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Projection of future spatial distributions of marine populations is a central issue for ecologists and managers. The measure of projec-
tion uncertainty is particularly important, because projections can only be useful if they are given with a known and sufficiently high
level of confidence. Uncertainties can arise for the observation process, conceptual and numerical model formulations, parameter
estimates, model evaluation, appropriate consideration of spatial and temporal scales, and finally the potential of adaptation of
living systems. Comprehensive analyses of these multiple sources of uncertainty have not been carried out so far, and how these uncer-
tainties are considered in current studies has not yet been described. To analyse how these different sources of uncertainty are cur-
rently considered in marine research, we did a survey of published literature during the period 2005–2009. From the 75 publications
selected, we calculated how frequently each type of uncertainty was considered. We found that little attention is given to most sources
of uncertainty, except for uncertainty in parameter estimates. As a result, most current projections are expected to be far less reliable
than usually assumed. The conclusion is that, unless uncertainty can be better accounted for, such projections may be of limited use,
or even risky to use for management purposes.

Keywords: complex adaptive systems, conceptual models, model evaluation, multiple hypotheses, scales, spatial distribution, statistical
modelling.

Introduction
Anticipating the effects of global change—including climate
change—on ecosystems has become of primary importance.
More specifically, describing and understanding the factors that
currently affect the spatial distribution of marine populations is
a central issue for marine ecologists. Therefore, projecting how
these spatial distributions may change in the future is of chief
concern for managers, conservationists, and human communities
that depend on marine resources. The term spatial distribution can
be used to define the geographical extent of a marine population,
as well as the abundance of the individuals (or the density) within
these geographical boundaries. Here, we indiscriminately refer to
these two meanings.

Predictive models of spatial distribution must provide some
quantification of the uncertainty associated with their projections.
The measure of uncertainty is particularly important, because pro-
jections can only be useful if they are given with a known and suf-
ficiently high level of confidence (equivalent to a sufficiently low
level of uncertainty). Very uncertain projections are expected to
be far less informative and useful than less uncertain ones.

We briefly present the major sources of uncertainty when pro-
jecting spatial distributions of marine populations. These are
related to the observation process, conceptual and numerical
model formulations, parameter estimates, model evaluation,

appropriate consideration of spatial and temporal scales, and
finally the potential for adaptation of living systems. In predictive
models, uncertainty can arise from all these sources, during the
successive steps of modelling (Figure 1). The combination of the
uncertainties at each of these steps determines the degree of con-
fidence we can have about which projections will bear some
relationship with the future state of the world (the “question
mark” in Figure 1).

Observation uncertainty
Our perception of the spatial distribution of marine populations,
and of the factors that can control it, is uncertain and depends on
the observation process. There are no direct means to access the
real world, and the way we perceive the marine world is filtered
through the lenses of observation methodology, such as obser-
vation instruments (e.g. trawl, plankton net, hydroacoustics,
video, . . .), sampling strategy (e.g. research survey, commercial
catch data, market sampling, historical collections), and sampling
design (number of samples, replicates, spatial and seasonal distri-
bution of samples, etc.). Because of the limitations of the obser-
vation methodology and because there is no single method to
observe the marine world adequately, our representation of this
world is necessarily incomplete and uncertain.
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Conceptual uncertainty
For any marine population studied, there can be a high degree of
uncertainty about which conceptual model(s) to select.
Conceptual models are mental representation of the processes
that control the spatial distribution of marine populations. In prac-
tice, conceptual models should encapsulate the essential entities
and processes of the system of interest. Conceptual models are con-
structed from intuition and genius, as well as knowledge and experi-
ence (Anderson, 2010); therefore, there is no unique way to build
them. On the contrary, a range of conceptual models can be con-
structed to explain observed data. For population spatial
distribution, the most common conceptual models have been
reviewed in Planque et al. (2011) and include: (i) geographical
attachment, (ii) environmental control, (iii) density-dependent
habitat selection, (iv) spatial dependence, (v) demographic struc-
ture, (vi) species interactions, (vii) persistence, or any combination
of the above.

An overview of critical assumptions commonly used when pro-
jecting future distribution can also be found in Brander (2009). In
the context of climate change, conceptual models are becoming
increasingly difficult to construct with confidence. Because
environmental conditions are beginning to move outside the
window of observed conditions during the past half million
years (e.g. oxygen, pH), it is difficult to state to what future popu-
lations will become more sensitive. Although such concerns about
the incompleteness of models for projecting distribution shifts are
not easy to deal with, they cannot be ignored.

Numerical model uncertainty
The choice of the numerical implementation of a conceptual
model brings an additional source of uncertainty in the modelling
methodology. The development of numerical methods has been
rapid in recent years (see Elith and Leathwick, 2009, for a recent
and very comprehensive review). Numerical implementations

can vary in the way they represent functional relationships, deal
with interactions, non-linearity, and complexity in general, and
can accommodate various statistical distributions. Comparative
studies of the performance of these different numerical implemen-
tations reveal that (i) based on identical datasets and identical con-
ceptual models, distinct numerical implementations can result in
different results and different prediction performances and (ii)
no numerical method seems to outperform others under every cir-
cumstance (Marmion et al., 2009).

Parameter uncertainty
Uncertainty in the estimated parameter values adds to the already
mentioned uncertainties in observation, conceptual, and numeri-
cal models. For any numerical model, one or several model par-
ameters must be estimated. This is generally achieved during the
“model fitting” process. Rather than point estimates, analytical
methods or iterative optimization techniques provide confidence
intervals for these parameters. This is commonly given in conven-
tional regression models and other less conventional methods,
which would be too many to list here (many of these are presented
in Hastie et al., 2001, but the list is continually increasing). As the
confidence intervals widen, the parameter uncertainty increases.

Model evaluation
Misuse of evaluation methods and current uncertainty about the
performance of these methods can result in the uncertain identifi-
cation of the “best” predictive model(s). Ultimately, model evalu-
ation provides an objective way of measuring model performance,
a central step in building predictive models. There are, however,
many approaches to implementing model evaluation. These
include visual comparison between observations and predictive
maps, measures of data-fitting performances, cross-validation
techniques, and validation on new sets of independent data.
Validation on independent datasets apparently is the most

Figure 1. A schematic of the modelling methodology, including major steps and sources of uncertainty. Black arrows indicate the succession
of the different steps. Dotted arrows represent the model confrontation with data. The question mark on the right indicates the resulting
uncertainty in the projections of future spatial distributions. Adapted from Anderson (2010).
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robust approach (Loots et al., 2010). Within each particular vali-
dation approach, numerical implementations have specific prop-
erties and requirements (Hastie et al., 2001). There is an
ongoing debate on the assumptions underlying the methods and
metrics used to evaluate model performance, and methods that
were commonly used up to the recent past were inadequate in
many instances (Lobo et al., 2007; Jiménez-Valverde et al.,
2008). Model evaluation therefore remains an uncertain step.

Spatial and temporal scales
The recognition of scale dependence of ecological processes is
necessary to understand the distribution and abundance of organ-
isms (Levin, 1992; McGill, 2010). Conversely, ignoring scale
dependence and multiple-scale structures in ecological processes
can result in erroneous projections of future species distribution
under environmental change (Dormann, 2007; Zurell et al.,
2009). Scaling mismatch between the grain size of environmental
variables and that of distributional data (i.e. species data) can
amplify the uncertainties inherent in each of the datasets (Seo
et al., 2009; Wiens et al., 2009). Inference will generally be
weaker when based on vague notions of scale than if precise
notion of scale is used (Bellier et al., 2007; McIntire and Fajardo,
2009).

Adaptability of living systems
How useful the knowledge gained from past observations will be to
predict future changes in marine population distributions is highly
uncertain. Anticipated effects of perturbations on ecosystems are
commonly derived from past observation of the effects of
similar perturbations. However, ecosystems are both complex
and adaptive. They present a high degree of non-linearity and a
strong dependence on historical contingencies (Levin, 1998,
2002, 2005). The assumption that future responses will resemble
past ones is therefore unlikely to hold usually, at least beyond a
certain time horizon.

In terrestrial and freshwater ecology, recent works, such as
those by Thuiller (2004), Heikkinen et al. (2006), Dormann
et al. (2008), and Buisson et al. (2010), have examined the uncer-
tainty associated with spatial projection, but these analyses were
restricted to observation uncertainties, numerical formulation,
or uncertainties in future climate based on current climate scen-
arios (an issue not discussed here). Comprehensive analyses of
the multiple sources of uncertainty presented here have not been
carried out so far, and how these uncertainties are considered in
current studies has not yet been described. It is clear whether
the marine research community shares a common approach to
this issue or rather specific individual approaches and whether
all sources of uncertainty are well understood and adequately
taken into consideration.

In this paper, we analyse how these different sources of uncer-
tainty are currently considered in marine research. More specifi-
cally, we measure how different sources of uncertainty are
accounted for in the literature published during the past 5 years
in the field of marine population spatial distribution.

Material and methods
We did a literature survey using the Thomson–Reuters ISI Web of
Knowledge database with the following set of criteria: (spatial or
geograph* or distribution* or habitat) and (fish* or benth*) and
(sea, ocean, or coast* or marin*) and model*. The selection was
restricted to articles published from 2005 to early March 2010

and within the fields of “marine and freshwater biology” or
“oceanography” or “fisheries”. In all, 1137 articles were found to
match these criteria. From these 1137 articles, we selected those
presenting models that were (or could be) used for the projection
of spatial distribution of marine populations. This amounted to 75
publications.

For each article selected, we assessed whether the following cri-
teria were addressed.

Observation uncertainty
We checked whether the uncertainty linked to observations was
explicitly measured or modelled. We further checked whether an
observation model had been considered, e.g. whether the obser-
vation process was included in the model design.

Conceptual uncertainty
We considered which of the seven common conceptual models
(geographical attachment, environmental control, density-
dependent habitat selection, spatial dependence, demographic
structure, species interactions, and persistence) had been con-
sidered. We also verified whether other types of conceptual
model were presented. In addition, we checked whether the uncer-
tainty linked to the choice of particular conceptual model was con-
sidered in the model construction and evaluation.

Numerical model uncertainty
We checked, for each of the conceptual models that was con-
sidered, whether several numerical modelling methodologies had
been compared (e.g. linear models, non-linear models, smoothing
functions, regression trees).

Parameter uncertainty
We checked whether the uncertainty linked to the estimation of
the parameters was presented, e.g. by providing values or plots
of confidence intervals.

Model evaluation
We checked, which method(s) was (were) used to evaluate model
performance: visual comparison between observations and predic-
tive maps, measures of data-fitting performances, cross-validation
techniques, and validation on new sets of independent data.

Spatial and temporal scales
We reported whether the scale of investigation was considered
implicitly or explicitly. Implicit account of scale was reported
when the authors defined the scale of investigation before carrying
out the modelling. Explicit account of scale was reported when
appropriate scale(s) was (were) quantitatively determined during
the modelling process, rather than defined in advance.

Adaptability of living systems
We verified whether the authors discussed possible adaptations of
the populations to future external conditions. We also reported
whether such adaptation was explicitly accounted for.

The results were summarized by calculating the proportion of
research articles dealing with each of the above points.

Results and discussion
Results from the literature survey (Table 1) indicate that, on
average, little attention is given to the various sources of uncertain-
ties in models and consequently to uncertainties in the resulting
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projections, despite the recent and rapid increase in the number of
publications presenting models of spatial distribution.

Observation uncertainty
This was considered in only 5 of the 75 studies we reviewed and
only a single study explicitly accounted for the observation
process in the model design. This is rather surprising, given that
observation process modelling is designed to represent the
sampling process, therefore allowing for accurate estimates of
animal densities (Lewy and Kristensen, 2009). Recent advances
in state–space modelling that have found application for obser-
vation modelling in animal movements (Patterson et al., 2008)
have not yet been applied to population distribution models.

Conceptual model uncertainty
This was only accounted for in one of the studies surveyed.
Conceptual uncertainty is associated with mental representation
of the processes that control the spatial distribution of marine
populations and may consequently be perceived as a qualitative
uncertainty (compared with more quantitative parameter uncer-
tainties; see below). However, uncertainties in conceptual
models form the basis of the entire modelling process and
model evaluation procedures (Jiménez-Valverde et al., 2008). We
argue that it is possible to evaluate such uncertainties quantitat-
ively (see, for example, suggestions in Planque et al., 2011), and
this has been demonstrated in a few case studies in the North
Sea, in the literature more recent than that analysed in our
survey (Loots et al., 2010). Detailed analysis of the conceptual
models commonly used indicates that models based on environ-
mental controls vastly dominate marine literature (95%). Except
spatial dependence—often analysed as spatial autocorrelation—
all other hypotheses are considered in less than one-quarter of
the studies. Therefore, most studies assume (at least implicitly)
that environmental drivers must override all other drivers of

population distribution, although such assumption is by no
means obvious and usually not demonstrated.

Numerical model uncertainty
Uncertainty in the appropriateness of the numerical formulation is
addressed in one-quarter of the articles. Although this proportion
remains relatively low, it is a greater proportion than the above-
mentioned sources of uncertainty. This may be partly explained
by the recent publication of comparative studies of numerical
models (Elith et al., 2006; Meynard and Quinn, 2007; Tsoar
et al., 2007, among others) that have raised attention to this
specific issue.

Parameter uncertainty
This was accounted for in 69% of the literature analysed. This is by
far the most commonly considered source of uncertainty. It could
be attributed to the statistical methods used to model species dis-
tribution. These are usually parametric methods that provide con-
fidence intervals of the parameters (Rushton et al., 2004; Guisan
and Thuiller, 2005). Such confidence intervals are easily interpret-
able and provide a direct quantitative estimate of uncertainty that
can be carried over to the model projections.

Model evaluation
Most of the studies we analysed were based on statistical models;
therefore, model evaluation based on the visual comparison of
predicted and observed distributions was infrequent. Rather,
authors often used quantitative evaluations based on fitting, cross-
validation, or prediction performance. Fitting performance
remains widely used (45%), despite known problems associated
with spatially autocorrelated data and overfitting (Hastie et al.,
2001), which are rarely accounted for. Cross-validation has been
advocated as an efficient alternative to fitting performance
metrics (Hastie et al., 2001) and is now available in many model-
ling packages (e.g. the general cross-validation score in Wood,
2006). However, when data are strongly autocorrelated, cross-
validation suffers from problems similar to data fitting and will
usually result in the selection of complex models with low bias
and high variance, i.e. with low predictive power (Telford and
Birks, 2005). Model evaluation on independent data was only
recorded in one quarter of the studies, a moderate score, consider-
ing that this approach is likely to be the most robust (Planque
et al., 2011).

Spatial and temporal scales
These were defined before modelling in 45% of the literature
reviewed. Although this may appear as a high percentage, it indi-
cates that more than half the papers reviewed did not report the
scale on which processes were modelled or why such scale(s)
had been selected. Explicit account of scale during the modelling
process was obviously less common and was only found in 12%
of the articles reviewed. This is again a surprisingly low percentage,
given the importance of scale definition and investigation in
understanding and modelling ecological processes (Levin, 1992;
McGill, 2010).

Adaptability of living systems
We found that only a small fraction of published studies (4%) dis-
cussed or simply mentioned possible implications of ecological
adaptability for projected changes in population distribution.

Table 1. Results of the literature survey: the right column reports
the percentage of publications (n ¼ 75) fitting each criterion
related to different types of uncertainty.

Uncertainty type Evaluation criteria Percentage

Observation Observation uncertainty 7
Observation model 1

Conceptual
models

Geographic attachment 19
Environmental conditions 95
Density-dependent habitat

selection
11

Spatial dependence 27
Demographic structure 9
Species interactions 7
Persistence 7
Conceptual model uncertainty 3

Numerical model Uncertainty 24
Parameter Uncertainty 69
Model evaluation Visual 8

Data-fitting performance 45
Cross-validation 36
Prediction performance 24

Scale Implicit 45
Explicit 12

Adaptability Discussed 4
Explicit 0
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Not surprisingly, none of the articles reviewed implemented such
processes in the modelling methodology.

The main result from this review is that uncertainty in spatial
projections has been poorly considered in marine ecological
research. Although we did not carry out a similar review for
other ecological work, we found that the literature dealing with
the types of uncertainty we discussed here almost exclusively per-
tains to terrestrial ecology (as attested by the bibliographic refer-
ences). This is worrying, because it indicates that the current
projections of changes in marine biota distributions are likely
poorly reliable. It is also promising because many concepts and
methods are readily available from terrestrial ecology, for
implementation in marine systems. Based on the presentations
at the PICES Conference on Climate Change Effects on Fish and
Fisheries in Sendai, Japan, we believe that there is an increasing
trend in explicitly handling various sources of uncertainty in
model projections. However, a more extensive study or a rep-
etition of the current study would be required to confirm this
trend.

In this limited literature survey, we voluntarily left out uncer-
tainties in climate models, but this component must also be con-
sidered in any serious attempt to project realistic future spatial
distributions, particularly when downscaling climate models.
Recent analyses of ocean–climate-projection uncertainties have
been presented by Hollowed et al. (2009) and Wang et al.
(2010). An example of inclusion of climate model uncertainties
in freshwater fish distribution forecasts can be found in Buisson
et al. (2010).

Highly uncertain or inaccurate projections could prove detri-
mental rather than useful to supporting management decisions.
Therefore, the many sources of uncertainty should be considered
carefully and explicitly for projections of future spatial distri-
butions of marine populations to be useful for managers, but we
found that this has not yet been the case. Model developments
should include a systematic qualitative description of uncertainties
for all the steps highlighted in Figure 1, as well as an evaluation of
the relative contributions of the different sources of uncertainty. In
addition, models developed to produce projections should at least
be evaluated on their ability to predict (not just fit) observed past
changes in population distributions. This would provide an essen-
tial objective assessment of model performance and potential pre-
dictive capabilities.

Conclusions
The majority of current modelling efforts to project future spatial
distribution of marine populations largely ignore most sources of
uncertainties. As a result, most currently available projections are
presented as much more precise that they actually are. We con-
clude that, unless uncertainty can be better accounted for, such
projections may be of limited use, or even risky to use for manage-
ment purpose.
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