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Satellite remote sensing (SRS) of the marine environment has become instrumental in ecology for environmental monitoring and
impact assessment, and it is a promising tool for conservation issues. In the context of an ecosystem approach to fisheries manage-
ment (EAFM), global, daily, systematic, high-resolution images obtained from satellites provide a good data source for incorporating
habitat considerations into marine fish population dynamics. An overview of the most common SRS datasets available to fishery scien-
tists and state-of-the-art data-processing methods is presented, focusing on recently developed techniques for detecting mesoscale
features such as eddies, fronts, filaments, and river plumes of major importance in productivity enhancement and associated fish
aggregation. A comprehensive review of remotely sensed data applications in fisheries over the past three decades for investigating
the relationships between oceanographic conditions and marine resources is provided, emphasizing how synoptic and information-
rich SRS data have become instrumental in ecological analyses at community and ecosystem scales. Finally, SRS data, in conjunction
with automated in situ data-acquisition systems, can provide the scientific community with a major source of information for eco-
system modelling, a key tool for implementing an EAFM.
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Introduction
Since the birth of the space age in the late 1950s, developments in
platform and sensor technology, data storage and transfer, and the
increasing demand for satellite data products have combined to
support the rapid expansion of satellite remote sensing (SRS)
civil applications: meteorology, aviation, positioning, and com-
munication. In addition, remotely sensed satellite data have
proven to be valuable tools in different applied fields, such as agri-
culture, land use, and hydrology. Satellites have now become
instrumental in ecology for environmental monitoring, e.g. bio-
geochemistry and physical oceanography, and are promising
tools for conservation issues (Turner et al., 2003; Mumby et al.,
2004).

Although conventional fisheries management has focused
mainly on single-species approaches in recent decades, the ecosys-
tem approach to fisheries management (EAFM), promoted by the
Food and Agriculture Organization of the United Nations (FAO),
recognizes the importance of maintaining the complexity, struc-
ture, and function of marine ecosystems and of ensuring the sus-
tainability of the fisheries and human communities they support
(Garcia et al., 2003). In particular, a major objective of the

EAFM is to expand the consideration of fish population dynamics
to their marine habitats, to move progressively towards an
end-to-end ecosystem approach (Cury et al., 2008). The EAFM
aims to improve understanding of the determinants of changes
in the abundance and spatial distribution of exploited fish
stocks, to disentangle fishing effects from environmental forcing,
and eventually to implement more-effective management
systems (Botsford et al., 1997; Garcia et al., 2003; Cury et al., 2008).

In this context, the availability of global, daily, systematic, high-
resolution images obtained from satellites has been a major data
source for elucidating the relationships between exploited
marine organisms and their habitat (Polovina and Howell, 2005;
Dulvy et al., 2009). Some past reviews addressed the use of SRS
of the marine environment, but focused mainly on case studies
of applied fishery oceanography where short-term forecasting
systems were developed in support of fishing activities
(Tomczak, 1977; Yamanaka, 1988; Le Gall, 1989). Butler et al.
(1988) provided a comprehensive report on the use of remote
sensing in marine fisheries during the 1980s, describing satellite
platforms, sensor systems, and digital image-processing tech-
niques and providing a synthesis of more than 20 case studies
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based on airborne and spacecraft remote-sensing data. Since then,
considerable progress has been made in SRS data acquisition and
processing, and substantial numbers of new high-resolution data-
sets have become fully accessible for analyses in addition to in situ
survey and fishery data. During the past decade alone, the appli-
cation of satellite datasets has been extended progressively to
encompass both data-driven and ecosystem-modelling approaches
in marine ecology. The objectives of this paper are to: (i) provide
an overview of current satellite platforms and sensors, dataset
availability/accessibility, and image-processing techniques for
studying mesoscale features of particular relevance to EAFM
(Cury et al., 2008); (ii) conduct a comprehensive review of satellite
remotely sensed data applications by investigating the relation-
ships between oceanographic conditions and marine resources,
including the geolocation of marine species and characterization
of preferred habitats along migration routes using satellite tags;
(iii) demonstrate how synoptic and information-rich SRS data
have become instrumental in ecological analyses at community
and ecosystem scales; and (iv) discuss the assumptions, limits,
and caveats associated with the use of SRS data, and challenges
for the near future.

SRS data acquisition and products from global
to mesoscale
Sensors, datasets, and processing
Many satellites and remote sensors provide data on oceanographic
parameters that are now available to the scientific community as
standard products. The most common time-series datasets and
the main principles of image-processing algorithms and data
formats are presented below.

In the context of SRS, a sensor is an electronic device that
detects emitted or reflected electromagnetic radiation and converts
it to a physical value that can be recorded and processed. In terms
of the type of energy source, radiometers can be divided into
passive sensors, which detect the reflected or emitted electromag-
netic radiation from natural sources [temperature, ocean colour
(OC)], and active sensors (radars, scatterometers, and lidars),
which detect reflected responses from irradiated objects (Butler
et al., 1988). Sensors can be classified into four types according
to the spectral regions of solar radiation: (i) visible and reflective
(or “near”) infrared (domain of ocean-colour radiometry), (ii)
mid-infrared, (iii) thermal infrared, and (iv) microwave (Martin,
2004). Practically, the wavelength intervals or spectral bands are
chosen according to their relatively low atmospheric absorption,
which is spectrally highly variable. For example, the main atmos-
pheric windows for the measurement of sea surface temperature
(SST) in the mid- and far-infrared part of the solar spectra are
�3.7 and 11–12 mm, respectively.

SRS imaging systems are generally characterized according to
their spatial, temporal, and spectral resolutions (Campbell, 2007;

Table 1). The spatial resolution specifies the nominal pixel size of
the satellite image, and the temporal resolution specifies the revis-
iting frequency of observation for a specific location. A sensor’s
spectral resolution specifies the number, width, and position in
the electromagnetic spectrum of spectral bands where it can
collect reflected radiance. An exhaustive list of the available SRS
datasets is beyond the scope of this review, so we present only
the most common and useful relevant parameters: SST, sea
surface salinity, windspeed, sea surface height (SSH), chlorophyll
a (Chl a), and Chl a-derived primary production (Table 2).

SRS data products are classified according to the processing
level, from raw to end-user data (Table 3). Raw data constitute
the first level, referred to as level 0, which contains all the orbital
telemetry information, calibration coefficients, and various ancil-
lary data, as well as the raw data from the sensors, often in a
complex multiplexed form. These data cannot be processed
easily outside specialized centres. Level 1 data contain the same
data as level 0, but are reorganized by channel and are in various
sublevels, from raw measurements to geophysical units (top of
atmosphere irradiance and brightness temperature). Data are in
the orbit form, i.e. satellite coordinates. Level 2 data are still in
the orbit form, but include geolocation and atmospheric correc-
tions. For many scientific users, this is the first exploitable data
level. Level 2 data contain the end-user geophysical parameters
(i.e. normalized water-leaving radiance or reflectance, SST) and
make use of meteorological information from ancillary sources.
In addition, this level contains a number of variables of scientific
interest that can be retrieved from various sensors on board differ-
ent satellites and computed with specific algorithms. For SST
retrieval, Figure 1 summarizes the main processing steps applied
to the signal measured by the sensor to obtain first a measured
radiance (expressed in W m22 sr21 mm21), then the top-of-
atmosphere “brightness temperature” (the theoretical temperature
if atmosphere and ocean were black bodies, i.e. absorbing and
re-emitting all the energy they receive), and finally a valid SST
measurement. This last and most critical step consists of inverting
a radiative transfer model that theoretically describes the alteration
of the original signal through the atmosphere before it reaches the
sensor. These models are complex; they assume a precise knowl-
edge of the emissivity of the atmosphere and ocean, which is lower
than from a black body. Practically, this step is generally done with
empirical algorithms that take advantage of the differences in the
atmospheric alteration of the signal within two (or more) distinct
wavelengths. SST is computed as a sum of linear combinations of
the brightness temperature measured in these different wave-
lengths. The coefficients of the relationship are determined by a
minimization process using match-up in situ measurements
from buoys. Similar data processing is applied to OC measure-
ments, whose most important optical component is the upward
water-leaving radiance just above the sea surface (Lw), a value
that depends on the absorption and backscattering properties

Table 1. Main ranges of spatial, temporal, and spectral resolutions used in the terrestrial and global environment, including marine and
atmospheric domains.

Resolution Environment Low resolution Medium resolution High resolution

Spatial Terrestrial 30–1000 m 4–30 m 0.4 –4 m
Marine 10–50 km 2–10 km ≤1 km

Temporal Terrestrial .16 d 4–16 d 1–3 d
Marine .5 d 1–5 d ≤1 d

Spectral – 1 channel (e.g. panchromatic 3–10 channels ≥10 channels (hyperspectral)
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Table 2. Main sensors and datasets of interest for oceanographers and fishery scientists, with all products level 3 gridded, except where explicitly mentioned otherwise.

Parameter Institution Sensor Platform Temporal resolution Spatial resolution Period

SST NASA OBPG MODIS EOS AQUA d, week, month, Clim. 9 km, 4.5 km July 2002�
SST NASA PO-DAAC Pathfinder V5 NOAA AVHRR d, week, month, season, Clim. 4.5 km January 1985 � December 2005
SST NASA PO-DAAC Pathfinder V4, V5 NOAA AVHRR Week, month, Clim. 9 km January 1985 � 2003/08
SST OSI-SAF EUMETSAT SEVIRI MSG, GOES-east 3–12 h, hourly 1/108, 1/208 July 2004�
SST OSI-SAF EUMETSAT METOP AVHRR d, (2 d21: 00–12 h) 1/208 July 2007�
SST OSI-SAF EUMETSAT METOP (Level 2) AVHRR d (2 d21), 3-month granule orbit 1 km November 2009�
SST NASA REMSS TRMM TMI d, 3-d, week, month, Clim. 1/48 November 1997�

AQUA AMSR-E August 2002�
SSS ESA CNES MIRAS (Level 1/2) SMOS 10 –30 d 50– 200 km January 2010�
Chl a NASA OBPG MODIS EOS AQUA d (1 d21), 3-d, 8-d, month, Clim. 4 km July 2002�
Chl a NASA OBPG SeaWiFS SeaStar 8-d, month, Clim. 9 km December 1997�
Chl a NASA OBPG MODIS (Level2) EOS AQUA d, 5 month orbit 250 m, 500 m, 1 km July 2002 �
Chl a ESA GLOBCOLOR MERIS ENVISAT d, week, month 300 m, 1 km March 2002�
Windspeed IFREMER CERSAT ERS AMI 8-d, month, Clim. 18 August 1991 � April 2002

wind direction QuickScat Seawind 1/28 December 1999 � November 2009
Windspeed NASA REMSS QuickScat Seawind d, 3-d, week, month 1/28 December 1999 � November 2009

wind direction
Windspeed NASA REMSS SSM/I DMSP series d, 3-d, week, month 1/48 July 1987�

TMI TRMM December 1997�
AMSR-E EOS-AQUA August 2002�

SSH CLS AVISO ERS-TOPEX-JASON – Week (delayed time) 1/38 October 1992�
SLA d, J21, J26 (real time)
PP NASA OBPG SeaWiFS (Chl a, PAR, SST) – 8-d, month 9, 18 km October 1997 � December 2008
PP NASA OBPG MODIS (Chl a, PAR, SST) – 8-d, month 9, 18 km July 2002 � December 2007

Clim., climatology; SLA, sea level anomaly; SSH, sea surface height; SST, sea surface temperature; AMI, active microwave instrument; AMSR-E, advanced microwave scanning radiometer for the Earth Observing
System; AVHRR, advanced very high resolution radiometer; AVISO, archiving, validation, and interpretation of satellite oceanographic data; CERSAT, Centre ERS d’Archivage et de Traitement; CLS, collecte
localization satellites; DMSP, Defense Meteorological Satellite Program; EOS, Earth Observing System; ENVISAT, ENVIronmental SATellite; ERS, European remote sensing; ESA, European Space Agency; IFREMER,
Institut Français de REcherche pour l’Exploitation de la MER; GOES, geostationary operational environmental satellite; HDF, hierarchical data format; MODIS, MODerate resolution Imaging Spectrometer; MSG,
Meteosat second generation; NASA, National Aeronautics and Space Administration; NetCDF, network common data form; NOAA, National Oceanic and Atmospheric Administration; OBPG, Ocean Biology
Processing Group; OSI-SAF, Ocean and Sea Ice Satellite Application Facility; PAR, photosynthetically active radiation; PO-DAAC, Physical Oceanography Distributed Active Archive Centre; QuickScat, quick
scattermeter; REMSS, remote sensing system; SeaWiFs, Sea-viewing Wide Field-of-view Sensor; SEVIRI, spinning enhanced visible and infrared imager; SSM/I, special sensor microwave/imager; TMI, TRMM microwave
imager; TOPEX, The Ocean Topography Experiment; TRMM, Tropical Rainfall Measuring Mission.
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(referred to as inherent optical properties) of marine components
(pure seawater, suspended or dissolved constituents). The concen-
tration of Chl a, the dominant pigment in marine phytoplankton
that makes the sea green, is computed from specific OC algor-
ithms, usually from the remote-sensing reflectance (the sunlight
reflected from below the sea surface, computed as the ratio of
the normalized Lw to the solar irradiance in 3–5 wavelengths).

The data processing of a thermal signal for computing SST
initially depends on the radiance measured by the sensors.
Hence, different satellites and sensors will provide different
spatial coverage and estimates of SST (Figure 2). For instance,
the high observation frequency of the geostationary METEOSAT
satellite (15 min) allows better declouding through data proces-
sing, whereas the microwave sensor TMI is unaffected by cloud
cover (except for heavy rain) at the cost of lower resolution
(25 km), lack of coastal data, and narrow swathes that result in
observation gaps between 508S and 508N. The SST product com-
bining data from several sensors is fully cloud-free (Figure 2), but

the blending process could make it less useful for describing
mesoscale features and for climatological studies.

Level 3 data are the most widely distributed to the scientific
community and are available from various archive sources. This
level may contain a large number of parameters, including, for
example, Chl a concentration from various algorithms, chloro-
phyll fluorescence efficiency, total suspended matter, and SST
with quality levels. All data are gridded using a cartographic pro-
jection and often are averaged temporally and spatially. Level 4
includes higher-level composite products that require parameters
and model applications not necessarily extracted from SRS (e.g.
primary production, composite SST). To use the most relevant
SRS product for scientific application, it must be emphasized that
many uncertainties linked to the intrinsic nature of the physical
models result in consequent uncertainties in the geophysical vari-
ables obtained, even more so for those derived through empirical
algorithms. Table 3 gives an indication of the typical errors associ-
ated with the most common SRS geophysical parameters. For many

Table 3. Conceptual scheme of the data processing of the most common oceanic parameters, from the raw (level 0) data to geophysical
variables (upper part) and post-processing of variables data to compute specialized level 4 parameters (lower part).

Level 0 parameter � Level 1 parameter
� Level 2/3 (geophysical
variable)

Brightness temperature for two or three infrared
wavelengths

Calibration, inversion of Plank’s law, cloud masking,
atmospheric correction (split-window algorithm)

SST (8C)

Normalized water-leaving radiances at six
wavelengths

Calibration, band combination, cloud masking Chl a (mg m23)

Surface backscatter coefficient (s) Cox and Munk (1954) model (s ¼ aWb) Windspeed and direction (if
multidirectional measures)

SSH Pseudogeoid (average signal) subtraction SLA

Input geophysical variables Processing scheme � Level 4 meta-variable

SST Convolution (e.g. Sobel operator) Local SST gradient (8C km21)
SST Determination of limits between water masses Frontal positions
Chl a, photosynthetically available radiation

(PAR), photosynthetic efficiency curve
Equation of water attenuation and photosynthetic

efficiency relationship
Primary production

(mg C m22 d21)
SLA Application of baroclinic instability Geostrophic currents

Figure 1. Typical processing steps of a thermal signal measured by a satellite remote-sensing sensor according to its physical transformations.
The case of SST measured by the AVHRR sensor.
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of these, the companion information is often available as gridded
values, in the form of either quality flags or a root-mean-square
error estimate associated with each value. This proviso is even

more important for level 4 products, such as primary production,
where the errors of component parameters are accumulated.
Moreover, many models incorporate empirical or semi-analytical

Figure 2. Example of daily SST products over the Atlantic Ocean on 18 June 2010 from three thermal-infrared sensors, (a) MODIS/AQUA, (b)
AVHRR/METOP, (c) SEVERI/METEOSAT-MSG, (d) a microwave sensor AMSR/ADEOS, and (e) a 9-km-resolution level 4 blended product
from remote-sensing system combining two microwave sensors (AMSR and TMI) and one infrared sensor (MODIS).
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relationships based on regional datasets that cannot be extrapo-
lated spatially. Even commonly used generic models display vari-
able errors in space and time that users might consider.

Level 2–4 processed data are sometimes still in raw binary
formats that come with external information about the data struc-
ture, but currently they are more often available in self-describing
machine-independent formats. The latter are in two main formats:
the HDF (Hierarchical Data Format) from the HDF Group of the
University of Illinois, and the NetCDF (Network Common Data
Form) from the University Corporation for Atmospheric
Research (UCAR). Both are open standards and are dedicated to
multidimensional gridded datasets. They come with their own
software libraries; in their latest versions (HDF5 and NetCDF4),
they are quite similar and have been adopted by a large number
of research institutions and space agencies. Several dedicated
viewers exist for both formats, and most computing platforms
and programming languages, such as R, IDL/GDL, Matlab/
Octave, and Ferret, include libraries for reading them. Current
projects in computer science aim to define standard formats and
protocol accesses to reconcile the different SRS data formats
through Unidata’s Common Date Model (http://www.unidata.
ucar.edu/software/netcdf-java/CDM/).

SRS and the detection of mesoscale oceanographic
features
Here, the focus is on state-of-the-art methods for detecting mesos-
cale oceanographic structures, such as fronts, eddies, and filaments
that span spatio-temporal scales from one to hundreds of kilo-
metres and from hours to weeks. Mesoscale structures are impor-
tant ecosystem features, often associated with enhanced
productivity and fish aggregation (Olson et al., 1994; Bakun,
2006). They were initially studied with conductivity–tempera-
ture–depth surveys, acoustic Doppler current profilers, and
ocean circulation models, then more directly and synoptically by
SRS. SRS observations are also at the origin of feature-orientated
regional modelling of oceanic fronts (Gangopadhyay and
Robinson, 2002).

SRS for the detection of oceanic structures, using thousands of
easily accessible global, daily, satellite images, is a powerful tool for
studying the spatio-temporal patterns of mesoscale activity in the
ocean. Several objective methods have been developed for detect-
ing mesoscale SST frontal activity directly. The two prevailing
approaches include (i) gradient-measurement and (ii) histogram-
based methods.

Horizontal-gradient approaches are suited for the detection of
fronts where the use of time-averaged data and a spatial resolution
.4 km are appropriate (e.g. offshore fronts). Typical edge-
detection methods are discrete approximations of an
image-intensity-function gradient (Canny, 1986). However, gradi-
ent approximations can reveal spurious oceanic structures when
applied to noisy, partially uncorrected data (Holyer and
Peckinpaugh, 1989), so new gradient-based algorithms have
been developed to improve front detection and preserve frontal
structure using noise-reduction filters (Oram et al., 2008; Belkin
and O’Reilly, 2009).

The histogram-based method is the basis of the single-image
edge-detection (SIED) algorithm of Cayula and Cornillon
(1992), which relies on boundary detection between water
masses. This algorithm is robust and distinguishes genuine ocean
fronts from spurious gradients on SST images (Miller, 2009). It has
been the most widely and successfully applied front-detection

method (Kahru et al., 1995). The image is divided into indepen-
dent subwindows, and the probability of an edge occurrence is
evaluated in each subwindow by detecting bimodality in an SST
histogram. The method therefore finds the threshold temperature
that best separates two water masses (Cayula and Cornillon, 1992,
1995). Although the SIED algorithm performs well, Nieto (2009)
improved edge detection by more than 100% in upwelling areas
using sliding windows and an optimal combination of the detected
segments considered as fronts, allowing the identification of most
fronts in the Canary and Chilean Humboldt systems (Figure 3). In
addition to gradient- and histogram-based methods, other tech-
niques, including the entropic (Gómez-Lopera et al., 2000),
Canny edge detector (Canny, 1986; Castelao et al., 2006), and
neural network approaches (Tejera et al., 2002) have been
applied for detecting SST fronts.

Although research has focused on thermal fronts, the detection
of OC fronts has been limited (Miller, 2004; Royer et al., 2004).
Chlorophyll fronts arise from physical, chemical, and biological
interactions within complex spatial patterns and features, such
as blooms, which are more difficult to detect than SST fields
(Belkin and O’Reilly, 2009); nevertheless, the same edge-detector
methods can be applied. Thermal and OC fronts can also be com-
bined into a single map for assessing biophysical interactions in
specific ecosystems (Miller, 2004).

SRS data have also been used to detect mesoscale circulation
features, such as filaments, eddies, and river plumes. Based on
the SIED algorithm (Cayula and Cornillon, 1992), Nieto (2009)
recently developed a method for identifying upwelling filaments
based on their orientation and distance from the coast.
Mesoscale indicators related to coastal upwelling, such as frontal
intensity, filament, wind-induced turbulence, upwelling enrich-
ment, and coastal retention indices, allow investigation of their
relationships with fish abundance (Faure et al., 2000). Remotely
sensed SSH data provide information on sea level anomalies
(SLAs) and geostrophic currents that blend pressure-gradient
forces and the Coriolis force. SLA and geostrophic currents
allow identification of cyclonic and anticyclonic eddies (Tew-Kai
and Marsac, 2010). Indicators such as vorticity, stretch, shear,
and deformation rate (Testor and Gascard, 2005) can then be com-
puted to describe eddies. The Okubo–Weiss criterion (Okubo,
1970; Weiss, 1991) has been used widely to determine the relative
contribution of distortion vs. vorticity. Finite-size Lyapunov expo-
nents permit the detection of the Lagrangian coherent structures
that cannot be detected with the Okubo–Weiss criterion
(d’Ovidio et al., 2004; Tew-Kai et al., 2009). The eddy kinetic
energy indicates the intensity of water flow and can be considered
a proxy for the boundary between two eddies (Heywood et al.,
1994). All these indicators allow the characterization of fronts or
mesoscale eddies, where the energy of the physical system is trans-
ferred to biological processes (Olson et al., 1994; Bakun, 2006).
Several studies have also focused on estuarine areas and associated
river plumes, which constitute essential habitats sustaining part of
the life cycle of coastal species, particularly the nursery grounds
(Beck et al., 2001). SRS data have been used to detect the spatial
extents of plumes, either from the SST signature (Jiang et al.,
2009; Otero et al., 2009) or from OC-derived properties (Molleri
et al., 2010). The November 2009 launch of the Soil Moisture
and Ocean Salinity (SMOS) satellite, which derives salinity directly
from microwave radiometer measurements (Font et al., 2010),
could be instrumental in detecting plume extension without
using products dependent on biological processes, such as OC.
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In summary, recent advances in satellite sensors and technology
allow the scientific community access to a variety of datasets from
different wavelengths of the light spectrum. These data have a
global coverage at fine spatial and temporal scales and are available
in open-access formats that can be imported into most statistical
software. Many products have been derived from the raw satellite
data, including variables such as SST, SSH, and Chl a concen-
trations. These products are being used to improve our under-
standing of mesoscale features important in the biological and
ecological functioning of marine ecosystems. The study of meso-
scale ocean features, such as fronts, filaments, eddies, Lagrangian
coherent structures, and river plumes, is facilitated by a variety
of techniques and algorithms that are available or under devel-
opment. Detection, study, and understanding of these features is
now an important component of operational oceanography and
ecosystem modelling.

Identifying habitat preferences for marine
fish populations
SRS measurements are the basis for a large set of indicators
describing the oceanographic conditions that determine preferred
habitats for feeding, spawning, maturation, and predator avoid-
ance. The physical and biological properties of pelagic habitats
influence the distribution and abundance of fish populations
through environmental constraints on prey availability, the
survival of larvae, and migration (Cushing, 1982; Bakun, 1996).

In addition, oceanographic conditions may influence accessibility
and vulnerability to fishing by modifying gear catchability
(Bertrand et al., 2002). Initially used as fishery-aid products, SRS
data are now essential to describing and understanding the habi-
tats of marine species, and their relationships with oceanographic
conditions.

SRS and fishery-aid products
Interest in SRS for marine fish harvesting has been recognized
since the advent of satellite sensors measuring water temperature
and colour in the early 1960s. Through the 1970s and the 1980s,
several national scientific projects (reviewed by Santos, 2000)
were conducted to (i) assess the potential of airborne and satellite
oceanographic data for forecasting favourable fishing grounds, and
(ii) develop distribution services to fishing vessels for remotely
sensed products (Montgomery, 1981; Petit, 1991; Stretta, 1991).
Support of fishing activities with public funds was advocated to
facilitate the development and optimal utilization of fishery
resources by decreasing fuel costs, sea time, and ship maintenance
costs (Santos, 2000). Commercial products derived from satellite
imagery as an aid to fish harvesting expanded rapidly and currently
include SSH anomaly and OC data, in addition to meteorological
and SST maps. SRS data are provided as processed datafiles in near
real time (1 d to a few days from acquisition). The information is
layered with computerized navigation and geographic information
systems, allowing fishers to visualize maps and store data

Figure 3. Example of front detection of SST in the Chilean Humboldt Current system, with land to the right, based on the (a) SIED of Cayula
and Cornillon (1992) and (b) its modified version using sliding windows (Nieto, 2009). The modified algorithm allows for improving front
detection by more than 100% in upwelling areas.
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(including their own) in a user-friendly way (Simpson, 1992).
With the recognition that overfishing is a global phenomenon
(Pauly et al., 2003; Worm et al., 2009), applied fishery research
has moved increasingly from fishery-aid projects towards ecologi-
cal and conservation issues, the exception perhaps being countries
with developing fisheries (Solanki et al., 2005).

SRS and the relationships between marine resources
and oceanographic conditions
The two main ecological processes underlying the relationships
between oceanographic features and marine resources in the litera-
ture are (i) prey availability, and (ii) development, growth, and
survival of early life-history stages. Several studies since the
1980s have investigated the relationships between oceanographic
conditions derived from SRS data and the fisheries for large and
small pelagic fish, shrimps, cephalopods, and sharks in the world
oceans (Maul et al., 1984; Klimley and Butler, 1988; Herron
et al., 1989; Yang et al., 1995; Bigelow et al., 1999; Valavanis
et al., 2002; Fuentes-Yaco et al., 2007; Ouellet et al., 2007;
Kumari and Raman, 2010). A large set of SRS indicators has
been used to describe the physical properties of water masses
(e.g. SST) and dynamic oceanographic features, such as eddies,
filaments, and upwellings, at various spatio-temporal scales
(Table 2; Lasker et al., 1981; Saitoh et al., 1986; Fiedler and
Bernard, 1987; Demarcq and Faure, 2000). Overall, Chl a concen-
tration and SST have been the most frequent indicators used to
explain fish presence and abundance, generally based on catch
per unit effort (cpue). Always, Chl a concentration, used to
describe habitat productivity, was derived from Coastal Zone
Colour Scanner (CZCS) and SeaWiFS data for the periods
1979–1986 and 1997–2009, respectively. SST was derived from
advanced very high-resolution radiometer (AVHRR) data, which
represent the most consistent time-series of SST available on a
long-term and global scale. AVHRR SST products have been
used to compute SST means, temporal changes, and gradients
and to detect thermal fronts (Belkin and O’Reilly, 2009).
Indicators describing the occurrence and dynamics of oceanic
structures, such as front distance and upwelling intensity, used
as early as the 1980s, recognized the strong physical–biological
interactions within mesoscale features that provide favourable
conditions for marine organisms (Olson et al., 1994; Bakun,
2006). Methods for analysing the functional relationship
between pelagic habitats and marine resources have evolved
from qualitative approaches consisting of overlaying cpue data
on oceanographic maps (Laurs et al., 1984) to multiple linear
and non-linear regression methods (Zainuddin et al., 2008).
However, despite the increasing complexity of statistical
approaches, few studies account for spatial and temporal autocor-
relations when relating gridded (e.g. Chl a fields) and point data
(e.g. cpue). Statistical tools for analysing spatial processes are avail-
able and should be used when possible (Royer et al., 2004).

Epipelagic predators, such as tuna (Thunnus spp.) and tuna-
like species, are a particular focus of analyses involving SRS data.
The strong relationship between tuna abundance and mesoscale
structures such as upwelling filaments was recognized early
and is explained mainly by the associated enrichment and
increases in tuna prey such as euphausiids (Laurs et al., 1984;
Maul et al., 1984; Fiedler and Bernard, 1987). Tunas are continu-
ous swimmers, constantly seeking concentrated prey patches
to satisfy their great energy requirements (Olson and Boggs,
1986). Mesoscale structures enhance productivity and forage

opportunities through complex physical mechanisms (Olson
et al., 1994). In particular, eddies favour the concentration and
aggregation of the micronekton that constitutes the main prey of
tunas (Young et al., 2001; Sabarros et al., 2009). Other analyses
focused on the influence of oceanographic conditions on the sur-
vival of larvae based on recruitment indices, particularly in upwel-
ling areas (Demarcq and Faure, 2000; Faure et al., 2000). In such
cases, the underlying processes are described by the Bakun ocean
triad, i.e. enrichment–retention–concentration (Bakun, 1996,
2006). Such bottom–up control might result in non-linear
dynamics (Cury and Roy, 1989); appropriate statistical methods,
such as generalized additive models, need to be used accordingly
(Faure et al., 2000).

SRS and preferred habitats during migrations
The field of biologging, the deployment of recording and transmit-
ting tags on animals to study their movements, behaviour, physi-
ology, and habitat usage, has expanded rapidly over the past
decade with the advances in miniaturization of electronic tags
(Bograd et al., 2010). SRS oceanographic data combined with
tracking data can greatly increase our understanding of an
animal’s habitat and behaviour. SRS data provide both the
meso- and larger-scale oceanographic context for each available
animal position and time. The types of SRS data most commonly
used with animal tracking include SST, surface Chl a, and geos-
trophic currents. Before linking tracking and SRS data, it is prefer-
able to estimate the most likely tracks using a state–space
modelling approach (Patterson et al., 2008). In addition, improved
tag position data are obtained by including satellite-derived SST in
the estimation process (Nielsen et al., 2006). A recently developed
alternative modelling approach validated with GPS data consists of
bootstrapping random walks generated from the probability distri-
butions of animal locations and trajectories for the geolocation of
tagged animals (Tremblay et al., 2009). The method provides a
flexible framework for including remotely sensed datasets and
has the advantage of being easier to implement than the state–
space models.

SSTs are the most common SRS data used in combination with
tagging data. These can be analysed to determine whether an
animal uses mesoscale features, including temperature fronts
and cyclonic eddies, and to characterize its habitat in terms of pre-
ferred SSTs (Polovina et al., 2000; Kobayashi et al., 2008). For log-
gerhead sea turtles (Caretta caretta), preferred habitat north of
Hawaii constitutes a temperature and chlorophyll front delineated
by a value of SST of 188C. Daily maps of probable turtle habitat,
defined by a narrowband around the 188C SST isotherm, are dis-
tributed to longline fishers to help them avoid the area to reduce
turtle bycatch (Howell et al., 2008).

SRS chlorophyll data often serve as a valuable proxy for water
mass boundaries and may identify upwelling associated with
mesoscale features (see section on detecting these features). The
range of surface chlorophyll values used by an animal may help
characterize its habitats (Polovina et al., 2000; Kobayashi et al.,
2008). For example, by combining turtle tracking with SeaWiFS
chlorophyll data, Polovina et al. (2001) characterized and
described interannual changes in the position and dynamics of a
North Pacific basin-wide chlorophyll front, the Transition Zone
Chlorophyll Front (TZCF), which has proven to be an important
migration and forage habitat for a variety of species.

Geostrophic currents can be estimated from satellite altimetry
and are especially useful in identifying major ocean currents,
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mesoscale eddies, and meanders (Polovina et al., 2006; see section
on mesoscale structures). For example, SRS chlorophyll and alti-
metry together provided insight into the importance of the
Kuroshio Extension Current as a key forage habitat for juvenile
loggerhead turtles (Polovina et al., 2006). When sufficient tracks
are available, SRS oceanographic and tracking data can be inte-
grated in statistically rigorous ways. For example, one approach
to defining an animal’s habitat begins by selecting a number of rel-
evant environmental variables. Then, for each variable, statistical
tests are conducted to determine whether the frequency distri-
bution occupied by the animal is statistically different from the
distribution constructed from an envelope around its track
(Kobayashi et al., 2008). For variables with significant differences
between the two distributions, it can be inferred that the animal
is selecting a subset of the available range of values; that subset
is then used to define its habitat (Kobayashi et al., 2008).
A second statistical approach determines whether an animal is
actively associating with an ocean feature, such as an eddy or
front. This approach constructs the frequency distribution of the
distance between the animal and the feature for all available
animal positions. A randomization test then determines whether
this distance is statistically significant (Kobayashi et al., 2011).

In summary, understanding and identifying habitat preferences
is crucial to management and conservation of marine populations.
Initially used as fishery-aid products, SRS data provide an invalu-
able source of information for unveiling the relationships between
marine resources and oceanographic conditions. Since the advent
of SRS data acquisition, many studies have focused on the impact
of the physical environment on marine species through the
relationships between physical indicators and prey availability,
and the development, growth, or survival of early life stages. The
relationship between thermal fronts and the location of large
pelagic species has been demonstrated since the early 1980s. SRS
data also cover a wide range of applications for improving our
knowledge of marine species ecology, in particular their move-
ments and migrations. The combination of data collected by elec-
tronic tags and SRS-derived oceanographic data has improved our
understanding of the impact of oceanic features on marine species’
behaviours while foraging and migrating.

SRS data for ecosystem analyses and models
SRS and ocean partitioning
An ecosystem can be defined as a system of complex interactions of
populations between themselves and their environment (Garcia
et al., 2003). The first step in any EAFM is the definition of the
spatio-temporal extent of the system of interest. A major objective
of the discipline of biogeography is to investigate the structure,
composition, and links between different ecosystems of interest
to regroup them at larger scales (Lomolino et al., 2005).
Consequently, biogeography requires a lot of data that are homo-
geneously distributed in space and time (Ducklow, 2003). Because
of the dynamic nature of the oceanic realm and logistic difficulties
of sampling the marine environment (Richardson and
Poloczanska, 2008), advances in marine biogeography have been
constrained by data availability and coverage (Longhurst, 2007).
Several attempts have been made in the past century to partition
the global ocean using biological observations (Ekman, 1953;
Margalef, 1961) and physical variables (Cushing, 1989; Fanning,
1992). It was only in the mid-1980s that Yentsch and Garside
(1986) suggested that major oceanographic patterns might be

approximated by the primary production derived from satellite
observations. Based on this hypothesis, the CZCS dataset and par-
ameters known to control algal blooms were used to implement a
methodology for defining ecological units (Sathyendranath et al.,
1995). Subsequently, Longhurst et al. (1995) proposed partition-
ing the global ocean into four biomes, subdivided into �50 bio-
geochemical provinces (BGCP), each province representing an
ecological entity with specific and predictable environmental
conditions.

During the past decade, Longhurst-type partitioning has been
the dominant paradigm in marine biogeography. Several analyses
have questioned the relevance of BGCP by focusing on physical
conditions and particular components of the pelagic foodweb,
i.e. in situ temperature and salinity (Hooker et al., 2000), bacterial
abundance (Li et al., 2004), plankton abundance, composition,
and diversity (Gibbons, 1997; Beaugrand et al., 2002; Alvain
et al., 2005), surface ocean Chl a (Hardman-Mountford et al.,
2008), and the distribution of top predators (Fonteneau, 1998).
Overall, results revealed a good match between the spatio-
temporal distribution and composition of marine organisms and
Longhurst’s provinces. The emergent hypothesis was that the
physiological and behavioural characteristics of marine organisms
were adapted to their ecological provinces; the physical and bio-
geochemical environment may constrain the abundance and pro-
duction of lower trophic levels in ways that affect the entire
foodweb (Beaugrand et al., 2002). The use of ecological provinces
has been proposed as a useful tool for time-series analysis, man-
agement, and conservation planning at global scales (Pauly et al.,
2000). Alternative partitions have also been proposed for econ-
omic and conservation applications in coastal regions (Spalding
et al., 2007; Sherman et al., 2011). Always, however, static parti-
tioning appears too simplistic for operational management of
the dynamic marine environment, which can respond quickly to
changes in physical forcing (Platt and Sathyendranath, 1999;
Cullen et al., 2002). Recent work, based on SRS data in conjunc-
tion with other datasets, has attempted to implement dynamic
biogeography at regional scales (Devred et al., 2007;
G. Reygondeau, pers. comm.; Figure 4). These methods display
promise in tracking spatial changes in ecosystem boundaries and
might eventually be able to delineate regions displaying early
signs of anthropogenic pressures requiring management measures.
The use of biogeography as a spatial reference to identify and
monitor specific ecosystems appears to be a useful tool for ecosys-
tem management and biodiversity conservation (Pauly et al.,
2000).

SRS and ecosystem carrying capacity
The relative role of top–down (consumer-driven) and bottom–up
(resource-driven) controls in regulating animal populations and
structuring ecosystems has been a subject of debate among ecolo-
gists for some time. Pacific–Atlantic cross-system comparisons
reveal evidence of bottom–up control through the dependence
of long-term fishery production on SRS-derived phytoplankton
production (Ware and Thomson, 2005; Frank et al., 2006;
Chassot et al., 2007). At global scales, i.e. across large marine
ecosystems (LMEs), SRS-derived estimates of primary production
are also related to fisheries catches (Chassot et al., 2010; Sherman
et al., 2011). The relationship between primary production and
catches is complex and varies among LMEs; a large portion of
the variance results from differences in life histories (and hence
productivities) of fish (as indexed by maximum length), ecosystem
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type, and fishing pressures (Chassot et al., 2010). Ecosystems
fished at unsustainable levels are less efficient at converting
primary production into fisheries catches, and the exploitation
of small-bodied (lower trophic level) fish increases the catch per
unit of primary production. The importance of the potential
link between primary and fisheries production was realized
more than half a century ago, but the recent detailed exploration
of this issue was only made possible by the advent of SRS OC
and primary productivity. Past large-scale studies relied on
in situ datasets resulting from different sampling and process-
ing methods and were generally characterized by low spatio-
temporal sampling coverage. SRS of the marine environment is
now basic to cross-trophic-level analyses of ecosystem production,
structure, and function only because of the availability of a com-
prehensive, fine-scale, and consistent sampling framework (Platt
et al., 2007).

SRS and ecosystem models
Ecosystem models are considered a necessary part of EAFM
implementation (Cury et al., 2008). Estimation of primary pro-
duction is common to most modelling approaches, as an integral
part of the model, or as a forcing function. Primary production is a
typical level 4 SRS product requiring the use of non-SRS par-
ameters, such as mixed-layer depth and photosynthetically active
radiation, in addition to SRS Chl a (and often SST) in a model
(Longhurst et al., 1995; Behrenfeld and Falkowski, 1997).
SRS-derived primary production has been used as an initial
forcing at the base of the modelled foodweb to investigate
energy transfers from lower to upper trophic levels. For instance,
an Ecopath with Ecosim model was applied to the eastern tropical
Pacific to explore the effects of climate change on open-sea

communities (Watters et al., 2003). Further, size-spectrum model-
ling approaches have been used to estimate fish production and
biomass in the absence of fishing, based on satellite-derived
primary production allocated to phytoplankton weight classes to
track energy fluxes through marine foodwebs at a global scale
(Jennings et al., 2008). These size-spectra approaches, coupled
with SRS Chl a and SST data, have great power for exploring the
relative impacts of fishing against an unfished baseline at an eco-
system level (Jennings and Blanchard, 2004), as well as elucidating
biogeochemical processes (Wilson et al., 2009).

An alternative approach is to estimate primary production
using coupled physical–biogeochemical models (for a review,
see Plagányi, 2007). This has the potential for reconstructing
past (pre-SRS) and forecasting future ocean states, in particular
to addressing the potential effects of climate change. However,
SRS products are again essential, for either model initialization,
parameter estimation of the biogeochemical model from OC
data (Friedrichs, 2002; Huret et al., 2007), or assimilation into
operational systems. To date, the latter has happened only with
SST and SSH (Cummings et al., 2009). As biogeochemical and
ecological considerations are incorporated into ocean data assim-
ilation systems (Brasseur et al., 2009), different SRS products,
allied with automated in situ data, will become a major source
of information for these operational systems and will help meet
the challenges of an EAFM.

To conclude, the complexity of marine ecosystems and the large
spatio-temporal scales involved in their functioning are difficult to
grasp using point and regional observations. SRS provides daily
high-resolution data at global scales not feasible by any other
means. Such a synoptic view has allowed ocean partitioning
based on objective physical and biological criteria and specific
functioning. The continuing daily production of satellite images
can also be used to track temporal variations in the marine pro-
vinces and to predict how their structure and spatial extent
might be affected by climate change. SRS data and their derived
products, such as temperature and primary production, are also
invaluable sources of information as inputs to ecosystem models
that are fully part of the implementation of an EAFM.

Discussion
Computing SRS-derived indicators for fishery science
SRS data have been used in fishery science since the availability of
the first SST and colour datasets at the end of the 1970s. Over time,
the diversity and the resolution of datasets and SRS-derived indi-
cators have increased, allied with our understanding of the
complex spatio-temporal relationships between oceanographic
conditions and individual, population, and community dynamics
(Polovina and Howell, 2005). However, most of the published
papers reviewed here rely on short time-series of data and relatively
few remotely sensed indicators: SST and primary production
derived from AVHRR and SeaWiFS sensors, respectively. Some
recent studies included indicators derived from several SRS
sources and use non-linear statistical models (Zainuddin et al.,
2008; Tew-Kai and Marsac, 2010). New indicators have been pro-
posed to characterize the oceanographic features involved in the
ecological processes determining fish distribution and occurrence,
e.g. for feeding and spawning; these include the duration of spring
blooms, the size composition of phytoplankton, and the degree of
persistence and recurrence of oceanic structures (Palacios et al.,
2006; Platt and Sathyendranath, 2008). These indicators aim to

Figure 4. (a) Map of Longhurst (2007) BGCP, and (b) a map of the
dynamic BGCP for 2005. Dynamic BGCP were derived from SST
based on the AVHRR series, SeaWiFS Chl a, salinity (World Ocean
database), and bathymetry (GEBCO) datasets (G. Reygondeau, pers.
comm.).
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describe better the ecological processes of interest, e.g. for north-
ern pink shrimp (Pandalus borealis), they elucidate the mechan-
isms governing egg hatching times and recruitment in the North
Atlantic (Koeller et al., 2009). Although the period for which
SRS data are available now spans 12 and 30 years for Chl a and
SST, respectively, few studies deal with such temporal scales.
However, longer periods with contrasting environmental con-
ditions and fish abundance are required to derive robust relation-
ships between oceanographic features and the population
dynamics of marine species. Future studies should also account
better for the spatial dimension of satellite SRS data by making
use of appropriate geostatistical methods.

Different satellites, sensors, processing techniques, and
models can be used to compute SRS indicators. Comparative
analyses of remotely sensed Chl a and depth-integrated
primary production derived from different models and
sensors have revealed large differences in processed data on
both global and regional scales (Carr et al., 2006; Friedrichs
et al., 2009; Djavidnia et al., 2010). However, throughout the
literature reviewed, sensitivity analyses were never conducted
to assess the robustness of the relationships relative to the
method used to compute the various indicators. In addition,
information on the uncertainties associated with
SRS-processed data, e.g. standard deviation around Chl a
(Mélin, 2010), was never provided, and remotely sensed indi-
cators were always treated as data measured without error.
Although cpue was used to describe marine population abun-
dance, such data are often fraught with uncertainty and
might not reflect fish abundance accurately, particularly for
pelagic species (Hilborn and Walters, 1992). Future studies
using SRS data should recognize all sources of uncertainty
associated with SRS and population-abundance indicators and
should evaluate the sensitivity of results to the uncertainty in
input parameters.

Including the vertical dimension in SRS approaches
SRS data have been used mainly to describe surface environmental
conditions, but to detect SRS Chl a and water turbidity might be
more relevant, because they account better for the vertical dimen-
sion of fish habitats (Brill and Lutcavage, 2001). Recently, Takano
et al. (2009) developed an empirical method to estimate the
three-dimensional structure of physical features in time and
space based on satellite altimetry data and in situ temperature
and salinity profiles. The method demonstrated good agreement
between observed and estimated isothermal depths and was
useful for predicting the vertical habitat utilization of bigeye
tuna (Thunnus obesus).

In open-ocean ecosystems, pelagic environmental conditions
derived from SRS often reflect prey distribution and abundance
that are generally poorly known and difficult to monitor.
Information on mid-trophic-level prey in open-ocean ecosystems
can be collected from (i) scientific trawl and acoustic surveys, (ii)
information on the diet of predators that can be used as biological
samplers of micronekton, and (iii) outputs from end-to-end
ecosystem models. Investigating the relationships between
SRS-derived oceanographic conditions and prey might then
provide useful insights into predator habitat preferences.

Ecosystem models that use SRS and in situ data as inputs include
the vertical dimension and overcome the limitations of
surface-restricted SRS data. SRS data have now become a major
source of information for ocean observation programmes, such as

the Global Ocean Observing System (GOOS), necessary for oper-
ational oceanography in an EAFM context. A better understanding
of ocean dynamics from environment to fisheries at a global scale
requires the ability to combine data collected with a wide range of
sensors, both in situ and remote, deployed on both mobile and
stationary platforms. The development of common data formats
and access protocols, such as SensorML (see http://www.
opengeospatial.org/projects/groups/sensorweb), is instrumental
in addressing these issues.

Studies combining SRS-detected mesoscale structures with
three-dimensional ocean circulation models may also further
understanding of the physical mechanisms involved in the gener-
ation of oceanographic features, such as eddies and meanders, and
the associated enhanced productivity (Kurien et al., 2010).

SRS and fisheries management
In the context of an EAFM, SRS of the marine environment pro-
vides a valuable source of information on the interactions between
fish species and their environment. Including environmental
effects on fish catchability, abundance, and distribution in the
process of abundance index estimation would be a first step to
improving scientific advice on the state and management of fish
stocks. Identifying spawning and/or feeding grounds based on
SRS is also a prerequisite for spatially orientated management
measures, such as the implementation of marine protected areas
(Druon, 2010). In the Pacific, the Hawaii-based swordfish
(Xiphias gladius) longline fishery was closed in 2006, because of
excessive bycatch of loggerhead sea turtles. Knowledge of turtle
habitats gained from tracking and SRS data (see above) was used
to assist fishers in avoiding areas with high turtle bycatch.
Launched in 2006, TurtleWatch provided 3-d SST composite
maps and weekly ocean currents estimated from SRS altimetry
for the fishing ground and the region with the highest probability
of loggerhead and longline gear interactions (Howell et al., 2008;
Figure 5). TurtleWatch was revised in 2008, based on experience
with the product in 2007, feedback from fishers, and analysis of
2007 fishery and bycatch data; revisions reflect the temporally
dynamic feature of the high-bycatch zone.

The ability to track and predict the spatial dynamics of marine
species using key environmental parameters will likely become
increasingly important as climate change alters phenological and
geographical distribution patterns of many marine populations
(Planque et al., 2010). Consequently, many habitat and niche
models have been developed in the past few years to depict and
predict the spatial distribution and temporal fluctuations of key-
stone species. Environmental-niche models attempt to reproduce
the current distribution and temporal fluctuations of a given
species by estimating suitable physical and biological conditions.
SRS constitutes an essential data source for niche- and habitat-
model implementation by providing worldwide coverage at high
temporal resolutions of key environmental parameters (e.g. temp-
erature) affecting marine organisms. Chl a is currently the only
biotic parameter monitored at the macroscale; consequently,
several studies have attempted to include it in the environmental-
niche models (Polovina et al., 2001). However, because of several
inherent biases in SRS data, this remains a challenging task
(Reygondeau and Beaugrand, 2011). Recently, Cheung et al.
(2009, 2010) used the model outputs derived from post-processed
SRS data to predict the effects of climate change on marine biodi-
versity and on maximum fisheries catch potential under some
Intergovernmental Panel on Climate Change (IPCC) scenarios.
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Such approaches could help implement adaptive fisheries manage-
ment plans that respond to the predicted changes in the spatial dis-
tribution and productivity of fish populations.
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