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Abstract: 
 
Modeling suspended particulate matter (SPM) dynamics is essential to calculate sediment transport 
budgets and to provide relevant knowledge for the understanding of biogeochemical cycles in coastal 
waters. Natural flocs are characterized by their size, shape, structure and density that determine their 
settling velocity and therefore their vertical as well as horizontal transport. During transport, several 
processes, in particular aggregation and fragmentation, alter these particle properties. In the present 
study, we compare two different 0D modeling approaches for flocculation processes, a size 
classbased (SCB) model and a distribution-based (DB) model that follows the first moment of the 
particle distribution function. The study leads to an improved understanding of both models, which aim 
to better resolve SPM dynamics in spatial and ecosystem models in the near future. Both models are 
validated using data from laboratory experiments. The time evolution of the particle dynamics 
subjected to tidal forcing is represented equally well by both models, in particular in terms of (i) the 
mean diameter, (ii) the computed mean settling velocity and (iii) the particle size distribution. A 
sensitivity study revealed low sensitivity to changes in the collision efficiency and initial conditions, but 
a high sensitivity with respect to the particles’ fractal dimension. The latter is an incitation to enhance 
the knowledge on processes related to changes of fractal dimension in order to further improve SPM 
transport models. The limitations of both models are discussed. The model intercomparison revealed 
that the SCB model is useful for studies focussing on the time evolution of floc distributions, especially 
under highly variable conditions. By contrast, the DB model is more suitable for studies dealing with 
larger spatial scales and, moreover, with coupled marine physical–biogeochemical systems, as it is 
computationally very effective. 
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1 Introduction

Modeling suspended particulate matter (SPM) dynamics is essential to calcu-
late sediment transport budgets. Furthermore, SPM models provide knowledge
on turbidity, on the fate of both particulate organic and inorganic matter, and
on particle-reactive chemicals that are relevant quantities for modeling and
understanding marine ecosystems.

Natural flocs (or similar: aggregates, particles) are composed of clay, silt and
particulate organic matter. They can be characterized by their size, shape,
structure (fractal dimension) and density. These properties determine the set-
tling velocity and hence the vertical and lateral transport. Flocs in suspension
experience various processes like aggregation, fragmentation, repacking, rem-
ineralization, deposition, and eventually subsequent resuspension. Hence, their
properties can dynamically change with time. Ideally, these changes and their
effects on floc settling velocity should be represented in sediment transport
models.

So far, sediment transport models mainly consider semi-empirical relationships
between settling velocity and environmental variables, e. g. SPM concentra-
tion, shear rate or salinity (developed by e. g. Krone, 1962; Van Leussen, 1994;
Manning and Dyer, 1999, 2007). These relationships were obtained from field
or laboratory measurements. Therefore, they are not necessarily applicable
elsewhere.

In order to represent the processes of aggregation and fragmentation more
realistically, various models have been developed on the basis of the Smolu-
chowski equation (von Smoluchowski, 1917) assuming a spatially well-mixed
environment (zero-dimensional (0D) model). Most of these models only con-
sider changes in size, whereas a few of them also consider a size dependent
changing fractal dimension (Maggi et al., 2007; Son and Hsu, 2008).
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In general, there are two possibilities to represent the size distribution of
particles in models. In size class-based (SCB) models the floc distribution
is represented in terms of size classes (e. g. McAnally and Mehta, 2002; Maggi
et al., 2007; Verney et al., 2010, this issue) or only their central moments (Prat
and Ducoste, 2006). Other approaches use a characteristic diameter (Son and
Hsu, 2008; Winterwerp, 1998; Winterwerp et al., 2006) while Maerz and Wirtz
(2009) use the average floc size of a continuous floc size distribution function
leading to distribution-based (DB) models.

All of these models can be potentially included in SPM transport models. But
only a few applications were achieved in an 1D vertical model (Krishnappan
and Marsalek, 2002; Winterwerp, 2002) and in a 2D model (Krishnappan,
1991). This might have several reasons, e. g. limitations due to computational
costs, increasing model complexity, difficulty of parametrization and the so far
little understanding of processes changing aggregates’ properties like fractal
dimension, size and density. Models using a characteristic diameter or an av-
erage radius need less computational time than models that explicitely resolve
a number of size classes. For this reason, they might be more appropiate for
a coupling to a 3D transport model. However, DB models use some approxi-
mations and thus, it is an open question, how well they reflect the dynamics
of the whole floc distribution compared to SCB models. In order to point out
assets and drawbacks of the two different modeling approaches the present
study focuses on an intercomparison of a SCB and a DB model. Both models
are validated with the same data set from a laboratory experiment. This pro-
vides a better understanding of both models, which aim to resolve SPM size
dynamics in both higher dimensional SPM transport and marine ecosystem
models in the near future.

2 Description of the two models

Both 0D models (SCB and DB) represent the processes of aggregation (using
the Smoluchowski equation) and fragmentation due to shear.

The size class-based (SCB) model, developed by Verney et al. (2010, this issue)
represents the floc distribution in terms of distinct size classes. By contrast, the
distribution-based (DB) model, developed by Maerz and Wirtz (2009), uses
an underlying continuous distribution function and only follows the average
radius. Therefore it aims for reducing model complexity. In the following, the
common features of the two models are described.

Both aggregation models are based on the formulation of von Smoluchowski
(1917) that is given by

3



d n(m)

d t
=

1

2

m
∫

0

α(m − m′, m′) n(m − m′) · n(m′) I(m − m′, m′) dm′

− n(m)

∞
∫

0

α(m, m′) n(m′) · I(m, m′) dm′ (1)

where the first term of the right hand side is the gain of particles n of mass
m by aggregation of smaller particles n(m − m′) and n(m′) with the collision
efficiency α and the collision frequency I. The second term describes the loss
of particles due to aggregation with other particles. For simplification, in both
models we assume a size-independent collision efficiency. Furthermore we focus
on the aggregation due to turbulent shear G = (ǫ/ν)1/2 (ǫ being the turbulent
energy dissipation rate and ν being the kinematic viscosity of the fluid) using
the rectilinear approach for the collision frequency, here written for particles
in classes i and j with radii ri and rj , respectively

IG,i,j = 1.3 G (ri + rj)
3 . (2)

Aggregation due to differential settling is believed to be less relevant compared
to shear-induced aggregation (Lick et al., 1993) and Brownian motion is only
relevant for particles < 1 µm (McCave, 1984). We hence neglect these processes
of aggregation. In order to simulate the fragmentation of particles, a simplified
fragmentation kernel (with fB being a fragmentation factor) is used for a
particle of diameter Di:

BG,i = fB G1.5 D2
i , (3)

that is close to the formulation proposed by Winterwerp (1998). The detailed
implementation of both, the aggregation and the fragmentation kernel, in the
two flocculation models are described in Section 2.1 and 2.2.

2.1 Size class-based model

The size class-based (SCB) model, developed to reproduce the flocculation
and fragmentation processes, is briefly described hereafter, but an extended
description can be found in Verney et al. (2010, this issue). The SCB model is
based on the population equation system originally proposed by von Smolu-
chowski (1917) that describes the floc population in N discrete size classes.
Here, each of the used N (=15) classes corresponds to a specific particle
size (and hence a related mass). They are logarithmically distributed start-
ing from the primary particle diameter Dp = 4 µm to the maximum floc size
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Dmax = 1500 µm by using the following relation:

Di = D
1+ i−1

N−1
·

(

log10(Dmax)

log10(Dp)
−1

)

p (4)

where Di is the floc diameter in size class i. In order to reduce the num-
ber of size classes required to realistically reproduce flocculation processes,
an interpolated aggregation scheme is applied to represent the particle dis-
tribution. Each size class represents specific characteristics like floc size and
mass. Newly formed flocs that have a mass and size in-between those classes
are distributed in the two neighbour classes by using a mass-weighted linear
interpolation (Prakash et al., 2003; Xu et al., 2008). Mass conservation is en-
sured by the conversion of the redistributed mass into the related number of
aggregates of the class specific mass by using the below described fractal con-
cept (see Figure 1 and for a more detailed description Verney et al., 2010, this
issue). This allows to use a much smaller number of size classes compared to

Fig. 1. Aggregation of flocs of mass mi and mj into mass mi + mj and subsequent
distribution into the nearest size classes by using a mass-weighted interpolation. Vi

and ρi are the volume and the effective density of a floc in size class i, respectively.

the number of potentially newly formed floc sizes, and therefore reduces the
computation time. The fractal behaviour of flocs is represented according to
the description by Kranenburg (1994). The main characteristic sizes of flocs
(with diameter Di, mass mi and density ρf,i) can be expressed via the fractal
dimension df :

mi = ρs

π

6
D3

p

(

Di

Dp

)df

(5)

ρf,i = ρ + (ρs − ρ)
(

Dp

Di

)3−df

(6)
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where ρ and ρs are the density of water and of the primary particles, respec-
tively. Exchanges between classes are allowed through flocculation processes
and governed by the kernels for shear aggregation IG,i,j (cf. to Eq. (2)) and
fragmentation BG,i:

d nk

d t
= α

1

2

∑

i+j≃k

ni nj IG,i,j − α
N
∑

i=1

ni nk IG,i,k

+
N
∑

i≃k+1

FD,i,k BG,i ni − BG,k nk (7)

where nk is the number of particles in class k (in #/m3) and FD,i,k the distribu-
tion function of fragmented flocs. Note that i+ j ≃ k is written instead of the
usually used i + j = k to account for the above described mass-conservative
interpolation scheme. In the present study, a binary fragmentation is used,
i. e. the fragmentation of a particle of mass mi results in two particles of equal
mass mi/2. The fragmentation kernel, Eq. (3), is directly used

BG,i = fB G1.5 D2
i (8)

where fB is a constant integrating the cohesiveness of particles. In order to
optimize computation time, exchange kernels are calculated once at the ini-
tialization with discrete values of G ranging from 0 to a maximum value re-
produced experimentally, i. e. Gmax = 12 s−1.

2.2 Distribution-based model

In order to reduce model complexity, Maerz and Wirtz (2009) used the moment
closure approach of Wirtz and Eckhardt (1996) to develop a distribution-based
(DB) aggregation model. The general idea is to follow only the first moment
of the concentration distribution function and the total concentration. The
concentration distribution function Ci is given by the SPM mass per volume
and bin width ∆Ri in each size class i. Hence, the total concentration is
C =

∑

i Ci ∆Ri. The average radius of the concentration distribution 〈r〉 is
represented by

〈r〉 =
∑

i

ri
Ci ∆Ri

C
(9)
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where ri is the radius in size class i. The change of 〈r〉 can therefore be written
as

d 〈r〉
d t

=
∑

i

ri
Ċi ∆Ri

C
− Ċ

C

∑

i

ri
Ci ∆Ri

C
(10)

where Ċi and Ċ are the changes of the concentration in size class i and in
total, respectively. Eq. (10) can also be written as

d 〈r〉
d t

= 〈r · µ̂〉 − 〈r〉 · 〈µ̂〉 (11)

where µ̂ is the relative growth rate defined as µ̂i = Ċi/Ci. Expanding µ̂ in a
Taylor-series around 〈r〉 and using a moment closure leads to (see Wirtz and
Eckhardt, 1996)

d 〈r〉
d t

≃ δr2 · d µ̂(〈r〉)
d r

. (12)

Hence, temporal changes of 〈r〉 follow a local gradient of µ̂. The rate of change
is proportional to the gradient itself and the variance of the aggregate concen-
tration distribution δr2. This can also be seen, if one writes Eq. (10) as

d 〈r〉
d t

=
∑

i

ri · (µ̂i − 〈µ̂〉) Ci ∆Ri

C
(13)

where each rate (summand) contributing to the change of 〈r〉 is dependent
on the difference between the relative growth rate µ̂i in size class ri and the
average relative growth rate 〈µ̂〉 multiplied by the fraction of the concentration
corresponding to that size class. So, if the relative growth rate and the size
covary, the change of the average radius is high (see also Eq. (11)).

The moment approximation does not require specific assumptions on the un-
derlying distribution function, but looses accuracy for non-Gaussian distri-
butions. The latter is also the reason for using 〈r〉 as state variable because
the concentration distribution is closer to a Gaussian distribution than the
number distribution of the aggregates.

In the following, we use Eq. (12) to develop the aggregation formulation for a
continuous distribution function. In a first step, we substitute the mass by the
radius in Eq. (1). It is important to note that at this step, mass conservation is
not fulfilled any more, but will be assured afterwards. The resulting equation
can be transformed in order to describe the change of the concentration for
each radius by multiplying with the weight of an aggregate w(r) = w0 · rdf .
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The weight factor w0 is written as w0 = 2df ρs π D
3−df
p /6. Division of this

transformed equation by the concentration C(r) results in the relative growth
rate µ̂(r). As underlying aggregate number distribution n(r), an exponential
approach is used in µ̂,

n(r) = N0 · exp(−βr) (14)

where the factor β and N0 denote the slope and the intersection with the
ordinate, respectively, for the straight line in a logarithmic representation.
The assumption of an exponential number distribution can be justified by
measurements for aggregate distributions in tidal areas (Lunau et al., 2006).
Now, we use the rectilinear kernel for shear, Eq. (2), in µ̂ and solve the integrals
in µ̂.

To assure mass conservation, we have to require that the total concentration
does not change, resulting in the condition 〈µ̂〉 = 0. The average of the relative
growth rate can be calculated by using a second order closure

〈µ̂〉 = µ̂ + y · ∂2 µ̂

∂ r2
= 0 (15)

as correction with choosing y in such a way that Eq. (15) is fulfilled. The
coefficient y depends on the distribution function and would be given by y =
0.5 δr2 for a Gaussian distribution. Using the integral of the concentration
distribution

C =

∞
∫

0

C(r) dr =

∞
∫

0

n(r) w(r) dr =

∞
∫

0

N0 exp(−βr) w0 rdf dr (16)

as well as the resultant relations δr2 = 〈r〉2/(df +1), β = (df +1)/〈r〉 together
with 〈µ̂〉 in Eq. (12) leads to

d 〈r〉
d t

= α G KG(df)
C

w0

〈r〉4−df (17)

where KG(df) is a function of the fractal dimension df and describes the
correction for the difference between the underlying concentration distribution
and a Gaussian distribution. KG(df) is given by

KG(df) = 0.65
(df + 1)df−1(2 d4

f + 3 d3
f − 3 d2

f + 17 df + 57)

(d2
f + df − 1) Γ(df + 2)

(18)

where Γ(x) is the Gamma function.
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For the change of the 〈r〉 due to fragmentation, the fragmentation kernel
(Eq. (3)) is used for the mean radius by multiplying it with 2〈r〉

d 〈r〉
d t

= −8 fB G1.5 〈r〉3 (19)

resulting in a similar formulation as proposed in Winterwerp (1998) who con-
sidered a characteristic diameter of a particle distribution.

3 Results

In order to evaluate the performances of DB and SCB modeling approaches,
model results are compared with experimental data reproducing the behaviour
of a floc population during a tidal cycle. A comparison is made i) in terms
of the mean floc diameter weighted by the projected area of a floc and ii)
by their distribution. Furthermore, as the vertical flux of sediment is of main
interest in higher dimensional models, we calculate an average settling velocity
depending on the calculated distribution. Next, the sensitivity of both models
with respect to several key parameters such as the fractal dimension or the
initial distribution is examined (see Section 3.3).

3.1 Validation data

For validation of both models an experimental data set is used (Verney et al.,
2010, this issue). In this experiment, the floc population was investigated under
changing hydrodynamic conditions. Turbulent shear was changed stepwise be-
tween G = 0 and 12 s−1 to mimic a tidal cycle. That range of turbulent shear
was observed during field measurements above intertidal mudflats (Verney
et al., 2006). The device consists in a cylindrical test chamber (13 cm width
and 20 cm height) equipped with a ten-speed impeller for controlling turbu-
lent agitation. Turbulent kinetic energy inside the chamber was measured by
a Doppler velocimeter revealing a fair shear rate homogeneity that makes the
experiment suitable for 0D model comparisons (Mikes et al., 2004; Verney
et al., 2009).

Floc sizes were evaluated in terms of the equivalent circular diameter (ECD)
and determined by a postprocessing of images derived from a Sony CCD cam-
era system with a pixel resolution of 8 µm. The latter limits the consistency
of measurements for small flocs. For this reason, particles smaller than 50 µm
were not taken into account during the analysis. The concentration distribu-
tion is calculated on the basis of the ECD and the related mass using fractal
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theory, Eq. (5). As inoculum, SPM collected in the upper part of the Seine
estuary, France (freshwater part, muddy sediments with a organic matter con-
tent of around 5%) in winter 2005, was used in a concentration of 93mg · L−1.
After filling the test chamber, high turbulence mixing was applied to reach
a microfloc population as initial condition. An upstream flow in the middle
of the test chamber prevented potential deposition of particles at the bottom
during times of shear.

During the first two hours of constant turbulent shear G = 1 s−1, the mean
ECD increases up to ca. 250µm. During a stepwise increase of shear up to
G = 12 s−1, the mean ECD decreases down to ca. 60µm. After this time,
a decrease of the shear rate leads again to an increasing mean ECD that
decreases during time spans of no shear due to settling of the particles followed
by a second cycle of changing shear rates (see Figure 2).

3.2 Model and data comparison

For model intercomparison and validation, the main parameters used in the
SCB and the DB model (initial mean floc size, concentration C, density of
primary particles ρs) were determined from the laboratory experiment. The
primary particle size Dp was set to 4µm in accordance with other cohesive
sediment studies (e. g. Winterwerp, 1998) and the fractal dimension to df =
1.9 according to estimations made during similar laboratory experiments of
Verney et al. (2009). Therefore, both models use identical parameter values
(cf. Table 1) except for the break-up factor fB and the collision efficiency
α that are varied independently for both models in order to minimize the
error between model results and data. The error is calculated from the least
square method on the entire dataset excluding the period, where settling is the
dominant process for size distribution changes (6 h < t ≤ 7 h) as this process
is not taken into account in the model formulation.

3.2.1 Average diameter

As can be seen in Figure 2, both models are in good agreement with the data
and follow the size dynamics equally well. We emphasize here again, that the
goodness of the data is limited by the lower resolution of the camera system
that could lead to an overestimation of the mean diameter of the particles.
During time spans where aggregation rates dominate fragmentation rates, the
mean floc size increases smoothly. Otherwise, when fragmentation dominates,
the mean floc size decreases abruptly and reaches rapidly a new equilibrium
related to increasing shear. These two different behaviours are well reproduced
by both the SCB and the DB model. They correspond to differences in pro-
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Table 1
Parameter set for the reference runs. In case of the break-up factor fB and the
collision efficiency α values are given as DB/SCB values.

Parameter Description Value literature value Unit

α collision efficiency 0.18 / 0.4 0.005-0.8 a –

C Total SPM concentration 0.093 0.01-6 b kg · m−3

df fractal dimension 1.9 1.5 – 2.4 c –

Dp diameter of primary particles 4 · 10−6 1 – 10·10−6 d m

fB break-up factor 12068 / 48000 – e s0.5 · m2

ρs density of primary particles 2600 2300-2800 f kg · m3

µ dynamic viscosity 1.02 · 10−3 1 − 1.8 · 10−3 kg · m−1 · s−1

a Kiørboe et al. (1990); Dam and Drapeau (1995) for algae; b Guezennec et al.
(1999); Manning et al. (2006); c Manning and Dyer (1999); d,f Fettweis (2008); e no
measurements available

cess timescales between aggregation (slow response) and fragmentation (fast
response): aggregation is caused by the collision of flocs and only a fraction
of these collisions leads to aggregation while fragmentation is only a func-
tion of floc size, cohesiveness and shear stress. This leads to a steep negative
slope, when fragmentation dominates and a more gentle positive slope, when
aggregation dominates.

3.2.2 Comparison of the distributions

While the mean floc size reveals the general behavioural trend of the floc
population, the analysis of the floc size distribution allows for precisely inves-
tigating the changes within the population itself. This examination requires a
discretization of the continuous distribution function of the DB model based
on the SCB model size class discretization. The interpolation method used in
the SCB model for a normalized floc mass distribution C ′

i is applied:

C ′

i =
wi

C
·







ri
∫

ri−1

n(r)
w(r) − wi−1

wi − wi−1

dr +

ri+1
∫

ri

n(r)
wi+1 − w(r)

wi+1 − wi
dr





 (20)

where wi is the weight of an aggregate of size ri in the SCB model.

The comparison of the distributions reveals that both models simulate smoother
distributions than the ones observed in the laboratory experiment (cf. Figure 3
and 4). Slight discrepancies between the two models can be explained by the
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Fig. 2. Mean floc size variation during a simulated tidal cycle: comparison between
laboratory measurements and models results. Note that the mean diameter of the
observed flocs might be overestimated due to limitations of the camera system. SCB:
size class-based and DB: distribution-based model.

structure of each model and their underlying assumptions: the SCB model
is only controlled by the exchange processes between flocs of each size class
while the DB model prescribes the distribution function to represent the floc
population. The experimental data suggest that the concentration distribu-
tion changes with time and tends to have a peak-like form especially in case of
high shear rates. In both models, this behaviour is not properly represented.

3.2.3 Average settling velocity

Different distributions of aggregates have an impact on the vertical fluxes of
sediment as macroflocs settle faster than microflocs. This is particularly im-
portant for simulating SPM dynamics in spatially explicit models. Therefore,
we calculate a theoretical average settling velocity for the experimentally ob-
served particle distribution as well as for both models. The settling velocity
vs of fractal particles with diameter D (e. g. Winterwerp, 1998, without the
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Fig. 3. Normalized concentration in % of the experimentally derived distribution
(EXP), size class-based model (SCB) and distribution-based model (DB). Note
that both models fail for the time 6 h < t ≤7 h as settling is not taken into account
in the model comparison.

proposed correction term) is given by

vs(D) =
1

18 µ
(ρs − ρ) g D3−df

p Ddf−1 (21)

where µ is the dynamic viscosity and g is the gravitational acceleration con-
stant. In case of the DB model the average settling velocity can also be com-
puted from the underlying distribution by dividing the total flux (calculated
using Eq. (16) and (21)) by the total concentration resulting in

〈vs〉 =
1

18 µ
(ρs − ρ) g D3−df

p 2df−1 〈r〉df−1

[

4df (df + 1)1−df Γ(df + 0.5)

2 df

√
π

]

(22)

where Γ(x) is the Gamma function. Obviously, comparing Eq. (21) and (22), a
factor, dependent on df , appears when calculating the average settling velocity
upon the basis of 〈r〉. This factor is close to 1 for the value of the fractal
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(t).

dimension used in the model comparison. Nevertheless, it is important to
emphasize here, that the average settling velocity is not necessarily equal to
the settling velocity of a particle of size 〈r〉 especially if particles tend to be
compact.

As can be seen in Figure 5 both models are able to represent the mean settling
velocity well after some transient time. Note, that the mean settling velocity
calculated from the observed particle distribution might be overestimated due
to limitations of the camera system.

3.3 Sensitivity analysis

Some parameters are still inaccessible (like e. g. collision efficiency) or difficult
to determine (e. g. fractal dimension) when observing SPM dynamics. It is
hence useful to perform a sensitivity study for such parameters in order to
estimate the resulting uncertainty in model outcomes. Here, we focus on the
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Fig. 5. Mean settling velocity for experimentally observed particles, size class-based
model (SCB) and distribution-based model (DB) calculated by Eqs. (21) (data, SCB
model) and (22) (DB model). Note, that both models fail for the time 6 h < t ≤7 h
as the models do not account for changes in the size distribution by settling.

fractal dimension df , the collision efficiency α and the often unknown or only
roughly known initial conditions. Furthermore, since the models differ in their
representation of the particle distribution, we study the process of aggregation
in more detail.

3.3.1 Initial phase without break-up

When looking only at the process of aggregation without using the fragmen-
tation term, the results of both models show a divergence in the average di-
ameter after a short time. This is enhanced by different values of the collision
efficiency α used in both models for the reference runs. But there is another
effect that also causes the divergence which is explained in the following. The
shape of the distribution function changes in case of the SCB model. This
leads to a drastically changed distribution within a short period of time (cf.
Figure 6) with an increasing number of large aggregates. As a consequence,
the collision frequency increases with time (cf. Eq. (2)) resulting in an increas-
ing relative growth rate for larger size classes that enhances the growth rate
of the mean diameter compared to the initial distribution. By contrast, in the
DB model the growth rate of 〈r〉 always relies, due to the model structure, on
the prescribed exponential number distribution function. As a consequence,
the distribution that would evolve from pure aggregation cannot evolve and
is always “forced back” to a prescribed distribution. This model structure de-
pendent mechanism acts as a distribution-internal mass redistribution, and
thus, as fragmentation. This additional fragmentation, which is only present
in the DB model and not in the SCB model, would result in different vertical
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fluxes due to discrepancies in the concentration distribution. For this reason,
a smaller value of the fragmentation factor fB has to be chosen for the DB
model to compensate the model-dependent artificial fragmentation.
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Fig. 6. Left: Time evolution of the mean floc diameter as simulated by the distribu-
tion-based (DB) and the size-class based (SCB) model. Right: Floc size distribution
computed by both models at simulation start and after 20 min (indicated by open
circles in the left panel). Notice that only the term of aggregation is taken into
account with the same initial distribution and the same parameter set used in the
comparison with data (see Table 1).

3.3.2 Sensitivity to initial conditions

For studying the sensitivity on initial conditions, the initial distribution has
been changed by shifting the average diameter by ±20 µm. Additionally, the
initial distribution for the SCB model was calculated from the prescribed
distribution function of the DB model. As can be seen in Figure 7 both models
loose their dependence on the initial conditions after a short transient time
and adapt their distributions to the hydrodynamical conditions after 2 h to
3 h. Hence, both models can be used in modeling situations with unknown
initial conditions.
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3.3.3 Sensitivity to fractal dimension

Since fractal dimension can be measured with various methods (e. g. Billiones
et al., 1999; Manning and Dyer, 1999), often resulting in different values (from
1.5 to 2.4, Manning and Dyer, 1999), it is always a parameter of rather high
uncertainty. Therefore its influence on model results must be examined. Our
results reveal that a variation of df of about 5% leads to a strong under-
or overestimation of the average diameter for increasing or decreasing fractal
dimension, respectively (cf. Figure 8). The SCB model is more sensitive to
changes in fractal dimension than the DB model. As both aggregation and
fragmentation rates are strongly dependent on the fractal dimension (directly
and indirectly), it is the most sensitive parameter in both models. Further-
more, as can be seen from Eq. (21) and (22), fractal dimension strongly influ-
ences the vertical flux.

3.3.4 Sensitivity to collision efficiency, break-up factor and shear

The collision efficiency and the fragmentation factor are parameters that can-
not be measured routinely, yet. These parameters are dependent on various
influences like e. g. salinity (Van Leussen, 1994), organic matter content (Chen
et al., 2005), involved phytoplankton species (e. g. Kiørboe et al., 1990), extra-
cellular polymeric substances (EPS, e. g. Thornton, 2002; Dam and Drapeau,
1995), maybe the degradation state of aggregates as different settling veloci-
ties have been observed for differently degraded particles (Goutx et al., 2007),
etc.

Moreover, collision efficiency and the break-up factor are closely related to
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each other. Furthermore, both processes, aggregation and fragmentation, al-
ways occur simultaneously. Together, they force the particle distribution to
reach a steady state that is strongly dependent on the present hydrodynamic
conditions. Hence, the influence of the collision efficiency and the break-up
factor on the model behaviour should be examined together, but also in com-
bination with the turbulent shear. Nevertheless, we first treat the parameters
separately and study the influence of the collision efficiency on the model re-
sults by varying α by ±5%. This corresponds to the same range of variation
as for the fractal dimension. As can be seen by a comparison of Figure 8 and 9,
both models are much less sensitive to changes of the collision efficiency than
to fractal dimension. While the response of the mean diameter to a changed
collision efficiency is linear, perturbations in df also lead to nonlinear effects
that are even not uniform over time.

When examining both the collision efficiency and the break-up factor together,
it is always possible to find a pair of these parameters to reach a defined steady
state with both models, e. g. 〈r〉∗ = 100 µm. This can be exemplarily seen in
Figure 10A, that was calculated for the DB model. Obviously, the growth
rates for a specific radius 〈r〉 are different for changed parameter pairs α and
fB. In model runs, this results in different curvatures of the time evolution.
For different shear rates, the growth rates for a specific mean radius are also
different, shown for the DB model in Figure 10B. Furthermore, the steady
state shifts towards smaller radii for higher shear rates and vice versa. This
effect is also nonlinear since different exponents are used for the dependence
on shear in the aggregation and the fragmentation description. In principle,
this behaviour, decribed for the DB model, can also be found for the SCB
model.
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4 Discussion

In this study, two different kinds of flocculation models are compared. Their
main difference is the representation of the particle distribution. While the
SCB approach explicitly resolves a number of discrete size classes, the DB
model uses variable moments of a prescribed distribution function.

In comparison to SPM size dynamics observed in a laboratory experiment,
both models were able to reproduce the dynamics of the average diameter
equally well, although both models exhibit a particle distribution smoother
than the observed one that can either be caused by the numerical diffusion
in the models (for the SCB model, see e. g. Prakash et al., 2003) or by the
limited temporal resolution of the measurement probably loosing rare occur-
ing large particles. On the other hand, a number of particles smaller than
the resolution limit could have occured during the experiment. Moreover, floc
restructuring may have occurred which would lead to changes of the fractal
dimension (discussed e. g. by Verney et al., 2010, this issue). All the afore-
mentioned reasons might limit the accuracy of the models’ representation of
the observed distribution (seen in Figure 4) and the goodness of the achieved
α : fB couple. However, the sensitivity study showed a robust model behaviour
in its dynamics concerning these two parameters, and hence, it is likely that
both models could be useful to represent the floc dynamics disregarding a pos-
sible minor change in this parameter couple. Nevertheless, the models could
be improved by i) better account for the numerical diffusion (SCB model)
or other distributions (DB model, see below), and ii) introducing a variable
fractal dimension.

19



−3

0

3
x 10

−8

A
d〈

r〉
/d

t  
(m

⋅s
−

1 )

 

 

α=0.04

α=0.11

α=0.18

α=0.25

α=0.32

0 50 100 150
−3

0

3
x 10

−8

B

Average radius 〈r〉 (µm)

d〈
r〉

/d
t  

(m
⋅s

−
1 )

 

 
G=0.8s−1

G=0.9s−1

G=1s−1

G=1.1s−1

G=1.2s−1

Fig. 10. Growth rates for the mean radius of the DB model. A) Different α and fB

pairs for the same steady state (〈r〉∗ = 100µm). The correspondent α:fB values are:
0.04 : 2801 s1/2 ·m−2, 0.11 : 7701 s0.5 ·m−2, 0.18 : 12602 s0.5 ·m−2, 0.25 : 17503 s0.5 ·m−2,
and 0.32 : 22404 s0.5 ·m−2. B) The same α and fB pair as for the reference run, but
using different shear values.

Even in the sensitivity analysis, both models generally show the same be-
haviour. There are only slight differencies concerning the influence of the frac-
tal dimension where the DB model is less sensitive than the SCB model. It
turned out, that both models are most sensitive to changes of the fractal di-
mension as it contributes to aggregation and fragmentation in a nonlinear way.
Fractal dimension is highly relevant for calculating the settling velocity and,
hence, the vertical fluxes. In the presented laboratory experiment, the frac-
tal dimension might be underestimated leading to uncertainties for the model
runs. Its value, however, is in general difficult to obtain. Therefore, in order
to improve and better validate flocculation models, we suggest to standardize
measurements of fractal dimension or to aim for comparability of particles’
fractal dimension values and to enhance knowledge related to changes of the
fractal dimension. The latter is important to derive a process-based descrip-
tion for the change of the fractal dimension which could be included into –
and improve – flocculation models.
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Surface properties of flocs (like e. g. the cohesiveness), in the models repre-
sented by the collision efficiency α and the break-up factor fB, have shown to
be relevant for the reaction kinetics in terms of i) the reaction time, chang-
ing the curvatures in the time evolution and ii) the steady state. Therefore,
supposing a qualitatively and quantitatively correct model formulation and
known hydrodynamical conditions, it would be possible to access particles’
surface properties by inverse modeling, as the strongly related parameter pair
α and fB could only be constrained in a small range. Inverse modeling studies
had already been carried out for estimating the collision efficiency of organic
aggregates by Kiørboe et al. (1990).

Structural differences in the model formulation and their underlying assump-
tions can explain the above mentioned discrepancies to observations and might
limit the applications of both models. The SCB model would preferably be
used to study the dynamical evolution of the shape of the particle distribution,
like e. g. bimodal distributions (e. g. observed by Benson and French, 2007),
since the type of distribution is preset in the DB model. Despite this fact, other
features of the experimentally observed particle distribution, e. g. their mean
settling velocity, can be well calculated by both models. Hence, the applica-
tion of the DB model is not restricted to an exponential distribution but can
also be used for similar distribution patterns. Intrinsically, the moment closure
approach is independent of the functional form of the distribution and only
gains accuracy for the Gaussian-like mass distribution assumed here. There-
fore, it can also be used for other distribution functions. But this requires the
reformulation of the model from first principles which can be a high analytical
effort. Lacking flexibility is a deficit of the DB model compared to the SCB
model. On the other hand, the DB model significantly reduces computational
costs and hence, might be more suitable to be coupled to hydrodynamical
models.

In the DB model, an implicit mass redistribution occurs during aggregation
in such a way that the approximation of the prescribed distribution is fulfilled
any time, as the growth rate for 〈r〉 is always based on this distribution func-
tion. This kind of mass redistribution is also present during fragmentation. By
contrast, in the SCB model, the process of aggregation does not include an
implicit fragmentation. Additionally, the SCB model faces the problem of nu-
merical diffusion towards larger size classes due to logarithmically distributed
size classes. These facts result in a smaller fragmentation factor fB in the DB
model although the collision efficiency had to be chosen smaller than in the
SCB model. In general, one should keep in mind that different types of models
require usually a different parametrization to describe the same experimental
observations. These different parameters account for model-dependent internal
realizations of the various processes even in cases where the basic assumptions
about these processes are the same.
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In comparison to empirical models of e. g. Manning and Dyer (1999, 2007) and
Van Leussen (1994), process-based models like SCB and DB models are more
flexible to use. Empirical models are more restricted since they are based on
observations in a system with specific hydrodynamical, sedimentological and
biological conditions. Nevertheless, as emphasized before, the DB model in
its present form is also restricted to exponential-like particle number distri-
butions. Therefore, the SCB model is the most flexible model, but with the
drawback of high computational costs. Similar to the SCB model, the quadra-
ture of moments method (QMOM; e. g. Prat and Ducoste, 2006) uses several
weighting classes, but follows only the moments of the particle density func-
tion. This allows for higher flexibility compared to the DB model where the
distribution function is prescribed. However, it is difficult to regenrate the size
distribution by using the QMOM approach. Moreover, it has higher compu-
tational costs than the DB model.

In contrast to the model of Winterwerp (1998) the DB and the SCB model
also provide information about the entire particle distribution. This is useful
for calculating the mean settling velocity since it is not necessarily equal to the
settling velocity of a particle having the average size (cf. Eq. (21) and (22)).
Furthermore, other features, e. g. turbidity, can be obtained that are relevant
in ecosystem models.

An application of the models in spatially explicit SPM transport models or
ecosystem models has to face a number of remaining difficulties arising from
model assumptions. Especially in case of the DB model, where a redistribution
of mass, similar like during aggregation and fragmentation, will occur during
transport. The same problem arises in the characteristic diameter based model
when coupled to an 1D vertical model (Winterwerp, 2002). Nevertheless, Kri-
est and Evans (2000) applied a DB aggregation model for the open ocean in a
1D vertical model. In turn, due to different settling velocities of particles, nu-
merical diffusion is different for each size class when applying the SCB model
in an 1D vertical model.

5 Conclusion

The size class-based (SCB) as well as the distribution-based (DB) model are
able to represent the change of the average aggregate size, the floc distribution
function and the mean settling velocity under different turbulent conditions.
These findings indicate that both models have the potential to be included in
spatially explicit models.

The fractal dimension is the most sensitive parameter in both models and
can strongly influence the vertical flux. Therefore, it is necessary to enhance
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the knowledge about processes that change the fractal dimension in order to
improve SPM transport models.

At the present state, the application of the DB model is limited to exponential-
like particle number distributions. Nevertheless, it is computationally very
efficient. Furthermore, it can be applied to other distribution functions by
reformulating the terms derived from the moment closure.

The main drawback of the SCB model is its high computational cost. On the
other hand, it is more useful to represent temporally highly variable particle
distribution patterns like bimodal distributions.

To conclude, the SCB model is useful to study the time evolution of floc
distributions, especially under highly variable conditions. The DB model re-
duces the complexity of flocculation modeling. Hence, by a reduction of state
variables, it is especially suitable to be coupled to spatially large scale SPM
transport and biogeochemical models.
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