme values have been
retained. As expected, the frequency of sea spikes is increased in the CWM with
respect to the linear surface model. A similar but less pronounced behavior is
obtained for the VV polarization.

To quantify the enhancement of sea spikes, it is instructive to look at the
clutter statistics. This statistics is relevant to model the temporal statistics ob-
tained by measuring with a fixed radar the varying cross section over a small sea
patch (such as in the experiment of [23]) or the spatial statistics of a RAR image
with the same pixel size. Following the standard methodology, we will consider
the probability distribution function (p.d.f) of scattered amplitude rather than
intensity. In this variable, the distribution is known to be Rayleigh under the
assumption of a Gaussian field. Figure 7 and 8 show the p.d.f of the normalized
amplitude u =

√
σ(0)/〈

√
σ(0)〉 in semi-logarithmic axes for the different pixel

sizes and polarizations at the same incidence of 70 degrees. The oscillations
observed at the larger resolution cell is due to the limited occurrence of large
amplitudes. Smoother distributions would require a large number of sample
surfaces, which could not be achieved within a reasonable computational time.

The Rayleigh distribution p(u) = u/σ exp(−u2/(2σ2)) is given for reference,
with a parameter σ =

√
2/π providing a mean value of 1. In the case of lin-

ear surfaces and vertical polarization (Figure 7), the p.d.f is increasingly well
approached by a Rayleigh distribution as the pixel size is augmented. The
TSSA1-CWM model, however, exhibits a distribution of amplitudes with larger
tail, which favors the occurrence of large amplitudes, especially for small cell res-
olution. In horizontal polarization (Figure 8), the deviation from the Rayleigh
distribution is found much larger for both the linear and CWM sea surface
model. As expected, the amplitude distribution in the TSSA1-CWM has a
slower decrease than in the corresponding linear case, but the relative difference
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between the two distributions is found smaller than for the vertical polarization.
This seems to indicate that the most important contribution to the heavy tail
of the field amplitude is the tilt-variability of the HH Bragg-Kernel, which is
much greater than the VV one. This behavior is consistent with the experi-
mental clutter data presented in [23] in similar conditions (their figure 10), at
least qualitatively. A more quantitative criterion is the probability of exceed-
ing some given threshold, say three times the mean value, for the scattering
amplitude. Numerical integration of the p.d.f for the finest resolution (2.5 m)
yields an exceeding probability of 0.0016 (linear surfaces) and 0.0026 in vertical
polarization versus 0.013 and 0.015 in horizontal polarization. This supports
the counter-intuitive idea that the relative enhancement of the tail of the distri-
bution is weaker in horizontal polarization. This raises the question of the true
contribution of non-linearities in radar spikes at large but nongrazing angles.

Numerical simulations on weakly non-linear one-dimensional surfaces after
the Creamer model have been performed recently with a rigorous scattering
model [13] at large and grazing angles. The results obtained at various bands
and resolutions also suggest a pronounced effect of polarization on the clutter
distribution, with a much larger tail in horizontal polarization. Regarding the
impact of non-linearities, it was also observed that the effect of “turning off”
the non-linearities (their Figure 11) is stronger in vertical than horizontal polar-
ization, as far as large amplitudes are concerned. We only compare qualitative
results, as the cited test case addresses a different configuration (X band, 5 m/s
wind speed at 85 incidence angle, one-dimensional Creamer surfaces with a rig-
orous EM solution). A definitive answer to the true origin of large amplitude
in the horizontally polarized clutter will only be given by running a rigorous
electromagnetic code on a fully non-linear 2D-surface model, a problem which
seems for the moment to be a very difficult task.

Clutter statistics are often fitted with K- or Weibull distributions, which
exhibit such heavy tails. The cumulative function F of the latter is of the form:

F (u) = 1− exp(−C uα) (23)

To characterize the tail of the distribution, it is useful to use the so-called
Weibull-paper, in which the above function transforms to a straight line of
slope α:

v = log10(u) (24)

w = log10

(
ln

1

1− F (u)

)
(25)

Figure 9 shows the cumulative distribution in Weibull paper for the linear and
CWM surface in HH polarization. In this representation, all distributions are
found to be linear at small and intermediate values but grow sub-linearly at the
very end of the distribution, which implies a tail decaying slower than Weibull
distributions. This result is somewhat different from the findings of [13], where
a good match was found with the latter law. This difference might be due either
to an inaccuracy of our combined TSSA1-CWMmodel or to the specificity of the
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regime in consideration (1D versus 2D results, X-band versus L-band, grazing
versus moderate angles). The difference between the linear and CWM model is
more pronounced for small amplitudes. Again, this seems to indicate that the
main source of large amplitude in HH polarization is the tilting effect rather
than the non-linear model. All these issues remain to be investigated.

6 Conclusion

The CWM is a non-linear surface model based on horizontal deformation of a
reference linear surface. This defining property makes it adapted to the calcula-
tion of the scattered amplitude in the framework of analytical scattering theories
such as the Kirchhoff and Small-Slope Approximation. A statistical formula for
the incoherent NRCS has been derived, involving the spectrum and correlation
function of the reference Gaussian surface. We have insisted on the importance
of undressing the spectrum before any non-linear transformation is applied to
the latter, to avoid the introduction of artificial high-frequency components in
the non-linear surface. The main outcome of the numerical trials is that the in-
troduction of the CWM in the KA/SSA1 framework at moderate incidence has
a limited impact on the magnitude of the back-scattering cross-section, but a
pronounced effect on the azimuthal behavior of the NRCS. The CWM combined
with a Two-Scale Model has been applied to the simulation of two-dimensional
sea clutter in L band at large incidence angles. The main observations can be
summarized as follows:

• the tail of the back-scattered amplitude distribution is much larger in
horizontal polarization and close to the reference Rayleigh distribution in
vertical polarization.

• the deviation to the Rayleigh distribution strongly depends on the small-
ness of the resolution cell.

• the relative enhancement of the tail of the distribution due to the presence
of surface non-linearities is stronger in vertical than horizontal polariza-
tion.

The present study is far from being complete. It is well known that the contri-
bution of hydrodynamic non-linearities to the Doppler echo is very important,
even through less visible on the NRCS. The investigation of Doppler signatures
in the framework of the CWM is underway and is left for further study.
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Appendix

6.1 Correlation and structure functions

In the following we denote û = u/u the unitary vector which gives the direction
of a vector u. The correlation function C is defined by:

C(r) =

∫
eik·rΓ(k)dk (26)

The structure function S0 is defined by:

S0(r) = 2(C(0)− C(r)) (27)

The Gilbert transform of the correlation and structure functions are defined by:

C1(r) =

∫
eik·rk Γ(k)dk (28)

S1(r) = 2(C1(0)− C1(r)) (29)

The Riesz transform of the correlation function is defined by:

CR(r) =

∫
eik·r(ik̂) Γ(k)dk (30)

We also introduce

Sû(r) = 2

∫

R2

dk′(û · k̂′)2Γ(k′)[1− eik
′.r] (31)

The following relations are consequences of standard properties of the charac-
teristic functions of Gaussian processes:

〈h(r)h(0)〉 = C(r) (32)

〈[h(r)− h(0)]2〉 = S0(r) (33)

〈exp(iQz[h(r)− h(0)]〉 = exp(−Q2
z/2 S0(r)) (34)

〈(Qh ·D) exp(iQz[h(r)− h(0)]〉 = −iQzCR(r) exp(−Q2
z/2 S0(r)) (35)

〈(∇ ·D) exp(iQz[h(r)− h(0)]〉 = −iQzS1(r) exp(−Q2
z/2 S0(r)) (36)

6.2 Spectra with two azimuthal harmonics

In the case of spectra with two azimuthal harmonics, the correlation functions
and related Kirchhoff integrals can be efficiently computed with the help of
Bessel functions. Consider a spectrum of the form:

Γ(k) = Γ0(k) + Γ2(k) cos(2ϕk), (37)
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where ϕu indicates the azimuthal angle of a vector u with respect to the wind
direction. Then the correlation function has also two harmonics:

C(r) = [Γ0]0(r)− [Γ2]2(r) cos(2ϕr), (38)

where [f ]n denotes the Bessel transform of the radial function f(k):

[f ]n(r) = 2π

∫
∞

0

f(k)Jn(kr) k dk (39)

Similarly we have (omitting the r variable for simplicity):

∆C = −[k2Γ0]0 + [k2Γ2]2 cos(2ϕr) (40)

C1 = [kΓ0]0 − [kΓ2]2 cos(2ϕr) (41)

With some algebra we obtain also:

Q̂H.∇C = − cos(ϕQH
ϕr)[kΓ0]1 (42)

−1

2
[([kΓ2]1 − [kΓ2]3) cos(ϕr − ϕQH

) cos(2ϕr) + (([kΓ2]1 + [kΓ2]3) sin(ϕr − ϕQH
) sin(2ϕr)]

S
Q̂H

=
1

2
([Γ0]0 − [Γ0]2) cos

2(ϕQH
− ϕr) +

1

2
([Γ0]0 + [Γ0]2) sin

2(ϕQH
− ϕr) (43)

−1

2
[Γ2]2 cos(2ϕr) +

1

4
([Γ2]0 + [Γ2]4) cos(2ϕr − 2ϕQH

) cos(2ϕr) +
1

4
([Γ2]0 − [Γ2]4) sin(2ϕr − 2ϕQH

) sin(2ϕr)
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117



10
−1

10
0

10
1

10
2

10
3

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

k (rad/m)

C
T
F
(k
)

U10 = 5 m.s
−1

U10 = 7 m.s
−1

U10 = 9 m.s
−1

U10 = 11 m.s
−1

U10 = 13 m.s
−1

U10 = 15 m.s
−1

Figure 2: Curvature transfer function for the curvature at various wind speeds
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Figure 3: Spreading transfer function for the spreading at various wind speeds
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Figure 5: Azimuthal NRCS at 20 degrees in C band under the KA and KA-
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Figure 6: Image of sea clutter obtained in the tilted SSA1 (left) and TSSA1-
CWM (right) models in HH polarisation. Each pixel represents a 2.5 m x
2.5 m patch on the surface. The incidence angle is 70 degrees. The top and
bottom panel present the same image with different colorscales, to evidence the
modulation by large waves (top panel) and the increased occurrence of sea-spikes
in the CWM (bottom panel)
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Figure 7: Probability density function of the back-scattering amplitude (normal-
ized by its mean) in VV polarisation over the different resolution cells (upwind,
L-band, 70 degrees incidence, wind speed 11 m/s). Here and in the following
figures, the numbers in the legend (2.5 m, 5 m, 10 m) indicate the resolution
cell.
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Figure 8: Probability density function of the backscattering amplitude (normal-
ized by its mean) in HH polarisation over the different resolution cells (upwind,
L-band, 70 degrees incidence, wind speed 11 m/s).
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