
 

 

 

 

 

 

 

MARINE STRATEGY FRAMEWORK 

DIRECTIVE 

Task Group 4 Report 

Food webs 

APRIL 2010 

 

 

S. Rogers, M. Casini, P. Cury, M. Heath, X. Irigoien, H. Kuosa, M. Scheidat, 

H. Skov, K. Stergiou, V. Trenkel, J. Wikner & O. Yunev 

 

Joint Report 

 

Prepared under the Administrative Arrangement between JRC and DG ENV 

(no 31210 – 2009/2010), the Memorandum of Understanding between the 

European Commission and ICES managed by DG MARE, and JRC’s own in-

stitutional funding 

 

Editor: H. Piha  

 

EUR 24343 EN - 2010  



 

The mission of the JRC is to provide customer-driven scientific and technical support for the con-

ception, development, implementation and monitoring of EU policies. As a service of the Euro-

pean Commission, the JRC functions as a reference centre of science and technology for the Union. 

Close to the policy-making process, it serves the common interest of the Member States, while 

being independent of special interests, whether private or national. 

European Commission 

Joint Research Centre 

Institute for Environment and Sustainability 

 

Contact information 

Address: Via Enrico Fermi 2749, 21027 Ispra (VA), Italy 

E-mail: ana-cristina.cardoso@jrc.ec.europa.eu 

Tel.: +39 0332 785702 

Fax: +39 0332 789352 

 

International Council for the Exploration of the Sea 

Conseil International pour l’Exploration de la Mer 

General Secretary 

H. C. Andersens Boulevard 44–46, DK-1553 Copenhagen V, Denmark 

Tel.: +45 33 38 67 00 

Fax: +45 33 93 42 15 

www.ices.dk, info@ices.dk 

 

Legal Notice 

Neither the European Commission nor any person acting on behalf of the Commission is responsi-

ble for the use which might be made of this publication. 

This report does not necessarily reflect the view of the European Commission and in no way an-

ticipates the Commission’s future policy in this area. 

The views expressed in the report are those of the authors and do not necessarily represent the 

views of ICES. 

Europe Direct is a service to help you find answers 
to your questions about the European Union 

 
Freephone number (*): 

00 800 6 7 8 9 10 11 
 

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls 
may be billed. 

 

A great deal of additional information on the European Union is available on the Internet. 

It can be accessed through the Europa server http://europa.eu/ 
 

JRC 58110 

EUR 24343 EN  

ISBN 978-92-79-15656-4 

ISSN 1018-5593 

DOI 10.2788/87659 

Luxembourg: Office for Official Publications of the European Communities 

© European Union and ICES, 2010 

Reproduction is authorised provided the source is acknowledged 

Printed in Italy 

http://europa.eu.int/citizensrights/signpost/about/index_en.htm#note1#note1


 

 

 

 

PREFACE 

The Marine Strategy Framework Directive (2008/56/EC) (MSFD) requires that the Euro-

pean Commission (by 15 July 2010) should lay down criteria and methodological stan-

dards to allow consistency in approach in evaluating the extent to which Good 

Environmental Status (GES) is being achieved. ICES and JRC were contracted to provide 

scientific support for the Commission in meeting this obligation. 

A total of 10 reports have been prepared relating to the descriptors of GES listed in Annex 

I of the Directive. Eight reports have been prepared by groups of independent experts co-

ordinated by JRC and ICES in response to this contract. In addition, reports for two de-

scriptors (Contaminants in fish and other seafood and Marine Litter) were written by 

expert groups coordinated by DG SANCO and IFREMER respectively. 

A Task Group was established for each of the qualitative Descriptors. Each Task Group 

consisted of selected experts providing experience related to the four marine regions (the 

Baltic Sea, the North-east Atlantic, the Mediterranean Sea and the Black Sea) and an ap-

propriate scope of relevant scientific expertise. Observers from the Regional Seas Conven-

tions were also invited to each Task Group to help ensure the inclusion of relevant work by 

those Conventions. A Management Group consisting of the Chairs of the Task Groups 

including those from DG SANCO and IFREMER and a Steering Group from JRC and 

ICES joined by those in the JRC responsible for the technical/scientific work for the Task 

Groups coordinated by JRC, coordinated the work. The conclusions in the reports of the 

Task Groups and Management Group are not necessarily those of the coordinating organi-

sations. 

Readers of this report are urged to also read the report of the above mentioned Manage-

ment Group since it provides the proper context for the individual Task Group reports as 

well as a discussion of a number of important overarching issues. 
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EXECUTIVE SUMMARY 

The 2008 European Marine Strategy Framework Directive (2008/56/EC) includes a re-

quirement for EU Member States to report on the environmental status of the seas under 

their jurisdiction and to work to achieve Good Environmental Status (GES). This is de-

fined by eleven qualitative descriptors, and one of them deals with „Food Webs‟. 

The Task Group 4 „Food Webs‟ descriptor reads: All elements of the marine food webs, to 

the extent that they are known, occur at normal abundance and diversity and levels capa-

ble of ensuring the long-term abundance of the species and the retention of their full re-

productive capacity. 

This report defines the terms used in this descriptor (section 2), describes the scientific 

understanding (section 3) and the relevant spatial and temporal scales (section 4). A 

framework to describe attributes of GES for food webs is provided in section 5. 

1. DEFINITION OF TERMS, AND SCIENTIFIC UNDERSTANDING OF THE KEY 

CONCEPTS ASSOCIATED WITH FOOD WEBS 

Food webs are networks of feeding interactions between consumers and their food. The 

species composition of food webs varies according to habitat and region, but the principles 

of energy transfer from sunlight and plants through successive trophic levels are the same. 

This descriptor addresses the functional aspects of marine food webs, especially the rates 

of energy transfer within the system and levels of productivity in key components.  

‘All elements.’ All components of food webs have been considered, i.e. all trophic and 

functional groups, comprising either one or several species. This potentially includes all 

living organisms and non-living organic components. 

 ‘..to the extent that they are known..‟ While examination of food webs should in principle 

include „all elements‟, for practical purposes it would include only those food web compo-

nents that can effectively be sampled by established robust methods of monitoring. 

„..normal abundance and diversity and at levels capable of ensuring the long-term abun-

dance of the species and the retention of their full reproductive capacity.‟ This provides 

guidance on the reference points and/or target values selected to correspond to good envi-

ronmental status. Full reproductive capacity refers to the maintenance of fertility and 

avoidance of reduction in population genetic diversity.  

2. GOOD ENVIRONMENTAL STATUS OF FOOD WEBS 

The interactions between species in a food web are complex and constantly changing, 

making it difficult to identify one condition that represents „good‟ status. However, 

changes in species relative abundance in an ecosystem will affect interactions in several 

parts of a food web, and may have an adverse effect on food web status. There is, how-

ever, a significant lack of understanding to assess the ecosystem consequences of such 

change, or the value that society should attribute to it. As all marine food webs have al-

ready been adversely affected by humans, a judgement will need to be reached by Member 

States to identify regional limit reference points. 

Good Environmental Status of Food Webs will therefore be achieved when the indicators 

describing the various attributes of the descriptor reach the thresholds set for them. These 

should ensure that populations of selected food web components occur at levels that are 

within acceptable ranges that will secure their long-term viability. Components must be 

selected carefully to avoid use of large numbers of species for which abundance / biomass 
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trends are required (i.e. avoid use of general terms such as „predators‟ or „prey‟). Assess-

ment of food webs will need to include;  

(i) biological groups with fast turnover rates (e.g. phytoplankton, zooplankton, 

bacteria) that will respond quickly to system change;  

(ii) groups that are targeted by fisheries;  

(iii) habitat-defining groups; and  

(iv) charismatic or sensitive groups often found at the top of the food web. 

3. HOW SHOULD “SCALE” BE ADDRESSED 

Attributes of food webs can in principle be applied on any spatial scale or time scale, how-

ever, there are clear interpretational and practical limitations. The fundamental time scale 

over which ecosystem assessments might be required is annual. The temporal scale neces-

sary to assess growth, mortality and feeding fluxes between food web components should 

be annual to integrate over seasonal variability at the lowest trophic levels. More frequent 

assessments, for example those that could be undertaken monthly, are operationally diffi-

cult to undertake and maintain, and their interpretation becomes complicated by seasonal 

dynamics. For the higher trophic levels, some smoothing of annual rates may be required 

to eliminate inter-annual variability. For longer lived species such as piscivorous fish, 

mammals and birds, assessments on an annual basis may be too frequent since variability 

at this scale becomes more influenced by unexplained processes such as recruitment vari-

ability, and less by internal population processes. 

Similar issues apply to considerations of appropriate spatial scales: at small spatial scales, 

such as parts of a MSFD Sub-Region, immigration and emigration by advection and mi-

grations become important components of change. For large, long-lived taxa, spatial scales 

which integrate over migration ranges may be appropriate, but these scales may span fun-

damentally different habitats and communities for lower trophic levels, for example plank-

ton or benthos, to the point that a synthesis at this scale becomes questionable.  

4. KEY ATTRIBUTES OF THE DESCRIPTOR 

The effects of fishing are the most important pressures which directly affect target species, 

and indirectly affect other non-target components of food webs. While these effects re-

spond to management action, the components which they influence are also subject to cli-

mate variation and other natural drivers making precise attribution of cause and effect 

difficult. It is also likely that other pressures will need to be considered in the development 

of measures, and particularly the cumulative effects of multiple activities.  

4.1. Attribute 1; Energy flows in food webs 

4.1.1. Description of attribute and why it is important 

The food web is a fully interconnected system, so pressures on one part of the system may 

have impacts elsewhere which are not easily predictable. For example, harvesting of san-

deels in the North Sea, where they are a key species in the food web, will remove food for 

birds, mammals, piscivorous fish, and release predation pressure on zooplankton. There 

may also be indirect consequences for a range of other species. Managing human activity 

to achieve a desired balance between species in the system is therefore a major challenge. 

Energy flows through the food web are an attribute which allows us to diagnose the state 

of the system. 
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4.1.2. Indicators of the attribute 

We identify three criteria of energy flows in the food web which are feasible to measure 

and apply at a regional scale: a) ratios of production at different trophic levels, b) the pro-

ductivity (production per unit biomass) of key species or groups, and c) trophic relation-

ships. Many indicators within each criterion require further elaboration to become 

operational, and it is not yet possible to robustly define thresholds or limit reference points, 

or the full extent to which climate change may affect the metrics.  

a) Production or biomass ratios that secure the long term viability of all components. Ra-

tios of production or biomass between different trophic levels in the food web provide 

measures of the pattern of energy flow, and the efficiency of energy transfer through the 

web. It is proposed that a ratio indicator is developed, specific to each marine Regions or 

Sub-Regions, and based on either ratios of pelagic to demersal fish biomass and/or produc-

tion, or benthos to fish production, or the proportions of plankton and benthos production 

required to support fisheries. 

b) Predator performance reflects long-term viability of components. Some species, or 

groups of species, may act as guides to change in the ecosystem. The performance of these 

species, as measured by their productivity, effectively summarises the main predator-prey 

processes in the neighbourhood of the food web that they inhabit. The basis for such 

measures is already established in OSPAR EcoQO, for example in terms of the fledging 

success of kittiwakes, which relates to the availability of sandeels. Following the same 

principle, we propose indicators based on the nutritional status of marine mammals or sea-

birds. 

c) Trophic relationships that secure the long-term viability of components.   

The diet composition of a group of species is dependent on the consumption by each com-

ponent species and can be a valuable measure of the relative abundance of prey in a food 

web and the degree of connectivity in the food web. The diet of some single species, par-

ticularly top predators, can provide similar insights. For group-level assessment, the Ma-

rine Trophic Index has been used to calculate the mean feeding level of a group from 

species composition data, assuming a particular diet for each species. At the species level, 

changes in stomach contents (which indicate the trophic level of diet) can also be diagnos-

tic of underlying change in the food web. 

4.2. Attribute 2; Structure of food webs (size and abundance) 

4.2.1. Description of attribute and why it is important 

Size structure of food webs is an important attribute and integral to the maintenance of 

predator prey relationships. Most life history traits are correlated with size, which con-

strains metabolic rate and controls growth, reproduction and survival, so body size is also a 

proxy for trophic level. Fishing is usually size-selective within species, so larger individu-

als generally suffer greater rates of mortality. Exploited populations and communities 

therefore contain relatively fewer large fish and mean size is reduced. This may in turn 

have an indirect impact on their prey populations as a result of size-dependent predation 

and changes in density-dependent growth. The abundance (and distribution) of carefully 

selected indicator populations (e.g. jellyfish, plankton, etc) can describe food web status 

and/or levels of human perturbation. 

4.2.2. Criteria: characteristics of the attribute with respect to GES  

Changes in the mean size of fish and the proportion of large species in the community can 

be detected by indicators of the mean size and size distribution. It is, however, difficult to 

determine reference values for size-based community indicators. Attempts to do so have 
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been based on modelling the expected community structure in the absence of fishing, or by 

selecting a time in the past when the community structure was judged to have been accept-

able.  

Changes in absolute or relative abundance can be assessed in relation to reference direc-

tions and limit reference points, rather than specific targets. For many species, minimum 

viable populations can be inferred from ecosystem models.  

4.2.3. Indicators of the attribute 

Monitoring the rate of change of functionally important species to highlight rapid in-

creased or decreased abundance will help to identify where future management action may 

be required. The following two criteria are proposed; 

a) Proportion of large fish maintained within an acceptable range. This criterion describes 

the changes in the proportion of large fish, and hence the average weight and average 

maximum length of the fish community in a Region or Sub-Region. The OSPAR EcoQO 

(Proportion of large fish), provides a protocol that can be applied in other regional seas.  

b) Abundance maintained within an acceptable range; To make this criterion operational 

requires an assessment of the most suitable species in a Region or Sub-Region to represent 

food web integrity, based on key biological groups present. Indicators should describe re-

gional abundance trends to identify changes in population status that may have implica-

tions for food web status.  

5. METHOD FOR AGGREGATING INDICATORS WITHIN THE DESCRIPTOR TO 

ACHIEVE AN OVERALL ASSESSMENT, IF AVAILABLE 

TG4 identifies two main attributes of food webs, „Energy flows in food webs‟ and „Struc-

ture of food webs (size and abundance)‟. It is necessary that both attributes must be ad-

dressed for an assessment to be acceptable. Within each attribute TG4 suggests a number 

of promising criteria, but there may be others. To overcome the burden of proof within an 

attribute, it will be necessary to address the entire spatial extent of the assessment Region 

or Sub-Region. This can be achieved using a suite of localised indicators which together 

cover the domain, or a single spatially comprehensive indicator. More work is required to 

understand the practical implications of this requirement for Member States or Regional 

Seas Conventions.  

6. EMERGENT MESSAGES ABOUT MONITORING AND RESEARCH, AND FINAL 

SYNTHESIS  

There are several operational indicators already in use that are relevant to this descriptor of 

GES, and that can contribute to the assessment of food web dynamics. It is encouraging to 

note that these are coherent with other international activities to ensure sustainable fisher-

ies and maritime strategy in European waters, therefore allowing coordinated activity by 

Member States. While it is therefore possible to begin work now, some further develop-

ment is required for indicators that cover all the criteria identified in TG4.    

The practical process for achieving GES for this descriptor is not well defined. The com-

pletion of monitoring programmes and delivery of food web indicators for a Regional Sea 

in which several Member States have a stake will require substantial levels of coordina-

tion. This will have a major influence on successful implementation of the Directive. 
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1. DEFINITION OF TERMS  

1.1. Definition of key terms in descriptor 

‘All elements of the marine food webs,..’ 

The structure of food webs is generically the same as they all involve predator prey inter-

actions and energy transfer between levels, but the species composition of food webs var-

ies according to the environment in which they occur. Food webs in different regions are 

therefore distinguished by interactions between key species, but the processes of energy 

transfer are the same. This description defines the spatial scale of food webs used in this 

report. 

We interpret all „elements‟ as all food web components, i.e. all trophic and functional 

groups, which could be made up of one or several species. This includes living organisms 

(from higher predators such as birds and marine mammals to bacteria and viruses) and 

non-living components (detritus and dissolved nutrients). 

„..to the extent that they are known..‟ 

This includes all food web components that can be sampled by established methods of 

monitoring. 

‘..occur at normal abundance and diversity and at levels capable of ensuring the long-

term abundance of the species and the retention of their full reproductive capacity.‟ 

Normal abundance should be interpreted as the reference point / target values selected to 

correspond to good status. In the MSFD this represents a sustainable state of use from an 

ecosystem perspective. For living organisms this is an abundance that can recover from 

perturbation caused by human induced pressures within a reasonable time frame. A „Nor-

mal‟ assemblage is also interpreted as having a functional diversity that would be typical 

for the marine region and under the prevailling conditions of climate to ensure the overall 

functioning of the ecosystem. 

Full reproductive capacity is not interpreted in the way that is defined in ecology (which is 

the maximum lifetime reproductive output of a species). Full reproductive capacity refers 

to the maintenance of fertility and avoidance of reduction in population genetic diversity. 

Full reproductive capacity sustains the functions of the species in the assemblage. 

1.2. Glossary of key terms in descriptor 

A food web is a “Representation of feeding relationships in a community that includes all 

the links revealed by dietary analysis” (Begon et al. 1995) (Figure 1-1). In other words it 

describes those organisms that are eaten by other organisms. Parasitism and disease is in 

principal a predator-prey interaction, but by smaller organisms (e.g. bacteria or virus) on 

larger (e.g. phytoplankton or fish). 
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Figure 1-1  Simplified model of a marine food web. Size ranges of organisms indicated by the 

numbers. Major trophic interactions are shown by arrows, as well as sedimentation of particulate 

matter and excretion of nutrients. Groups with auto-, hetero- and mixotrophic organisms are 

shown by green and white boxes. Cili.=ciliates, Flag.=flagellates, Fil. Cya.=filamentous cyanobacte-

ria. 

Trophic group; refers to a category of organisms within a trophic structure, defined ac-

cording to their mode of feeding. 

Functional Group; a group of organisms that are using the same type of prey. 

1.3. What is covered and what is outside scope 

This report will deal with only the functional aspects of marine food webs, especially the 

rates and directions of energy transfer within the system and levels of productivity in key 

components. This descriptor will generally not address structural indicators of biodiversity 

for common benthic or pelagic communities using, for example, metrics of species relative 

abundance or biomass. It is intended that the Biodiversity Task Group (TG 1) will deal 

with these along with other measures of diversity relating to threatened, declining and 

charismatic species. However the abundance and distribution of some key species or func-

tional groups (top predators, jellyfish etc) can be representative of substantial parts of food 

webs, so where they are considered sufficiently important they will be included in this 

descriptor. Abundance of non-indigenous species will be dealt with by TG 2, commercial 

fish and shellfish stock status will be dealt with by TG 3, and the description of benthic 

communities and biotic structure, substrate and habitat structure will be dealt with by the 

group ad-dressing sea-floor integrity (TG 6). 
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2. SCIENTIFIC UNDERSTANDING  

2.1. Good Environmental Status of Food Webs 

This descriptor is one of three which addresses marine biodiversity. It is also one of the 

most difficult to implement. The food webs descriptor deals with the functional aspects of 

species interactions, especially the rates and directions of energy transfer within the system 

and levels of productivity in key components. Metrics to describe food web status should 

consider both the extent of bottom-up controls on marine ecosystems, as well as highlight-

ing top-down controls. 

Such assessments will take account of the pressure exerted by top predators on prey com-

munities, using, for example, estimates of productivity, reproductive success and size-

based measures of population change. There has been recent progress to develop indicators 

for some of these processes, including the development of OSPAR Ecological Quality 

Objectives for seabirds and fish communities in the North Sea, and other applications 

elsewhere in Europe. The productivity of primary and secondary producers has not been 

included elsewhere in the GES descriptors yet is important to describe the functioning of 

marine ecosystems. Thus the extent of plankton productivity using both field and remote 

observation will be used to generate metrics that describe the food supply available for 

dependent predators. The contribution of ecosystem and food web modelling will provide 

useful insights into future scenarios of ecosystem change. 

Attributing the cause of change in food web structure or function is complex, and will be 

the result of pressures which act both directly and indirectly on different components of 

the ecosystem. It will therefore be necessary, wherever possible, to develop metrics that 

respond to a manageable activity, so that the assessment of good environmental status can 

lead to specific monitoring requirements and appropriate thresholds or reference levels. 

One of the most valuable contributions that can be made by the descriptor „Food webs‟ is 

to provide an overview of broad scale ecosystem status, integrating across a number of 

different trophic groups, and usually at a broad scale. This is a distinguishing feature of the 

descriptor, and compliments those also focussing on biodiversity issues (descriptors 1, 2 

and 6). The spatial scale at which food web status is monitored is likely to reflect local or 

regional environmental conditions, and be dependent on the availability of data for key 

components.  

The interactions between species in a food web are complex and constantly changing, 

making it difficult to identify one condition that represents „good‟ status. However, 

changes in species relative abundance in an ecosystem will affect interactions in several 

parts of a food web, and may have an adverse effect on food web status. There is, how-

ever, a significant lack of understanding to assess the ecosystem consequences of such 

change, or the value that society should attribute to it. As all marine food webs have al-

ready been adversely affected by humans, a judgement will need to be reached by Member 

States to identify regional limit reference points. 

Good Environmental Status of Food Webs will therefore be achieved when the indicators 

describing the various attributes of the descriptor reach the thresholds set for them. These 

should ensure that populations of selected food web components occur at levels that are 

within acceptable ranges that will secure their long-term viability. 

2.2. Pressures acting on food webs  

Patterns in the structure and function of marine ecosystems can be substantially affected 

by both environmental changes (e.g. through interannual and interdecadal climatic varia-

tion and change) and the pressures of human activities such as fishing effects (e.g. through 
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overexploitation of large predatory or forage fishes) (Cury et al., 2003). Different types of 

controls can therefore be exerted on marine ecosystems and can lead to alternate states. 

The effects of fishing are the most important pressures which directly affect target species, 

and indirectly affect other non-target components of food webs. While these effects re-

spond directly to management action, the response time can be slow and variable, and re-

covery can be impeded by the influence of other natural drivers, making precise attribution 

of cause and effect difficult.  

2.3. Patterns in food webs  

Bottom-up control is the conventional trophic flow control that seems to dominate most 

ecosystems, where the regulation of food-web components derives from change in the 

abundance of primary producers which is itself strongly influenced by environmental con-

ditions. Literature documenting the relationship between the abundance of different tro-

phic levels and environmental variability is widely available. This has been documented 

for example in the North Atlantic where parallel long-term trends across four marine tro-

phic levels, ranging from phytoplankton, zooplankton and herring to marine birds, have 

been related to environmental changes in the North Sea (Aebisher et al., 1990). 

Top-down control is the regulation in abundance that is exerted by predators on their prey. 

A large reduction in predator abundance can cause an increase in prey that cascades 

downward in the food chain, a phenomenon known as a trophic cascade. Trophic cascades 

can therefore be thought of as reciprocal predator–prey effects that alter the abundance, 

biomass or productivity of a population or trophic level across more than one link in a food 

web, resulting in alternate trends between different trophic levels. The decline in top 

predator abundance has been demonstrated to cascade down several marine food webs. 

Recent studies reveal that reduced abundance of large fish predators (e.g. cod) had pro-

found effects on the abundance of small pelagic fishes which in turn affect plankton dy-

namics in the Black Sea, the NW Atlantic ecosystems and the Baltic sea (Casini et al., 

2008). Substantial reductions in marine mammal, shark, and piscivorous fish abundance 

have led to increased abundances of mesopredators and invertebrate predators. Predation 

has also inhibited recovery of depleted species, sometimes through predator–prey role re-

versals.  

Top-down and bottom-up processes are not mutually exclusive within ecosystems. In fact, 

both ways of ecosystem control may act in concert and their relative strength can vary in 

response to ecosystem alterations (Litzow and Ciannelli, 2007; Casini et al., 2009). 

In several productive upwelling ecosystems (e.g. Canary, Benguela, California and Hum-

boldt currents), there is an intermediate trophic level, occupied by a limited number of 

species of small, plankton-feeding pelagic fish, comprising substantial populations that are 

exploited intensively and vary considerably in abundance (Cury et al., 2000). Examples 

are capelin in the Norwegian Sea, anchovy or sardine in some upwelling systems. Pelagic 

fish can exert a major control on energy flows in productive ecosystems, and this has been 

termed „wasp-waist‟ control as those forage fish resources can affect trophic levels both 

downwards and upwards (i.e. a bottom-up control of top predators by small pelagic fishes, 

and top-down control of plankton by Small pelagic fishes). The collapse of small pelagic 

fish populations in the northern Benguela had profound effects on top predators such as 

marine bird and mammals as well as on lower trophic levels such as jelly-fish (Cury and 

Shannon, 2004).  

2.4. What is special about marine food webs  

The structure of marine food webs is not inherently different from terrestrial or freshwater 

ecosystems, so classical food web theory also applies to marine systems. This theory is 
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most relevant for conservation biology, specifically related to biodiversity issues (May, 

2009) rather than the management of exploited populations. Marine food webs are, how-

ever, characterised by many weak links between species and relatively short average path 

lengths (Link, 2002). This high level of connectance in most marine food webs makes 

them relatively robust to the secondary effects of species declines or local extinction. Short 

average path lengths between species suggest that perturbations such as fishing or climate 

change will be transmitted more widely throughout marine ecosystems compared to their 

terrestrial or freshwater counterparts (Dunne et al., 2004). Furthermore, body size is an 

important structuring variable in marine communities and consequently size spectra have 

been much studied in marine systems, though the implications for food web functioning 

have been less well studied (Jennings et al., 2001; Raffaelli et al., 2005).  

2.5. Current considerations of food webs in management 

Food web issues are of increasing importance in European marine management and legis-

lation, though there are few tools or frameworks in current use that focus on food webs or 

relationships between species. The main approaches use multi-species models for deter-

mining maximum sustainable yield values (multi-species MSY). These developments have 

been driven by criticism of the long-standing single-species approach to European fishe-

ries management which take no account of the state of prey and predator populations. 

Worm et al. (2009) analyzed current trends in multi-species exploitation rates and biomass 

in a range of well studies fisheries ecosystems using Ecopath/Ecosim and „Atlantis‟ mod-

els. In 5 of 10 well-studied ecosystems, the average
 
exploitation rate has recently declined 

and is now at or below
 
the rate predicted to achieve maximum sustainable yield for

 
seven 

systems. Yet 63% of assessed fish stocks worldwide still
 
require rebuilding, and even 

lower exploitation rates are needed
 
to reverse the collapse of vulnerable species. Crucially, 

the sum of single-species MSY was generally a poor predictor of multi-species MSY. This 

is thought to be because of difficulty in deciding a priori whether depensatory or compen-

satory responses to fishing will occur as a result of food web interactions. Each response 

will lead to divergence between yields at the system level and those predicted by single-

species assessments. Similar results were found for the Eastern Bering Sea/Gulf of Alaska 

(Mueter and Megrey, 2006), and the North Sea (Mackinson et al., 2009). Overall, the sum 

of predicted single-species MSY differed from system-level MSY by more than 20% in 

42% of the systems and by more than 50% in 18% of the systems analysed by Worm et al. 

(2009). 

2.6. Existing approaches to monitoring Food Webs 

The extent to which communities function normally depends on the trophic structure and 

size structure of their component taxa. A number of metrics have been proposed for moni-

toring these functions in marine communities (e.g. Rochet and Trenkel, 2003; Cury et al., 

2005). The metrics fall into several categories: a) assessment of the biomass/abundance of 

trophic groups or ratios of groups (total/mean weight/abundance or mean trophic level of 

piscivores, planktivores, benthivores), b) metrics derived from size structure (slope of size 

spectrum, mean length), and c) metric describing linkages or networks (consumption ratio, 

number of cycles in food web, mean number of trophic links). No reference points with a 

theoretical basis exist currently for any of these metrics, though Link (2005) proposed 

limit and warning values for some of them, and other authors have suggested the use of 

reference directions (Jennings and Dulvy, 2005, Rochet et al., 2005).  

2.7. Ecosystem Models  

The multitude of links and processes that make up a real food web mean that the conse-

quences of change will probably be much wider than expected and, because of non-linear 
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relationships between species, may even lead to counterintuitive outcomes. Trophic eco-

system models are an important component of the tools that will be needed to advise on 

the state of food webs and the extent of impacts. However, these models are still in an ear-

ly stage of development and the strengths and weaknesses of the various alternatives are 

difficult to understand, though there have been some important reviews (Fulton et al., 

2005). In general, there seems to be a humped relationship between the detail included in a 

model, and its effectiveness. Too little detail is ineffective because the model is too ab-

stract. Too much detail is ineffective because the model tries to capture all known 

processes but at the expense of requiring detail for too many poorly understood parame-

ters. Between these extremes is a set of models that can be parameterised and will effec-

tively at represent the key properties of the system. An important recommendation from 

reviews is that the use of a single ecosystem model is ill-advised. The comparative and 

confirmatory use of multiple „minimum-realistic‟ models is strongly recommended. More 

detailed information in the role and merits of ecosystem models is given in Annex 1. 

3. RELEVANT SPATIAL AND TEMPORAL SCALES 

Attributes of food webs can in principle be applied on any spatial scale or time scale, how-

ever, there are clear interpretational and practical limitations. The fundamental time scale 

over which ecosystem assessments might be required is annual. The temporal scale neces-

sary to assess growth, mortality and feeding fluxes between food web components should 

be annual to integrate over seasonal variability at the lowest trophic levels. More frequent 

assessments, for example those that could be undertaken monthly, are operationally diffi-

cult to undertake and maintain, and their interpretation becomes complicated by seasonal 

dynamics. For the higher trophic levels, some smoothing of annual rates may be required 

to eliminate inter-annual variability. For longer lived species such as piscivorous fish, 

mammals and birds, assessments on an annual basis may be too frequent since variability 

at this scale becomes more influenced by unexplained processes such as recruitment vari-

ability, and less by internal population processes. 

Similar issues apply to considerations of appropriate spatial scales: at small spatial scales, 

such as parts of a MSFD Sub-Region, immigration and emigration by advection and mi-

grations become important components of change. For large, long-lived taxa, spatial scales 

which integrate over migration ranges may be appropriate, but these scales may span fun-

damentally different habitats and communities for lower trophic levels, for example plank-

ton or benthos, to the point that a synthesis at this scale becomes questionable. Ultimately, 

it seems likely that the appropriate spatial scale at which to assess food webs will be set by 

the purpose for which the assessment is required rather than any ecological considerations. 

Other practical considerations, such as the availability and spatial extent of monitoring 

data for key taxa, are also likely to influence the scale at which assessments are made. 

4. KEY ATTRIBUTES OF THE DESCRIPTOR  

Based on current understanding of food web trophodynamics and the key components that 

are available for study, it was agreed that fundamental attributes of food webs related to 

the flow of energy (as carbon) through the system, and the structural features of compo-

nents, specifically their size and abundance. The following section introduces each of these 

attributes and suggests criteria that might be applied to determine their status. 

4.1. Attribute 1: Energy flows in food webs 

Meta-analyses of marine ecosystems show a generic relationship between primary produc-

tion (standardised to sea surface area), and production at successively higher trophic lev-



|  11 

 

els, for example fish (Nixon 1988; Iversen, 1990; Chassot et al., 2007). This relationship is 

an expression of the efficiency with which the energy captured by primary production is 

transferred up the food web. Within individual regions this efficiency may change over 

time depending on a variety of human interventions and climatic factors. The aim of the 

approach described in this section is to summarise the energy flow by means of a set of 

metrics which allow an assessment of efficiency, and ultimately to allow an assessment of 

whether there is unacceptable damage by human activity. 

At some levels in a food web, energy flow may pass through a large number of predator-

prey linkages, whilst at others the flow may be focused through only a small number of 

species and/or developmental stages or „bottlenecks‟ in the web. In some cases, bottle-

necks in the web may lead to a so-called „wasp-waist‟ food-web - one in which a single 

species acts as a conduit between the lower and upper trophic levels. Such systems are 

especially sensitive to changes in mortality of the key bottleneck species (Cury 2000), 

which are thus key components for monitoring the state of the food web. 

Metrics which aim to summarise energy flow through the system must incorporate, implic-

itly or explicitly, data from a number of different trophic levels. Absolute levels of primary 

production, plankton, fish or seabird production, cannot in themselves be diagnostic of 

flows. However, we can identify three generic types of measures that can be diagnostic of 

energy flows and patterns: i) ratios of production at different trophic levels, ii) the produc-

tivity (production per unit biomass) of key species or groups, and iii) the trophic level of 

the species or group of species. 

i ) The concept of ratios of production is straightforward. The ratio of, for exam-

ple, benthic to planktonic secondary production is a clear statement of the pro-

portion of primary production which is diverted to the benthic seabed food web 

as opposed to the planktonic water column food web. 

ii ) The diet of individual species in the food web will be largely determined by the 

abundances of suitable prey taxa to which they have access. Some predator 

species, or groups of species, may play a significant part in food web dynamics 

and thereby act as indicators of change in the system as a whole. The perform-

ance of these species, as measured by their productivity, effectively summarises 

the main predator-prey processes in the neighbourhood of the food web that 

they inhabit. 

iii ) The diet composition of a group of species is dependent on the consumption by 

each component species and can be a valuable measure of the relative abun-

dance of prey in a food web and the degree of connectivity in the food web. 

The diet of some single species, particularly top predators, can provide similar 

insights. For group-level assessment, the Marine Trophic Index has been used 

to calculate the mean feeding level of a group from species composition data, 

assuming a particular diet for each species. At the species level, changes in 

stomach contents or isotopic compositions (which indicate the trophic level of 

diet) can also be diagnostic of underlying change in the food web. 

4.1.1.  Criteria 1a) Production or biomass ratios that secure the long term viability of 

all components 

The purpose of applying ratios of production or biomass for assessing GES is to detect 

gross structural changes in the energy flow through a food web which may have been 

caused by, for example, removal of key species by harvesting, or disruption of distribu-

tional overlap between predators and prey through climatic factors. Examples of the type 

of change which ratios of production would be intended to detect are: a) dominance of 

jellyfish as planktivores in a system as a result of over-harvesting of small pelagic fish or 
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removal of top predators, or b) increased abundance of benthic invertebrates due to over-

harvesting of benthivorous demersal fish. 

Fishing is an important pressure in most if not all shelf ecosystems, but not necessarily the 

only factor which may shift energy flow between major pathways through the food web. 

Hence it is important to remember that production ratios are snapshots summarizing mul-

tiple cumulative effects on the system. For example, trends in the ratio of macrobenthos to 

demersal fish production in the North Sea imply top-down control of the benthos by fish 

predation (Heath, 2005a) and explain the emergence of Nephrops fisheries as cod and oth-

er gadoid species have been depleted by harvesting. However, both environmental and 

fishery changes have been suggested to be responsible for recently observed shifts in ben-

thic invertebrate to groundfish dominance and the emergence of shrimp fisheries in the 

Gulf of Alaska (Anderson and Piatt, 1999; Bailey, 2000). 

Many investigators have examined ratios between fishery yield/landings from an ecosys-

tem and the underlying primary production. Comparing across ecosystems, some consis-

tency in this ratio certainly exists (Nixon 1988; Iverson, 1990; Chassot et al., 2007; 

Gaichas et al., 2009). However, ratios of bulk fishery yield to primary production take no 

account of the species or functional group composition of catches. This is clearly impor-

tant since harvesting of high trophic level piscivore species accounts for more primary 

production than harvesting low trophic level planktivores. For this reason, a more logical 

approach is to compare the Annual Production Requirement of fishery catches resolved to 

a given trophic level, with total production at that level. This ratio expresses the proportion 

of production removed by fisheries. Annual Production Requirement is equivalent to the 

term Primary Production Requirement (PPR) as defined by Pauly and Christensen (1995), 

but not necessarily resolved to level of phytoplankton. The concept of an Annual Produc-

tion Requirement ratio can be applied in other ways than to fishery catches. For example, 

the prey production required to support a given population of a predator can be derived 

from an energetic model of that predator, and compared to the measured production of 

prey in the environment. In this case the ratio expresses the contribution of the predator to 

total utilisation of the prey. An example of this application of Production requirement ra-

tios is given in Annex 2. 

Production or biomass ratios have been used effectively to identify fundamental characte-

ristic differences between ecosystems (Gaichas et al., 2009; Pranov and Link, 2009), how-

ever, setting management thresholds or limits to such ratios within a system is difficult. 

The pelagic to demersal fish biomass ratio was considered to be one of the most robust 

ecosystem indicators of fishing effects by Fulton et al. (2005). Based on experience in the 

Georges Bank and in other heavily exploited systems, Link (2005) suggests that a warning 

threshold has been crossed when pelagic fish biomass exceeds 75% or drops below 25% of 

total fish biomass. However, other results are somewhat counter intuitive with respect to 

the effect of fishing. For example, the pelagic to total fish biomass ratio in the Norwegian 

Sea was found to be 0.85, despite the fact that fishery catch is low in this system relative to 

others in the North Atlantic (Gaichas et al., 2009). 

Assessments of fishery yield to primary production are typically undertaken on higher pre-

dators for which sampling is relatively simple (Nixon 1988; Gaichas et al., 2009). A simi-

lar promising indicator for food web efficiency at the base of the food web measures the 

relative flow of biomass in the food web through the microbial heterotrophic component, 

(Turley et al. 2000). This indicator has relevance for fish yield, sediment flux and thereby 

also benthic production. It is therefore proposed for further development and evaluation, 

and to be considered in future recommendations. Methods can be used in routine monitor-

ing programs at reasonable cost and with good spatio-temporal coverage. The measure is 

based on bacterial community biomass production (e.g. 
3
H-thymidine uptake) relative to 
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autotrophic planktonic primary production (e.g. 
14

HCO3
-
 uptake method) (Turley et al. 

2000).  

4.1.1.1. Recommended production or biomass ratios 

It is recommended one region-specific indicator is developed based on one of the follow-

ing examples; 

Ratio of pelagic to demersal fish production or biomass. Annex 3 provides an example of 

the application of pelagic to demersal fish biomass ratios to diagnose changes in the food 

web of northwestern Atlantic ecosystems following the collapse of cod stocks. The ratio 

has been identified as a robust indicator of food web status. Preliminary thresholds have 

been suggested. 

Ratio of macrobenthos invertebrate to demersal fish production or biomass. Annex 3 also 

provides an example of the application of benthic invertebrate to demersal fish biomass 

ratios to diagnose changes in the food web of northwestern Atlantic ecosystems following 

the collapse of cod stocks. The ratio has also been identified as an indicator of major food 

web impacts due to harvesting of demersal fish in the North Sea. No indicative thresholds 

have been identified. 

Ratio of zooplankton production requirement of landings to zooplankton production as a 

measure of pressure on the food web due to fishing. An application of this ratio in the 

North Sea, Celtic Sea and west of Scotland is given in Annex 4. The ratio indicates in-

creasing and more intense fishing pressure in the North Sea and west of Scotland area 

compared to the Celtic Sea. Fishing pressure in the Celtic Sea appears lower than the other 

area due to the lack of large scale industrial fisheries for small pelagic species. 

Ratio of benthos requirements of landings to benthos production as a measure of pressure 

on the food web due to fishing. An application of this ratio in the North Sea, Celtic Sea 

and west of Scotland is given in Annex 4. The ratio indicates more extreme fishing pres-

sure in the west of Scotland area compared to the others. Pressure in the Celtic Sea appears 

to be increasing due to escalating removals of high trophic level species and Horse Mack-

erel. The latter has a benthic component of diet and has increased in abundance in the re-

gion due to a move towards the poles in its‟ geographic range. 

4.1.1.2. Technical evaluation of production of biomass ratio indicators 

Ease of understanding 

The overall concept is easy to understand and communicate. 

Data availability 

Much of the data required to derive ratios of abundance or production across a wide range 

of trophic levels are already collected from fish assessment surveys, fishery landings, 

plankton assessment surveys using e.g. the Continuous Plankton Recorder, and potentially 

also remote sensing programmes. 

The task of assembling data sets spanning a range of trophic levels or groups of species 

would be a departure from the current working practices of scientific assessments for most 

EU waters. For example, all ICES fish stock assessments are carried out on a species-by-

species basis, with no overview of the total pelagic or demersal fishery or survey data, or 

of data from other trophic levels. Derivation of food web production or biomass ratios will 

require the science community to take a wider view of data gathering and synthesis. 



|  14 

 

Technical methodology 

Production ratio indicators will require some degree of modelling or further analysis meth-

odology to convert observations of abundance to measures of production. Technical meth-

ods are described in the examples used in Annex 2 to 4, and the references cites therein. In 

some cases, the use of ecosystem analysis and modelling software such as Ecopath may be 

appropriate, but this is not necessarily the case for all ratio measures. 

Sensitive to a manageable human activity 

Production or biomass ratios at different trophic levels provide a snapshot of the state of 

the food web, given the underlying assumptions used in the calculations. It is not possible 

to conduct future scenario analyses from such snapshots to evaluate the potential implica-

tions of management measures, but these can be done with some available models, using 

system snapshots as initial conditions. Comparative analyses of the same ecosystem in 

different time periods, performed using e.g. Ecopath, show that production ratio metrics 

are sometimes correlated with changes in human activity. 

Relatively tightly linked in time to that activity 

It is not clear that responses at the scale of an entire food web could be tightly linked in 

time to changes in human activity at all. In fact, the reverse is likely to be true - when 

long-lived species are important in the system we can expect considerable lag-times in 

response to human activity. 

Responsive primarily to a human activity, with low responsiveness to other causes of 

change 

We cannot expect the status of marine food webs to respond primarily to human activity. It 

is clear that they will also respond to environmental changes. 

Relevance to Food webs 

Ratios of trophic level biomass or production are unambiguously descriptors of the state of 

food webs. 

Current and historic levels 

Ecopath analyses have been carried out for a number of marine regions that will be cov-

ered by the MSFD. However, these have not been performed to a common standard or 

based on common criteria for selecting the species or groups to be included, or using uni-

versally accepted parameters. Hence we cannot currently define historic levels that are 

valid across regional seas. There is an urgent need for a concerted action to develop the 

common standards needed for Ecopath analyses for MSFD regions. 

Recommendations for reference levels / limit points 

Tentative threshold levels of pelagic: demersal fish biomass have been suggested by some 

authors studying food web interactions in specific regional seas, but appropriate levels 

cannot be specified at present for all marine regions, or for other ratios. 

4.1.2. Criteria 1b) Predator performance reflects long-term viability of components 

The abundance of species in the food web will generally be determined by the abundance 

of suitable prey taxa on which they can feed. Some species, or groups of species, may play 

a significant part in food web dynamics and so their population status will effectively 

summarise the main predator-prey processes in the part of the food web that they inhabit. 

This metric therefore quantifies the performance of predators through direct population 

counts and measurements, which to a large extent are already collected as part of national 
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monitoring programmes, and/or planned to support existing and planned programmes (e.g. 

OSPAR EcoQOs).  

The quantity of food is important as predators that prey upon forage species are sensitive 

to fluctuation in prey abundance and can suffer from lack of food resulting from overex-

ploitation or/and environmental changes (e.g. starvation, breeding failure) (Frederiksen et 

al. 2007). Food quality is also recognized as critical to the survival of many marine species 

including birds (Wanless et al; 2005), mammals (Soto et al. 2006) and fishes (Litzow et al. 

2006). For marine birds and marine mammals that are highly dependent on their fish prey 

for survival and are keystone predator species in ecosystems (Boyd et al 2006), the re-

quired prey abundance to quantitatively and qualitatively sustain viable populations of 

predators should constitute a threshold value. This minimum abundance level of prey nec-

essary to sustain predators can be calculated from existing ecosystem models and could 

represent a limit reference point for predator prey interactions within marine ecosystems. 

Several studies have shown a connection between seabird survival or breeding success and 

the availability (abundance and/or distribution) of key prey species, which mainly are 

small pelagic fish (see review by Durant et al., 2004). A particularly relevant example is 

the influence of a sandeel fishery in the Firth of Forth, northwestern North Sea, on fledg-

ing success of the black-legged kittiwake, which has been developed into an OSPAR 

EcoQO. The breeding success of kittiwakes is calculated using local counts at selected 

colonies in Scotland and NE England. The indicator uses the black-legged kittiwake as an 

indicator species for the community of predator species that depends on sandeels as an 

important food resource. The indicator assumes that if black-legged kittiwakes are unable 

to breed successfully for several years in succession, then it is likely that sandeel abun-

dance is low, representing a serious risk of adverse effects on many animal species. The 

effect on breeding success is reflected on a yearly basis; the indicator is only triggered 

after three years, and benefits of management actions will accrue only in subsequent years. 

The breeding productivity at colonies within foraging range of the fishery zone was re-

duced during the period when the fishery was active (Frederiksen et al. 2008), and recov-

ered relative to control areas when the fishery was closed. However, environmental 

factors, especially sea temperature were also very influential on fledging success. In terms 

of ecosystem management, the results demonstrate that Marine Protected Areas, in this 

case a fishery closure, can benefit short-lived pelagic fish stocks and their avian predators. 

However, such positive effects require that the regulations of the MPA exclude or restrict 

all human activities with negative impacts on the critical resource. 

OSPAR has selected the seal population trends indicator for Grey seals (Halichoerus gry-

pus) (declines of less than 10% in pup production) to achieve its ecological quality objec-

tive (EcoQO). Grey seals give birth in terrestrial habitats and are best counted as numbers 

of pups produced per year, while harbour seals give birth in intertidal habitats and are best 

counted as one-year-old or older seals during the period that they haul-out terrestrially to 

moult. This EcoQO would be triggered rather often due to the interannual variations in 

numbers of seals (both pups counted or numbers on haul-outs). The probable level of 

“alarms” is felt to be too high, and thus a five-year running mean might be applied to these 

figures. Such an approach would detect long-term changes in pup production of grey seals 

or haul-out numbers of harbour seals. The disadvantage of this is that mortality events, 

such as caused by epizootics, would not trigger the EcoQO. ICES felt that this was not a 

major disadvantage as large mortality events are already investigated in depth, whereas 

more subtle long-term changes might be easily overlooked. The EcoQO as stated in the 

Bergen Declaration does not differentiate between sub-units of the North Sea and it is un-

clear whether the EcoQO applies to the whole North Sea population or only to parts of it. 

It is not scientifically possible or valid to assess trends for the whole North Sea as there is 

a variation in counting methods depending mostly upon the habitat in which the seals are 
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giving birth or hauling out. Scientifically consistent trends can be derived for sub-units of 

the North Sea, but it should be noted that these sub-units are not necessarily biologically 

separate. 

There are other potential metrics that could be useful to determine predator performance, 

but which are under-developed at this stage. One such metric relates to shifts in the food 

web and consequently prey availability, which have been shown to affect body condition 

and health of cetaceans and other predator species (e.g. Harwood et al 2000, Bluhm and 

Gradinger 2008). For humans and domestic animals it has been shown that a reduction in 

nutritional status can lead to reduced reproductive success, affecting age of onset of pu-

berty, fertility, and success in maintaining pregnancies (Gerloff and Morrow 1986) as well 

as immune suppression (Landgraf et al. 2005). Reduction in prey availability of marine 

mammals and seabirds is also likely to lead to similar adverse effects on health, in particu-

lar causing greater susceptibility to endemic pathogens and increased occurrence of dis-

eases. The health of predators could therefore be used in some circumstances to identify 

adverse changes in food webs. Information on the nutritional status of marine mammals 

and seabirds can be gained from dead specimens that are collected through stranding net-

works, that have been incidentally by-caught in fishing operations or that can be sampled 

live (e.g. seals). It is important to consider if the animals are a representative sample of a 

population, as stranded animals alone might have a high proportion of diseased animals 

(Murphy et al. 2009). Standard measurements are routinely used to determine body condi-

tion indices of marine mammals and seabirds (Pitcher et al 2000, Read 1990). However, 

morphometric indices alone may not be sensitive indicators to changes in condition in 

phocid seals and other physiological indices, such as blood variables, have been suggested 

(McLaren and Smith 1985, Rea et al 1998). 

Another example of a potential index that could be applied to fish is the use of the liver 

condition index of Northeast Arctic cod (Gadus morhua) as an indicator of composition of 

capelin (Mallotus villosus) and herring (Clupea harengus) in the Barents Sea. Temporal 

variation in the liver condition index (LCI) of five length classes of Northeast Arctic cod 

was described and compared to the abundance and availability of capelin and herring in 

the Barents Sea Yaragina & Marshall (2000). On inter-annual time scales, large and rapid 

fluctuations in LCI occurred which were synchronous across length classes. For all length 

classes the annual mean LCI was non-linearly related to capelin stock biomass such that 

LCI decreased rapidly when capelin stock biomass was below one million tonnes. Liver 

condition index and the frequency of occurrence of capelin in cod stomachs were positive-

ly associated. Neither the abundance of juvenile herring in the Barents Sea nor the fre-

quency of occurrence of herring in cod stomachs were positively correlated with LCI. 

However, a significant, inverse relationship between the frequency of occurrence of cape-

lin in cod stomachs and total stock biomass of herring was observed suggesting that her-

ring influence cod LCI via predation on capelin. On seasonal time scales, LCI values for 

February through July were significantly higher in years of high capelin biomass compared 

to years having low capelin biomass. In years of high capelin biomass the proportion of 

capelin in the stomach contents of cod showed a peak in March and (or) April. 

Both these latter examples (body and liver condition) could be used in the future to devel-

op potential indicators for population status of fish and marine mammals. 

4.1.2.1. Recommended indicators of predator performance: 

Seal population size and pup production in the North Sea (OSPAR EcoQO (OSPAR, 

2005)). Declines in the population size of the harbour seal (Phoca vitulina) or pup recruit-

ment of the grey seal (Halichoerus grypus) indicate poor food supply to seal colonies. The 

purpose of the indicator is to maintain healthy populations of seals by triggering manage-

ment actions when needed. Although developed only for the North Sea, the principles can 
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be applied to all other European marine waters, and methodological standards are well 

documented. 

Seabird breeding population size and breeding success in the North Sea (OSPAR EcoQO 

(ICES, 2008)). Changes in population sizes are an indicator for important changes in 

community structure. Seabird populations may be affected by a range of human activities 

although it may take years before these impacts become evident because of the long life-

span and slow reproduction in some seabird species. A change in population trends might 

trigger further research to investigate the causes of change, and management might formu-

late "species recovery" or "species action plans". The aim is to maintain a healthy seabird 

community. Although developed only for the North Sea, the principles provide valuable 

information of food web status and can be applied to all other European marine waters, 

and the methodological standards are well documented. 

4.1.2.2. Technical evaluation of predator performance indicators; 

Easy to understand 

Productivity and condition factors of marine animals are easy to understand and to com-

municate. 

Data Availability 

Data on productivity, condition factors as well as diets of major marine birds and mam-

mals have been collected routinely in some parts of Europe. Thus, where data are avail-

able, the proposed indicators could be easily and accurately measured using data from 

monitoring of seabirds, or stranded and by-caught animals as well as data from breeding 

colonies. 

Technical methodology 

Aerial surveys and counts as well as counts from shore are easy to implement and are un-

dertaken routinely by many countries. 

Sensitive to a manageable human activity 

Marine birds and mammals are typically closely tied to specific geographical locations. 

Either because of the location of breeding colonies or their reliance on predictable concen-

trations of prey, they may not be buffered against the effects of longer-term fluctuations in 

prey resources. Commercial fishing within the foraging arena of birds and mammal popu-

lations can potentially affect availability of food and have detrimental effects on colonies. 

Relatively tightly linked in time to that activity 

Seabirds and marine mammals are long-lived species and consequently at the population 

level tend to buffer any adverse conditions. Breeding success as well as pup production is 

highly sensitive to the local production of food and sometimes induce mass-mortality in 

offspring. 

Easily and accurately measured 

Standard methods in the open sea through line transects have been long developed and 

provide accurate estimates, although are not currently available in all marine regions. Seals 

can be counted easily while they are on land as well as seabirds on breeding colonies. 

Responsive primarily to a human activity, with low responsiveness to other causes of 

change 

Distribution and abundance of prey, such as pelagic fish, vary substantially with environ-

mental changes and strongly affect survival of seabirds and marine mammals. Fishing ef-
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fects and environmental variability can act in synergy and appear to be difficult to 

tangle. 

Relevance to Food webs 

Top predators are important and emblematic indicators of the overall functioning of the 

food-web. They are representative of the general ecosystem state. 

Current and historic levels 

Historical levels of populations for seals and seabirds are well documented but only few 

data are available for marine mammals. 

Recommendations for reference levels / limit points 

For marine birds and mammals that are highly dependent on their fish prey for survival, 

the required abundance to sustain viable predator population of predators should constitute 

a threshold value. Minimum viable population sizes are often available for marine birds 

and mammals, and represent limit reference points below which populations should not be 

driven. Large population increases in seabird and marine mammal populations can also be 

detrimental to other components of the food webs and maximum population size can be 

defined below which populations should be kept. 

4.1.3. Criteria 1c) Trophic relationships that secure the long-term viability of compo-

nents  

The trophic level (TL) expresses the position of an organism in a food web, and is esti-

mated using diet data. In marine ecosystems, The TL averaged across size/age of a species 

population can take any value ranging from 1, for primary producers and other taxa at the 

bottom of the food chain, to 5.5, for specialized predators of marine mammals (e.g. the 

polar bear) (Pauly et al., 1998). The temporal changes in trophic level of a species or 

group of species can indicate progressive changes in prey and can be used to highlight 

adverse effects on food web status. 

Information about trophic relationships and current prey of species can be obtained 

through examination of the diet. Dietary changes can be estimated through isotopic, fatty 

acid, stomach content, contaminant analyses and visual observation (e.g. Burek et al. 

2008). For marine mammals, this is usually undertaken using stranded or by-caught ani-

mals or in some cases through non-lethal sampling of live animals (e.g. biopsy darting) 

(e.g. Krützen et al. 2002). Such an approach can be used to study shifts in prey use of a 

species or functional group (e.g. the shift in prey of North Sea harbour porpoise from her-

ring to gadoid species; Santos and Pierce, 2003). 

A number of methods which highlight feeding relationships of species in food webs are in 

development or are currently applied in some circumstances. There was no consistent 

agreement within the Task Group on the extent to which these methods were suitable for 

immediate application in EU marine regions. Further evaluation within Regions or Sub-

Regions will be necessary. 

In February 2004 the Marine Trophic Index (MTI) was adopted by the Conference of the 

Parties to the Convention on Biological Diversity (CBD) as one of eight indicators to mon-

itor achievement by 2010 of a significant reduction in the current rate of biodiversity loss. 

The MTI can be calculated from the commercial landings of exploited species (i.e., algae, 

invertebrates, fish, marine mammals) (Pauly et al., 1998), as the mean weighted TL of 

fisheries landings for a cut-off TL (i.e., TL > value 3.25) (Pauly and Watson, 2005). The 

MTI can also be calculated from any measure of biomass or abundance derived from rou-

tine fishery-independent surveys (e.g. data collected from the shelf seas by research ves-

sels: Pinnegar et al., 2002), for different spatial and temporal scales, for example from 
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localised ecosystems such as enclosed bays, to larger areas such as the Large Marine Eco-

systems or wider oceanic areas, using annual or seasonal data. Also, the index could be 

applied to any assemblage (not just fish) for which there is abundance data for species at 

known TL. If the MTI is calculated using fishery landings instead of information from 

assemblages, then it will be necessary to interpret the results by investigating changes in 

fisheries regulations, technical measures and exploitation strategies. One method to assist 

with this task is the Fishing in Balance (FiB) index (for details see Annex 5). Before re-

commending that this indicator is applied operationally throughout European Regional 

Seas, further work is necessary to agree generic TL values of fish species (such as those 

already provided by FishBase www.fishbase.org) and those for other components (such as 

benthic invertebrates) which may also be available. 

The dominant prey in diets can be used as a potential index to show temporal shifts in the 

main prey consumed. For example, some assessments of diets are already routinely com-

pleted, including stomach content analyses of higher predators (fish, birds and marine 

mammals). Additional analyses of diet and associated trophic pathways can be done by 

standardizing sample protocols and analysis for isotopic, fatty acid and contaminants for 

animals caught, bycaught or stranded. Marine mammal species range from opportunistic to 

specialized feeders and the trophic level of their prey also varies. Baleen whales such as 

the bowhead or right whale feed on prey such as copepods with a low trophic level. Some 

of the toothed whales, such as the Killer Whale, not only feed on squid or fish, but include 

higher trophic levels such as other cetaceans or pinnipeds in their diet. Shifts in the food 

web and consequently prey availability can have an effect on a number of population pa-

rameters including reproductive success, abundance, distribution, body condition, health, 

and mortality. Existing sampling protocols, e.g. within marine mammal stranding net-

works, could be extended for a potential indicator of changes in trophic level of prey, but 

this indicator needs more development work before it can be made operational. 

4.1.3.1. Technical evaluation of indicators of trophic relationships 

Easy to understand  

The trophic level of species in a food web describes the level at which a population feeds, 

averaged across life-history stages and habitats. Although conceptually relatively simple 

the TL varies between individuals in a species and with time, so care must be taken when 

applying the concept to time-series data or broadly across eco-regions. 

Data Availability 

Data describing annual fluctuations in fish population size, either from commercial land-

ings or from fishery-independent surveys, are widely available in European marine waters. 

Data quality is dependent on the methods used (such as the gear type and mesh size) and 

the accuracy with which landings are recorded. Data for other components (such as marine 

mammals, seabirds or benthos) are less frequently available, but can in principle also be 

used to track changes in prey (and thereby mean TL of the population). 

Technical methodology 

The MTI can be easily calculated because it uses a simple measure of abundance (i.e., 

landings, biomass) weighted by the TL value. The quality and reliability of the analysis 

and results depend entirely on the accuracy of the TL value. Although such values availa-

ble from online databases such as FishBase, www.fishbase.org, for fishes and SeaLife-

Base, www.sealifebase.org, for other organisms, these make assumptions about the 

size/age range of the target populations, and their seasonal feeding ecology. Further work 

is necessary to provide reliable TL estimates of species that are applicable in all European 

../AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/OLKBA6/www.fishbase.org
http://www.fishbase.org/
http://www.sealifebase.org/
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seas. The methods used to quantify stomach contents to infer TL can be complex and 

costly when relying on isotopic analysis. 

Sensitive to a manageable human activity 

The TL of a species in a food web can be influenced by adverse human impacts on prey 

items, especially for top predators. The MTI, when based on commercial landings, is sen-

sitive to fishing strategies and market values, putting emphasis on the effects of fishing on 

the relative abundances of the high-TL organisms (mainly fish), which are generally more 

threatened than low TL ones. A strong trend in a long MTI time series is generally affected 

by fishing activities whereas year-to-year variability can be the result of both fishing prac-

tices and other causes (e.g. environmental factors, population dynamics). 

Relatively tightly linked in time to that activity 

The response of the index is on a multi-annual scale. 

Easily and accurately measured 

It can be easily measured because it uses only a measure of abundance (i.e., landings, bio-

mass) for an array of species and their trophic levels. The estimation of MTI is based on 

some assumptions and has drawbacks. Firstly, when using commercial landings data it is 

calculated only for the exploited fraction of the ecosystem (i.e., algae, invertebrates, fish, 

marine mammals) resulting from fishing strategies and availability and does not take into 

account other important biotic components of the food web (i.e., bacteria, viruses, phyto-

plankton, micro-zooplankton, various marine mammals, marine birds and turtles). Thus, 

its‟ use assumes that the exploited fraction is representative of wider marine biodiversity. 

Secondly, the TL of fish usually changes as fish grow and some species occupy different 

trophic levels as they get older. TL can also change from year to year. Thus the use of a 

constant TL value might adversely affect the MTI value and the significance and sign of 

the trend. Finally, the MTI is sensitive to the TL values used for different species (e.g. 

Cury et al. 2005), it might partially reflect changes in the way fishers target different spe-

cies, and does not include discards or illegal landings (which however can be included 

should data or estimates become available). 

Responsive primarily to a human activity, with low responsiveness to other causes of 

change 

The strong trend in a long MTI time series based on landings is mainly affected by fishing 

activities whereas year-to-year variability can be the result of both fishing practices and 

other causes (e.g. environmental factors, population dynamics). 

Relevance to Food webs 

The feeding relations of marine species, especially those of higher predators, are of direct 

relevance to issues related to food web integrity and ecosystem functioning. 

Recommendations for reference levels / limit points 

The MTI can be linked to a reference point if information is available for periods before 

the major industrialization of fisheries. A potential reference point is the mean MTI of 

landings (or biomasses) at a time when most stocks were considered to be exploited sus-

tainably. 

Despite the availability of some indicators to track rate of change of trophic relationships 

in food webs, the development of reference values or reference directions, and acceptable 

deviation from these, is complex and needs further work. 
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4.2. Attribute 2: Structure of food webs (size and abundance) 

One of the simplest means of describing the complex relationships within food webs takes 

account of the relative abundance and size distribution of the component species. As food 

webs tend largely to be structured by predator prey interactions, the body size of predators, 

and the abundance of their prey, will determine the strength and direction of energy flow 

through the system. In this section these structural measures are used to identify criteria for 

good environmental status of food webs, and suggest simple indicators to record their rate 

of change. This attribute links closely with comparable metrics developed to support de-

scriptors related to biodiversity (TG 3) and sea floor integrity (TG 6). 

4.2.1. Size based  

The concept of body size as an indicator of structure for food webs encompasses all ma-

rine organisms. However, most research has been carried out for fish, hence the following 

text draws from the results obtained for fish and considers fishing as the dominant human 

pressure. 

Body size (length, weight) is a structuring variable for both individuals and their interac-

tions. Most life history traits are correlated with size, which constraints metabolic rates and 

energy assimilation, thus controlling growth, reproduction and survival of individuals 

(Reiss, 1989). On average, larger species and individuals feed at higher trophic levels. As a 

result, changes in community size structure will result in changes in trophic structure. The 

so-called „fishing down the food web‟ (Pauly et al., 1998) is the result of disappearing 

from the ecosystem due to overexploitation and fishing exploitation individuals at lower 

and lower trophic level. 

Fishing is usually size-selective, both within and among species, so larger individuals and 

larger species often (though not always) suffer greater rates of mortality but have less ca-

pacity to sustain it. The net result is that exploited populations and communities contain 

relatively fewer large fish and mean size is reduced (Rochet et al. 2005; Methratta and 

Link, 2006). Moreover, the proportion of large species in the community will fall and the 

slope of the size spectrum increase (Pope and Knights, 1982, Pope et al 1988; Rice and 

Gislason, 1996). 

Fisheries can also have an indirect impact on the body size of non-target fish (e.g. prey 

fish), when the fishery alters the abundance and/or size-structure of the targeted fish (e.g. 

large predators). These responses can be a result of the size-dependent predation of the 

predators on their prey, or by density-dependent growth (e.g. weight-at-age) of the prey. 

Size-based indicators have been shown to be suitable for monitoring the trophic structure 

of exploited fish communities (Shin et al., 2005). They have the advantage over trophic 

level derived indicators that; a) the relationships between size and trophic level within in-

dividual species are often stronger than relationships among species and, b) trophic level is 

not a life history trait that determines the response of a species to mortality, but a conse-

quence of feeding relationships. The second point is demonstrated by the vulnerability to 

fishing of some of the larger bodied species feeding on lower trophic levels, such as big 

plaice eating polychaetes. Thus, since trophic level is not a strong measure of vulnerability 

and changes in mean trophic level are a consequence of changes in species and size com-

position, it may be more logical to use size and species composition directly to measure 

the impacts of fishing. 

The size-based structure of food webs is variable on a range of spatial scales and depends 

on species distribution and developmental stage. For example, small fish will generally 

dominate the community in coastal nursery areas while larger individuals are often found 

in deeper waters. Therefore, the pertinent spatial scale for size-based indicators must take 
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these factors into consideration and ensure that they integrate fully across all spatial scales 

to provide a comprehensive representation of the food web. 

Persistent temporal changes in the complete size structure of food webs are expected to 

occur on a multiannual scale. This is related to the generation time of marine species. 

However, some indicators might react over a shorter time scale. 

4.2.2. Criteria 2a) Proportion of large fish maintained within an acceptable range  

The proportion of large individuals captures the state of an assemblage. Heavily fished 

assemblages will have fewer large fish compared to when they were more lightly fished 

(or not at all). Thus, a large proportion of large fish is a good sign. However, the size to 

which individuals grow does not only depend on mortality but also on species composition 

and general environmental conditions. For example, individuals of the same fish species 

are generally smaller in the Mediterranean compared to the North Sea. The proportion of 

large individuals in a given assemblage, is calculated by estimating the proportion of indi-

viduals in weight above a certain size threshold (large/all). This threshold should be sys-

tem and assemblage dependent, and so far has been estimated only for the North Sea fish 

assemblage. 

The proportion of large fish when calculated as a proportion by weight has the advantage 

over average size in that it should be less influenced by recruitment variations. As a conse-

quence, the indicator is expected be more reactive to changes in fishing pressure rather 

than changes in recruitment due to global change (which would influence the denominator 

of the proportion). 

It is impossible to determine a global reference value for the proportion of large fish. At-

tempts to derive regional reference values were based on modelling expected community 

structure in the absence of fishing or to use its value obtained at a time in the past where 

the size-structure was judged to have been satisfactory (see example). Others have derived 

expected directions of change under the impact of fishing (Shin et al., 2005), i.e. a de-

crease in the proportion of large fish with increasing fishing pressure. 

4.2.2.1. Recommended indicator for proportion of large fish: 

 OSPAR has selected the large fish indicator (proportion by weight) to achieve its ecologi-

cal quality objective (EcoQO) for the demersal fish assemblage in the North Sea (ICES, 

2007; OSPAR, 2008). The large fish indicator is calculated using quarter 1 International 

Bottom Trawl Survey (IBTS) survey data, excluding pelagic species. Based on analysis of 

the available time series, the size limit for large individuals was set at 40 cm. At the start 

of the time series in 1983 the proportion of fish in the survey above 40 cm was 0.3 and 

decreased thereafter. It was judged that a proportion of 0.3 was a suitable limit reference 

value. Hence the objective is to re-establish the size-structure of the North Sea demersal 

fish assemblage such that at least 30% by weight of fish are larger than 40 cm. 

4.2.2.2. Technical evaluation of proportion of large fish 

Easy to understand 

Yes 

Sensitive to manageable human activity 

The proportion of large fish is sensitive to fishing as these large fish are the target of di-

rected fisheries in all ecosystems. The indicator is also somewhat sensitive to indirect ef-

fects due to density reduction and resulting enhanced growth and predation relaxation 

making smaller fish increase in biomass (increase in denominator of indicator). 
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Relatively tightly linked in time to that activity 

In addition to being sensitive to direct impacts of removal of large fish, in the short term, 

the indicator can also be sensitive to environmental changes leading to increased recruit-

ment, which will increase the denominator. However, eventually the small fish will grow 

large and become part of the numerator of the indicator. 

Easily and accurately measured 

For calculating the proportion of large fish, estimates of biomass by size group and a size 

limit for each ecosystem is required. For fish, the bottom trawl surveys for fish funded 

under the EU Data Collection Framework provide estimates of numbers at length on an 

annual basis for wide areas. Similar surveys exist in the Mediterranean. If only numbers 

are available biomass can be estimated using available length-weight relationships. 

4.2.3. Abundance /distribution 

This criterion describes the abundance and spatial distribution of major species which 

represent key community and or/ecosystem properties. In some cases, when representative 

species cannot be evaluated, functional groups can be considered. In the ideal case, a set of 

species representing different communities or habitats (benthos, plankton, fish, top preda-

tors) should be selected, in this way covering a large part of the ecosystem. However, typi-

cally, ecosystems are characterized by few strong links and many weak links among 

species or trophic levels (Wootton and Emmerson 2005). Therefore, one (or few) indicator 

populations could also serve as broader indicator of ecosystem state and/or human pertur-

bation (e.g. fishing activity, Link 2005) if the chosen indicator is strongly linked to the 

other trophic levels. This might be particularly the case in low-diversity systems (Casini et 

al., 2008). 

Criteria for selecting the groups/species that could be included in this category are (see 

Fulton et al., 2005): 

i) groups/species with fast turnover rates, responding quickly to any change in the sys-

tem. Such species may cause false alerts, but are potentially useful as early warning indica-

tors (e.g. phytoplankton, bacterioplankton, microzooplankton, mesozooplankton, jellyfish, 

short-living pelagic fish) 

ii) groups/species that are targeted by fisheries, responding to fishing impact (e.g. pelagic 

and demersal fish), and plankton-feeding pelagic fish exerting control on energy flows in 

productive „Wasp-Waist‟ ecosystems (see Section 3.1). 

iii) habitat-defining groups/species (e.g. benthic fauna) 

iv) groups/species at the top of the food web and charismatic indicator species, providing 

indications about the underlying ecosystem state and how heavily it has been impacted by 

fishing (e.g. tuna, sharks, marine mammals, seabirds and turtles) 

v) groups/species that are tightly linked (via food web linkage) to other trophic levels 

Abundance and spatial distribution should be representative of the territorial seas, conti-

nental shelf, and deeper waters present in each region. For all variables, integrated annual 

values are recommended as a basic temporal unit. For seasonally migrating species (e.g. 

fish) local season-specific monitoring could also provide important information (e.g. to 

describe the seasonal immigration of emigration of spawning fish in rivers and estuaries). 

Several existing monitoring programs are performed only once a year, so they will reflect 

a particular phase of the populations‟ annual cycle. 
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4.2.4. Criteria 2b) Abundance /distribution maintained within an acceptable range 

We recommend monitoring the abundance and distribution of representative spe-

cies/groups (based on the selection criteria listed above) and evaluating these in the con-

text of sub-regional reference values. It is recommended that these focus on key groups, 

rather than be generically applied to large numbers of species, to target specific issues re-

lated to food web status. These will be specific to European regional seas and cannot be 

further developed here. Organisms maintained within normal abundance range are further 

indirect evidence that their reproductive capacity is maintained. 

Seven phytoplankton indices have been proposed for the southern Baltic Sea (Sagert et al. 

2008). Among these are total phytoplankton biovolume, the percentage of diatoms, and the 

biovolume of different size ranges of diatoms and one indicative species (Woronichinia 

compacta). This analysis was based on 1163 data sets from 15 sites covering salinities 

between 5-10 psu and 13 years of data. The proposed indices were shown to properly clas-

sify 3 environments with different trophic status. A decrease in Diatom abundance, ac-

companied by an increase in Dinophytes and Cryptophytes, was also in accordance with 

observations from other marine areas. Further examples of species and communities that 

may be used as indicators based on abundance are shown in Annex 6. 

Jellyfish are involved in some spectacular modifications of the food web structure and 

ecosystem functioning such as in the Black Sea (Daskalov et al., 2007), and these data 

suggest there are indications of increased abundance (Gibbons and Richardson, 2009). 

Jellyfish are likely to provide an important indicator species in this category for some re-

gional seas. 

Mesozooplankton play a key pivotal role in marine food webs. Besides responding to bot-

tom-up forcing, the zooplankton community responds indirectly to top-down (fishing) 

forcing (e.g. Frank et al., 2005 in the western North Atlantic; Casini et al., 2008 in the 

Baltic Sea; Daskalov et al., 2007 : in the Black Sea), so in this way acts as an indicator of 

human impact on ecosystems. 

4.2.4.1. Recommended indicator for abundance/distribution: 

The abundance and distribution of representative groups/species, to be selected by regional 

seas conventions or as appropriate in regions or sub-regions. Groups/species that could be 

included here are those with fast turn-over rates and those targeted by fisheries, habitat 

defining groups, top predators which are often also charismatic, and those tightly linked to 

other trophic levels. The food web coverage for each indicator should be established, pre-

ferably with a clear understanding of the relationships to other food web components 

based on peer-reviewed literature. Threshold values should be selected and evaluated in 

the context of sub-regional reference values. 

4.2.4.2. Technical evaluation 

Easy to understand 

Yes. 

Sensitive to a manageable human activity 

The sensitivity to human activity will depend on the selected indicator. 

Higher trophic levels (top predators) and nutrients are both directly sensitive to human 

pressure and therefore generally responsive to management action. Also plankton groups 

are indirectly influenced by human drivers, responding to important changes in trophic 

status of the ecosystem (Cole et al., 1988, Thingstad and Sakshaug 1990). Waste water 
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discharge, agricultural practices and atmospheric nutrient deposition may also directly 

influence plankton abundance. 

Relatively tightly linked in time to that activity 

The timing between disturbance and response may vary among species, from rapid for 

plankton (e.g. in case of anthropogenic nutrient emission) to slow for top-predators (e.g. 

fishery or bottom-up processes). However, in case of indirect effects (e.g. through trophic 

cascades) the response of lower trophic levels may be also slow. 

Easily and accurately measured 

Abundance of organisms is often relatively easily and accurately measured. In some cases, 

standardized monitoring programmes exist, often internationally coordinated (e.g. fish 

surveys). Applying spatial distribution as a criterion will, however, require substantial and 

consistent spatial coverage in the data sets. Standardized methods and regular inter-

laboratory calibrations are needed to avoid inaccuracies in both taxonomic determination 

and abundance estimates. 

Responsive primarily to a human activity, with low responsiveness to other causes of 

change 

The abundance and distribution of organisms is typically not only responding to human 

pressure but also hydrographical, meteorological and climate variation. Therefore, effort 

should be made to disentangle the anthropogenic causes from natural forces. 

Relevance to Food webs 

Currently there is little scientific understanding of the relevance of species or communities 

as indicators of food web quality (as compared with their structural integrity). More re-

search and evaluation is needed to select and recommend specific species as good (appro-

priate) indicators. In the appendix there are some examples of species and communities 

that may be used as indicators based on abundance. 

Current and historic levels 

Current abundances are known for several marine species that are candidates as indicators. 

The understanding of historic levels is available only for a few species further than 20 

years back in time.  

Recommendations for reference levels / limit points 

It is strongly recommended to develop a common approach to derive acceptable reference 

limits including allowance for natural variability. 

For commercially important fish species there are single-species reference levels for abun-

dance (ICES biological reference points), but these levels are not set taking into considera-

tion the effects on the ecosystem. Therefore, they are not suitable in a food web context. 

There are no reference values for spatial distributions. 

5. HOW ARE THE INDICATORS AGGREGATED TO ASSESS GES FOR THE 

DESCRIPTOR? 

TG4 identifies two main attributes of food webs, „Energy flows in food webs‟ and „Struc-

ture of food webs (size and abundance)‟. It is necessary that both attributes must be ad-

dressed for an assessment to be acceptable. Within each attribute TG4 has identified a 

number of criteria (listed below);  
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Attribute 1; Energy Flows in Food Webs 

The food web is a fully interconnected system, so pressures on one part of the system may 

have impacts elsewhere which are not easily predictable. For example, harvesting of san-

deels in the North Sea, where they are a key species in the food web, will remove food for 

birds, mammals, piscivorous fish, and release predation pressure on zooplankton. There 

may also be indirect consequences for a range of other species.  

Criteria;  

a) Production or biomass ratios that secure the long term viability of all components.  

b) Predator performance reflects long-term viability of components. 

c) Trophic relationships that secure the long-term viability of components. 

Attribute 2; Structure of Food Webs (size and abundance) 

Most life history traits are correlated with size, which constrains metabolic rate and con-

trols growth, reproduction and survival. The abundance (and distribution) of carefully se-

lected indicator populations (e.g. jellyfish, plankton, etc) can also describe food web status 

and/or levels of human perturbation. 

Criteria;  

a) Proportion of large fish maintained within an acceptable range  

b) Abundance/Distribution maintained within an acceptable range 

To overcome the burden of proof within an attribute, it will be necessary to address the 

entire spatial extent of the assessment Region or Sub-Region. This can be achieved using a 

suite of localised indicators representing one of more of the criteria which together cover 

the domain, or a single spatially comprehensive indicator. More work is required to under-

stand the practical implications of this requirement for Member States or Regional Seas 

Conventions.  

Indicators have been identified for some of the criteria listed above, often based on those 

already developed by Regional Seas Conventions or through other ongoing Institutional 

activities. While this report has been able to suggest some promising indicator classes it 

has not been possible to select the specific group of taxa that would be most suitable for 

each Region or Sub-Region. The examples and literature provided will, however, be suffi-

cient for all Member States to apply the principles described to their own region.   

In some regions, while we have been clear about the attributes of Food Webs, it has not 

been possible to recommend the most suitable indicators for generic application. Further 

work will be necessary to agree a full suite of indicators, particularly to confirm the correct 

methodological standards for use in criteria c) (trophic relationships) and e) Abundance / 

Distribution changes.  

5.1. Aggregation of assessments across Attributes 

As described above, TG4 expects that evaluation of both the two main attributes of food 

webs, „Energy flows in food webs‟ and „Structure of food webs (size and abundance)‟must 

be undertaken for an assessment of Food Web status in marine waters to be complete. In 

addition, it will be necessary to develop one or more indicators for these attributes which 

together provide comprehensive spatial coverage of each region or sub-region, as appro-

priate. However, further work needs to be undertaken to agree how a number of assess-

ments can be combined to achieve an overall assessment of GES for the descriptor.  
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Several methods have been proposed to combine assessments, ranging from those (such as 

in the Water Framework Directive) which requires all assessments to be acceptable before 

agreeing a final status assessment („one out all out‟), to those which provide weightings to 

give priority to some ecosystem components or attributes over others. Each individual as-

sessment will also be subject to uncertainty in determining the metric and the reference 

point value. The „fuzzy set‟ approach has been suggested by Silvert (1997; 2000) as a way 

of including uncertainty when combining a range of specific ecological assessments. The 

method relies on scoring assessments based on a combination of their achievement of as-

sessment criteria and certainty of knowledge. However, there is currently no agreed me-

thod for aggregating the assessments of Food Web status across attributes and within 

Regional Seas. Further discussion should take place to review the proposals for the other 

„biodiversity‟ descriptors, and derive a pragmatic process that is suitable across, rather 

than within, descriptors. 

6. EMERGENT MESSAGES ABOUT MONITORING AND RESEARCH AND FINAL 

SYNTHESIS  

Food webs are networks of feeding interactions between marine organisms. The species 

composition of food webs varies according to habitat and region, but the principles of en-

ergy transfer from sunlight and plants through successive trophic levels are the same. This 

descriptor addresses the functional aspects of marine food webs, especially the rates of 

energy transfer within the system and levels of productivity in key components.  

The interactions between species in a food web are complex and constantly changing, 

making it difficult to identify one condition that represents „good‟ status. However, 

changes in species relative abundance in an ecosystem will affect interactions in several 

parts of a food web, and may have an adverse effect on food web status. There is, how-

ever, a significant lack of understanding to assess the ecosystem consequences of such 

change, or the value that society should attribute to it. As all marine food webs have al-

ready been adversely affected by humans, a judgement will need to be reached by Member 

States to identify regional limit reference points. 

The time scale over which ecosystem assessments might be required is at least annual. 

More frequent assessments are operationally complex and their interpretation is affected 

by seasonal dynamics. For longer lived species such as piscivorous fish, mammals and 

birds, annual assessments may be more influenced by unexplained processes such as re-

cruitment variability, rather than by internal population processes. Variability between 

habitats suggests that appropriate spatial scales will be based on the purpose for which the 

assessment is required rather than ecological considerations.  

The effects of fishing are the most important pressures which directly affect target species, 

and indirectly affect other non-target components of food webs. While these effects re-

spond to management action, the components which they influence are also subject to cli-

mate variation and other natural drivers making precise attribution of cause and effect 

difficult.  Managing human activity to achieve a desired balance between species in the 

system is therefore a major challenge. 

There are several operational indicators already in use that are relevant to this descriptor of 

GES, and that can contribute to the assessment of food web dynamics. It is encouraging to 

note that these are coherent with other international activities to ensure sustainable fisher-

ies and maritime strategy in European waters, therefore allowing coordinated activity by 

Member States. While it is therefore possible to begin work now, some further develop-

ment is required for indicators that cover all the criteria identified in TG4.    
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The practical process for achieving GES for this descriptor is not well defined and requires 

further work. Even once indicators are agreed in principle, the completion of monitoring 

programmes and delivery of food web indicators for a Regional Sea in which several 

Member States have a stake will require substantial levels of coordination. This will have a 

major influence on successful implementation of the Directive. 
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ANNEX 1. THE ROLE AND MERITS OF ECOSYSTEM MODELS 

The following text comprises extensive quotations and modified extracts from the follow-

ing publication: 

Elizabeth A. Fulton, Anthony D. M. Smith and Craig R. Johnson (2003). Effect of 

complexity on marine ecosystem models. Marine Ecology Progress Series 253: 1–16. 

Ecosystem rather than species management has become an explicit part of policies that 

feature in international treaties and national legislation. Many of the tools that will be 

needed to fulfil the requirements of these policies are still in an early stage of develop-

ment. One such tool is trophic ecosystem modelling. These models have been put forward 

to aid system-level understanding and provide insight into the potential impacts of human 

activities. Despite this, there are many gaps in knowledge of their strengths and weak-

nesses. In particular, little is known about the effect of the level of detail in a model on its 

performance. There has been some consideration of the effects of model formulation, as 

well as the effects of the physical, biological and chemical scope of multispecies and eco-

system models on their performance. A review of existing research indicates that there is a 

humped relationship between model detail and performance for these models, and that 

there are some guiding principles to consider during model development. Other reviews 

give some insight into which model structures and assumptions are likely to aid under-

standing and management, and which may be unnecessary. A key criterion is the determi-

nation of whether a model can capture properties of real systems that other models cannot. 

The main recommendation from such analyses is that the use of a single „ultimate‟ ecosys-

tem model is ill-advised, while the comparative and confirmatory use of multiple „mini-

mum-realistic‟ models is strongly recommended. 

During the last 30 yr, with every push to understand entire ecosystems rather than isolated 

components, ecosystem models have become a popular tool (Watt 1975, Halfon 1979, 

Walters et al., 1997, Sainsbury et al., 2000). However, complex general models have often 

acquired a poor reputation (Jørgensen et al., 1992), primarily because of 2 factors. First, 

these models are often so large and complex that they may not be cost efficient, with the 

majority of the modelling resources spent in development and maintenance rather than on 

their application (Watt 1975). Second, complexity introduced for the sake of completeness 

accomplishes nothing if the resulting model is actually of poor quality (O‟Neill 1975, Sil-

vert 1981, DeCoursey 1992). While modern computing power makes ecosystem models 

attractive, as computational restraints are lifted (Beck 1999), this does not solve the prob-

lems of uncertain model specification, parameterisation and system understanding, or the 

effects of model structure and detail on model performance (Silvert 1981, Jørgensen 

1994). These areas of modelling still require much attention and the need becomes more 

urgent with increasing pressure on scientists and managers for „whole system‟ approaches, 

predictions and policies. 

The evolution of ecosystem models has often seen a tendency to incorporate increasingly 

detailed process formulations and model structure. The mixed success and potentially large 

computational demands of early attempts at highly detailed reductionist ecosystem models 

(Hedgpeth, 1977; Platt et al., 1981) lead to a return to „simple‟ models during the late 

1970s through to the mid-1990s. With advances in computing power and the growth of 

ecosystem and ecological theory large models that are flexible enough to be applied in a 

range of locations, and that account for a large amount of the system, are becoming attrac-

tive again. For instance, over 130 ECOPATH with ECOSIM models have been published 

(Christensen et al., 2000) and the European Regional Seas Ecosystem Model (ERSEM) 

(Baretta et al., 1995) has been applied in 18 locations. This rise in popularity is driven by 

at least three things: (1) an international push for the management of ecosystems rather 
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than individual resources, (2) it is hard to compare results across systems if they are built 

on differing premises and assumptions, and (3) little has been published on the effects of 

complexity on ecosystem model performance. Given the increasingly widespread use of 

marine ecosystem models, it is clear that the effect of model complexity on model perfor-

mance is an important issue. 

ECOSYSTEM MODELS 

Terminology associated with ecosystem models is confusing, in that ecosystem models can 

refer to everything from total system models (dealing with biotic components from mul-

tiple tropic levels as well as abiotic components and forcing) to models that focus solely 

on fisheries (the „top end‟ of the web) or water quality (the „bottom end‟ of the web). Here 

we use the term ecosystem model to refer to total system models rather than those multis-

pecies models tied to one end of the food web or the other. Within the last few decades, 

increasing computer power and a shift in the focus of scientific and political thought has 

lead to a rapid growth in the number of multispecies and ecosystem models in existence 

(Silvert 1981, Breckling & Müller 1994). The majority of published and applied multispe-

cies models tend to concentrate around fishes or nutrients and in both cases, the history of 

model development can be „characterised by the growing intricacy of their internal struc-

ture‟ (Fransz et al., 1991). There have been a number of attempts at producing trophic 

„whole ecosystem‟ models for the marine environment, including the cove model of Patten 

et al. (1975), the multispecies model of Andersen and Ursin (1977), the fjord model of Bax 

& Eliassen (1990), the ECOPATH with ECOSIM model (Christensen et al., 2000); the 

European regional seas ecosytem (ERSEM I [Baretta et al., 1995] and II [Baretta-Bekker 

and Baretta 1997] models; the integrated generic bay ecosystem [IGBEM]) model and Bay 

Model 2 (BM2) (Fulton 2001). Nevertheless, compared with the widespread use of water 

quality and fisheries multispecies models, the use of ecosystem models remains limited. 

As a result, there is still a lot of scope for the development of a thorough understanding of 

the implications of model structure on performance for these kinds of models. 

The various types of multispecies and ecosystem models each have associated advantages 

and problems, but there is a list of features and potential drawbacks common to them all. 

In general, such models improve our understanding of systems by reflecting the 2-way 

nature of system dynamics. Human impact on one part of a system can spread to other 

parts of the system, but system feedbacks and interrelations can also mean that an impact 

can have unexpected consequences even for those groups directly affected by anthropo-

genic activities (Hollowed et al., 2000, Fulton 2001, Mace 2001). There are also a number 

of potential problems common to multispecies and ecosystem models: (1) they inevitably 

require more information than single-species models (which incur associated costs); (2) 

they are more likely to suffer from issues about optimal complexity (i.e. what groups and 

processes should be included); (3) operational objectives and monitoring indices can be 

hard to define for the real systems to be modelled; (4) it can be difficult to define appropri-

ate indices to summarise model output; (5) there are often alternative hypotheses about 

system structure and function (Silvert 1981, Jørgensen 1994, Mace 2001). These features 

are particularly important when dealing with ecosystem models. However, as multispecies 

and ecosystem models are the only models with the potential to answer the environmental 

questions that single-species and pure hydrodynamic models cannot (Hollowed et al., 

2000, Mace 2001), the advantages of intelligent and attentive application of such models 

can outweigh their potential pitfalls. 

One of the main criticisms aimed at ecosystem models is that their potentially immense 

complexity can make predictions highly uncertain (Duplisea 2000). If the model output is 

to be used directly to determine management actions (as in a fisheries stock assessment 

model), such a characteristic is clearly undesirable (Butterworth 1989). In contrast, when 

such models are used as a guide to possible impacts and to explore implications of alterna-
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tive broad policies, this property is no longer such a problem. This is particularly true if the 

robustness of the conclusions is tested against a range of models incorporating different 

structural and parametric assumptions, representing a range of plausible alternatives about 

how the particular system may work. This approach permits identification of effects and 

policies that are robust across levels of complexity, uncertainty and underlying system and 

model assumptions (Reichert and Omlin 1997, Duplisea 2000, Fulton 2001). A related use 

for more complex ecosystem models is as a test bed for simpler models that may be used 

in assessment of the system, or part of it. Applying simpler assessment models to „data‟ 

generated from complex ecosystem models is a useful way of checking the robustness of 

the assessment models, and of identifying the circumstances in which it may be appropri-

ate to use them for more „tactical‟ management advice. Using these approaches, ecosystem 

models have the potential to identify issues and causes beyond the bounds possible in sin-

gle-species models, or even multi-species models in some cases. Management strategies 

implemented to achieve a certain goal may have the opposite effect if multispecies or eco-

system considerations are not included. For example, a simple predator-prey model, where 

seals are the predators and fishes the only type of prey, might suggest that culling seals 

will increase fish abundance for a given prey species. However, a more complex multispe-

cies model might show the opposite effect if seals suppress other predators (or competi-

tors) of that fish species (Punt and Leslie 1995, Yodzis 2001a). Beyond even these 

multispecies considerations, without the inclusion of the links between the upper and low-

er ends of the food web and the forces driving them, erroneous conclusions may be drawn 

about environmental and anthropogenic impacts, as alternative explanations and scenarios 

are overlooked (Steele 1998, Fulton 2001, Yodzis 2001b). For example, a decline in the 

biomass of a herbivorous fish may indicate overfishing, but it may equally indicate degra-

dation of their main food reserves as a result of eutrophication (Fulton 2001). 

Nutrients included explicitly in models 

Tett & Wilson (2000) advised that ecosystem models should be biogeochemical, as they 

must conserve 1 or more elements so that the potential growth of groups can be capped. 

The success of ECOSIM models (Walters 1998) suggests that conservation of biomass 

may also be sufficient. In biogeochemical models, it is common to use the most limiting 

macronutrient (carbon, nitrogen or phosphorus) as the model currency and assume that the 

conversion of the other nutrients conforms to the Redfield ratio. However, this approach 

does not allow the model to adjust to spatial and temporal differences in nutrient availabili-

ty (Baretta et al., 1995). This inability should not present a significant problem and will 

not (in general) lead to large model divergences if the system state is mesotrophic to eu-

trophic. This is because the other nutrients should remain in excess, even if not exactly in 

Redfield ratios. However, when a system is in an oligotrophic state, the dependence of the 

model on a single macronutrient currency can be a problem (Fulton 2001). Under these 

conditions the identity of the limiting nutrient may well change and the preferential remi-

neralisation of nitrogen and phosphorus will cause significant departures from the Redfield 

ratio, with potentially catastrophic implications for production estimates and the dynamics 

of transmission up the food web. The successful application of models such as ECOPATH 

with ECOSIM to the open oceans (Christensen et al., 2000) suggests that models employ-

ing the conservation of biomass may not suffer as much from this problem. However, en-

vironmental influences are not usually present in such models, and if they are they are 

usually in the form of prescribed forcing functions (Hollowed et al., 2000). If environmen-

tal conditions became a more integrated part of these models, then the problems observed 

in biogeochemical models may also appear in models like ECOSIM. 
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Physical scope 

Another important aspect of model scope that can affect model behaviour is the physical 

scope of the model, and in particular its spatial resolution. Many multispecies and ecosys-

tem models (e.g. mass balance aggregate-system models such as ECOSIM) do not include 

any explicit spatial representation. However, space is a vital system resource in its own 

right in many marine systems and, as such, the way in which it is represented can have a 

significant impact on model dynamics and predictions (Murray 2001, Fulton 2001). Many 

of the model stability issues identified in ecological and ecosystem models in the past 

(May 1974, Cohen and Newman 1988, Christensen et al., 2000) disappear with the intro-

duction of explicit spatial (and thus environmental and/or ecological) heterogeneity (John-

son 1997, Fulton 2001). This assertion does not apply only to biogeochemical ecosystem 

models (such as those employed by Fulton 2001), but extends to other types of multispe-

cies and aggregate system models (like ECOSIM). There are many examples of these 

models being explicitly (through the development of ECOSPACE, Walters et al., 1999) or 

implicitly (by separating individual model groups into inshore and offshore components; 

V. Christensen pers. com.) expanded to incorporate spatial partitioning. This is not to say 

that ecosystem models must be tied to general circulation models. Such a move would be 

computationally prohibitive and probably of little assistance. The box-model approach to 

transport processes is useful as it neglects small-scale gradients but still allows for regional 

differences and spatial self-structuring which, in turn, lead to the formation of distinct 

communities and ecological zones (Baretta et al., 1995, Fulton 2001). Even when using 

box-models, large numbers of cells may not be necessary if they are defined such that they 

resolve hydrographic discontinuities, which have important ecological implications (Ni-

houl and Djenidi 1998). For example, Fulton et al., (2001) found that an 8-box model was 

a good compromise between the computational intensity associated with a 59-box version 

and the trophic self-simplification and degradation in performance associated with 3- and 

1-box versions of the same model. This is another facet of model structure in which inter-

mediate complexity is optimal. 

The work of Tett and Wilson (2000) on multispecies models helps to define limits to sim-

plifying key underlying processes. They found that models which sacrifice large amounts 

of either biogeochemical or of ecological detail in favour of the other cannot adequately 

describe the dynamics of the plankton. Tett andWilson (2000) concluded that to realistical-

ly capture the dynamics of marine plankton the models must be biogeochemical and in-

clude trophic webs, not simple trophic chains. These minimum requirements provide 

realistic restrictions and alternative pathways which stabilise the models and lead to realis-

tic simulations of seasonal changes and other observed phenomena. The research of Mur-

ray and Parslow (1999a) and Murray (2001) arrived at a similar conclusion. They 

advocated the use of simpler models as aids in the development of more sophisticated 

models. For example, the analysis of the simpler model indicated that explicit representa-

tion of zooplankton was necessary in multispecies plankton models and that model closure 

had to be carefully considered (see later subsection „Model closure‟). Ultimately however, 

Murray (2001) stated that the extra spatial and formulation detail included in the larger 

model was required for fully informed system management and to allow scientists and 

managers to understand and consider a number of alternative scenarios. Studies comparing 

the performance or predictions of different types of model are useful for judging how ro-

bust general findings are to the underlying assumptions of the models (Fulton 2001). How-

ever, they are also an excellent source of information on the effects of process detail on 

model dynamics. Duplisea and Bravington (1999) found that the results from a length co-

hort model (a multispecies forecast [MSFOR] model) and a size-spectrum mass-transfer 

model both led to the same conclusions regarding fisheries management strategies. Thus, 

for the particular question of interest, the explicit process detail of the MSFOR did not 



|  45 

 

confer any advantage over the far simpler size-spectrum model. In general, size-spectrum 

models are a successful methodology, at least for pelagic aquatic ecosystems (Silvert 

1996). However, in the context of the evaluation of management strategies, Duplisea and 

Bravington (1999) recommend a few modifications, such as allowing some disaggregation 

into functional trophic groups and including more realistic grazing terms. The popularity 

of ECOSIM suggests that it may also be a successful methodology. This is supported by 

the finding of Fulton (2001) that, with a few exceptions, ECOSIM gave the same qualita-

tive predictions as the biogeochemical ecosystem models IGBEM and BM2. The differ-

ences observed stem mostly from the lack of spatial detail in ECOSIM, or parts of the 

trophic web that are poorly known. The main differences between the biogeochemical 

models and ECOSIM that are a direct result of model formulation are that the biogeochem-

ical models are not as buffered against changes in fisheries as ECOSIM, but are more buf-

fered against changes in nutrient loading. This is a reflection of the more realistic 

behaviour of the low to middle trophic groups in the biogeochemical models, whereas the 

higher trophic groups react more sensibly in ECOSIM (Fulton 2001). This is not surprising 

given their respective development histories and structure, but does caution against the 

assumption that a formulation that works at 1 level will work at every level. 

Forcing functions and empirical submodels 

The last facet of model formulation to have received some attention is the value and usage 

of empirical formulations. Empirical formulations (or empirical models as they are some-

times known) are functions that describe observed patterns or relationships in data, but 

without capturing real-process dynamics. These formulations have both advantages and 

disadvantages. They can be developed without much understanding of the phenomenon of 

interest, they are simple because they do not include complex causality, and they can be 

developed rapidly (DeCoursey 1992). All these features make empirical models attractive, 

and within their range of applicability they can often provide better predictive power than 

dynamic models (Håkanson 1997). Their limiting feature is that many domains of interest 

can be outside the range of applicability. This, along with the arbitrary nature of these 

models and the associated risk of adopting a misleading approach or false assumptions, 

can mean they are less than ideal (DeCoursey 1992). Within the realm of marine ecosys-

tem models, the model development choices are more complex than empirical versus pure-

ly process models because empirical models can play a role within dynamicprocess 

models. Given that the understanding of some components of marine ecosystems are poor 

(e.g. the processes and forces shaping the behaviour of the benthic infauna), the use of 

empirical submodels for the least known parts of the system is an attractive alternative. 

The inappropriate use of simple forcing functions can lead to very poor model perfor-

mance, while the use of a structured empirical submodel can work very well (Fulton 

2001). Alternatively, the use of an empirical representation of an important process can 

prevent degradation of model performance. This is especially true if the causal mechan-

isms for the process are poorly known, or if explicit inclusion of the details of the mechan-

ism is beyond the scope of the model or the capability of the available data or 

computational resources. For example, the empirically based bacteria-denitrification sub-

model employed in BM2 is a vast improvement over another process-based attempt at 

modelling bacteria and denitrification (Fulton 2001), both of which components are still 

poorly known in many respects. 

DISCUSSION AND CONCLUSIONS 

The multitude of links and processes that make up a real ecosystem mean that the ultimate 

effects of anthropogenic actions will probably be much wider than expected and, because 

of inevitable non-linearities, may even lead to counterintuitive outcomes. Ecosystem mod-

els are a prime candidate as a tool to aid in the understanding of these potential outcomes. 
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This does not mean that they do not have potential drawbacks associated with their own 

size and complexity, but careful consideration of these problems and the intelligent appli-

cation of the models can avoid or minimise many of these problems. However, greater 

understanding of the effects of model structure and scope on model performance is neces-

sary. This is particularly the case if we are to avoid the situation where frustration resulting 

from poorly structured ecosystem models, or the inappropriate use of existing ecosystem 

models, leads us to reject the modeling approach altogether. 

Studies of the effect of model structure that have already taken place indicate that there is a 

humped form to the relationship between model detail and performance (Costanza and 

Sklar 1985, Håkanson 1997, Fulton 2001). Too much complexity leads to too much uncer-

tainty and problems with interpretation of the model‟s dynamics and predictions, while too 

little detail results in models that cannot produce realistic behaviours. These studies have 

also identified some important guidelines which can usefully extend or augment those pro-

posed in earlier works on ecological models (Wiegert 1977, O‟Neill and Rust 1979, Cale 

& Odell 1980, Gardner et al., 1982, Halfon 1983a,b, Innis and Rexstad 1983, Iwasa et al., 

1987): (1) Explicit physiological detail of every trophic group is not always necessary. 

However, the use of explicit physiological detail can be important in certain circumstances 

(such as oligotrophic conditions when simple assumptions about nutrient uptake and the 

ratio of limiting nutrients are violated). (2) If an important process or linkage (e.g. to an 

external web) is poorly known, or is not explicitly represented in the model, then an empir-

ical representation should be included in its place. This can avoid introducing uncertainty 

without risking the degradation of performance associated with neglecting a crucial aspect 

of a system. (3) Some level of spatial resolution is likely to be necessary for adequate per-

formance of the model. A 1-box model is unlikely to be sufficient, as space is itself an 

important and self-organising system resource. This is particularly true in systems where 

benthic groups are important. Moreover, there must be enough spatial resolution in the 

model to capture the major physical characteristics of the system. Trophic self-

simplification of the tropic web (the loss of 1 or more components from the web) is often a 

good indicator that spatial representation is overly restricted. (4) The inclusion of a com-

plete trophic web at the level of species is neither necessary nor desirable, but the way in 

which the web is handled is critical. The use of functional groups (defined based on size 

and shared predators and prey) is a successful means of representing the system web rea-

listically (particularly if some age or size structure is included for the highest groups). Ag-

gregation beyond the level of functional groups is ill-advised, and omission of the least 

important groups is a better strategy if further simplification is necessary. Moreover, sim-

plifying a model web (which represents the food web of an entire system aggregated to the 

level of functional groups) to less than 20 to 25% of its original size is rarely beneficial, as 

representing the distinctions between large and small or mobile and sedentary groups may 

be crucial. (5) Quadratic closure of the topmost parts of the trophic web is a successful 

method of closing the web, regardless of its size, but there is some debate about whether 

this solution is ecologically justified. The explicit inclusion of the highest predators may 

only be necessary when they are of direct interest. (6) The form of the grazing functions 

used must be given careful consideration so that they contain enough flexibility without 

introducing extraneous detail. Holling Type I responses are unlikely to be sufficient (espe-

cially under changing conditions), but the more complex Holling type functions (e.g. Type 

II) may be acceptable. More sophisticated responses, incorporating more behavioural dy-

namics (e.g. balancing predator avoidance with the need to forage) may be required in 

some circumstances, but the value of their inclusion should be checked. 
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ANNEX 2. SHELLFISH PRODUCTION REQUIREMENT RATIO TO SUPPORT EIDER DUCKS 

(SOMATERIA MOLLISSIMA) IN THE WASH, UK 

For several decades, marine biologists have attempted to estimate the prey consumption of 

seabird communities and to understand the role of food in determining population size and 

community structure (e.g. Furness 1978). Quantifying the prey harvest of bird populations 

requires a bioenergetics modelling approach, incorporating a consideration of the energy 

or food consumption of an individual bird and scaling up to the consumption of the whole 

population within the area under consideration. In order to generate realistic estimates of 

food consumption under a range of scenarios, models need to adequately represent the key 

relationships and simple models are unlikely to perform well under a range of diverse 

situations. The Centre for Ecology and Hydrology (UK) in 2003 used an energetic model 

to determine the capacity of The Wash shellfish stocks to support eider ducks (Caldow et 

al., 2007). An existing behaviour-based model developed previously by CEH was param-

eterised to create a model of the populations of eider ducks and oystercatchers Haemato-

pus ostralegus within The Wash and of the principle populations of shellfish that they 

exploit within it; cockles Cerastoderma edule and American jack-knife clam Ensis direc-

tus. Parameterisation was based on information gleaned from the literature and on the re-

sults of surveys of the shellfish stocks of The Wash. The output generated by the model 

was validated against independent data concerning: the proportion of time that birds spend 

feeding, their daily consumption of food, daily energy expenditure, body mass, distribution 

and over-winter mortality. 

One series of model simulations was conducted to explore the consequences for the exist-

ing over-wintering populations of eiders and oystercatchers of changes to the total quantity 

of mussels available to them on commercially cultivated lays against a number of alterna-

tive backgrounds in which the other shellfish stocks were varied in the light of the histori-

cal variation that they have shown. These simulations served to explore the impact on the 

existing eider and oystercatcher populations of a reduction in the stock of lay mussels and 

whether this impact varied in relation to the abundance of other shellfish stocks available 

to the birds. The model predicted that the eiders consume c 600 tonnes of mussels from 

two cultivated lays. It also predicts that, as observed, the eiders switch in late winter to 

feed on Ensis directus. The model predictions indicated that by exploiting these two re-

sources alone, the current peak population of c 3,000 eider ducks can be supported, with 

only around 4 per cent being at risk of not being supported. 
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ANNEX 3. CHANGES IN THE FOOD WEB OF NORTHWESTERN ATLANTIC SHELF SEAS AS A 

RESULT OF COLLAPSE IN COD STOCKS 

In the early 1990s, Atlantic cod (Gadus morhua) stocks on the Grand Banks, the eastern 

Scotian Shelf and in the northern and southern Gulf of St. Lawrence collapsed after centu-

ries of exploitation. Despite substantial reductions in harvesting rates of cod, there has 

been little recovery of stocks in any of these areas (Fanning et al., 2003). 

Bundy et al. (2009) derived various ratio indicators from Ecopath analyses to investigate 

how the ecosystems of four northwestern Atlantic shelf areas (eastern Scotian Shelf (ESS), 

Newfoundland-Labrador Shelf (NFLD), northern Gulf of St Lawrence (NGSL) and south-

ern Gulf of St Lawrence (SGSL)), had changed as a result of the cod collapses. Along with 

cod, many other groundfish species, such as white hake (Urophycis tenuis), redfish (Se-

bastes spp.), and flatfish such as American plaice (Hippoglossoides platessoides) suffered 

serious declines, as reflected by steep decreases in total landings. Meanwhile, other 

changes in these ecosystems were also occurring, such as large increases in seals, due to 

population recovery from hunting (Mohn and Bowen, 1996; Hammill and Stenson, 2005) 

and, at least in some areas, of forage fish, which may be due to predation release (Lilly, 

1991; Bundy, 2005). 

Biomass and production ratios (Table 3-1) showed that the systems shifted to different 

food web structure after the cod collapse, with changes in the main predators and the flows 

through the system. Following the decline of cod, marine mammals such as seals became 

the main top predators of many species during the mid- 1990s, and had profound effects 

over all trophic levels (top-down effects) in Newfoundland–Labrador, the northern Gulf 

and the southern Gulf. This, coupled with the partial re-opening of fisheries before cod 

stocks had recovered, may explain why cod biomass is still at extremely low levels in 

these ecosystems. 

On the eastern Scotian Shelf, top-down predation by seals does not appear to be a signifi-

cant energy flow or cause of mortality of cod, nor has there been a fishery since 1993. 

However, the high ratio of pelagic forage fish to total fish biomass may indicate that pelag-

ic fish are out-competing small cod for food (small zooplankton), and larval cod may be 

consumed by forage fish. All systems show evidence of a potential trophic cascade follow-

ing the result of the removal of the top fish predators by fishing. Thus, the changes in top-

predator abundance driven by human exploitation of selected species resulted in a major 

perturbation of the structure and functioning of the four Northwest Atlantic ecosystems. 

Each represents a case of fishery-induced regime shift, to alternate states that may not be 

reversible in the short term. 
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Table 3-1  Reproduced from Bundy et al. (2009); Time trends (before and after cod stock collapse) in various ecosystem ratios and indicators from Ecopath ana-

lyses of the eastern Scotian Shelf (ESS), Newfoundland-Labrador Shelf (NFLD), northern Gulf of St Lawrence (NGSL) and southern Gulf of St Lawrence 

(SGSL).  
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ANNEX 4. RATIOS OF FISHERY LANDINGS (OR DERIVATIVES OF LANDINGS) TO PRODUCTION 

OF LOWER TROPHIC LEVELS 

Heath (2005) estimated the annual requirements, or demand, of fishery landings during 1973-

2000 from the North Sea, West of Scotland, and the Celtic Sea for a) omnivorous zooplankton 

production, b) carnivorous zooplankton production, and c) macrobenthos carnivore produc-

tion. These requirements were then compared with independent estimates of the total annual 

production of these prey categories derived from Continuous Plankton recorder and tempera-

ture data. Production requirements of the landings were estimated by applying consumption to 

production ratios and diet composition data to the landed species to estimate ingestion, and 

cascading these calculations down through the food web to the desired level of plankton or 

benthos component. In the case of macrobenthos carnivores there was a direct fishery catch of 

these taxa, which was added to the indirect requirement due to predation by fish on benthos. 

The results (Figure 4-1) show systematic differences in the ratio of demand to production be-

tween the three regions, and also time trends within some regions. In principle, high ratios 

indicate more intense pressure on the food web from fisheries. 

The zooplankton production requirement ratio indicates rising and more extreme fishing pres-

sure in the North Sea and west of Scotland areas compared to the Celtic Sea. Pressure in the 

Celtic Sea appears lower than the other area due to the lack of large scale industrial fisheries 

for small pelagic species. The benthos production requirement ratio also indicates more ex-

treme fishing pressure in the west of Scotland area compared to the others. Pressure in the 

Celtic Sea appears to be increasing due to escalating removals of high trophic level species, 

and Horse Mackerel. The latter has a benthic component of diet and has increased in abun-

dance in the region due to poleward changes in geographic range. 

 

 

 

 

 

 

 

 

 

 

 



|  51 

 

 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

1970 1975 1980 1985 1990 1995 2000

Year

D
e

m
a

n
d

 o
f 

fi
s

h
e

ri
e

s
 :

 p
ro

d
u

c
ti

o
n

North Sea West Scotland Celtic Sea

Omnivorous zooplankton

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1970 1975 1980 1985 1990 1995 2000

Year

D
e

m
a

n
d

 o
f 

fi
s

h
e

ri
e

s
 :

 p
ro

d
u

c
ti

o
n

North Sea West Scotland Celtic Sea

Carnivorous zooplankton

0

0.1

0.2

0.3

0.4

0.5

0.6

1970 1975 1980 1985 1990 1995 2000

Year

D
e

m
a

n
d

 o
f 

fi
s

h
e

ri
e

s
 :

 p
ro

d
u

c
ti

o
n

North Sea West Scotland Celtic Sea

Macrobenthos carnivores

 

Figure 4-1  Ratios of (upper panel) the annual demand of landed fish for omnivorous zooplankton 

production compared to total annual omnivorous zooplankton production; (middle panel) the an-

nual demand of landed fish for carnivorous zooplankton production compared to total annual car-

nivorous zooplankton production; (lower panel) the annual demand of landed fish for carnivorous 

benthos production compared to total annual carnivorous benthos production. In each case, de-

mand was calculated from landings data, diet composition and consumption to production esti-

mates, and total annual production from Continuous Plankton recorder and temperature data. 

Methods described by Heath 2005. 
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ANNEX 5. BACKGROUND INFORMATION ON THE MARINE TROPHIC INDEX (MTI) 

The calculation of MTI (for a given region, nation or ecosystem) requires two types of data: 

the Trophic Level (TL) value of all species comprising the landings, and long time series of 

landings per species for which TL is available. Area or ecosystem-specific TL values can be 

obtained from databases available online (e.g. FishBase, www.fishbase.org, for fishes, Sea-

LifeBase, www.sealifebase.org, for other exploited marine organisms) or from local studies 

(i.e., stomach contents, isotope data). Time series of landings data are also largely available at 

various spatial levels (regional; national statistics; national statistics as reported by the Food 

and Agriculture Organisation, FAO; reconstructed national landings: Sea Around Us, 

www.seaarroundus.org). Based on the above, the mean weighted TL value of landings is cal-

culated annually to provide an MTI time series for a given region, nation or ecosystem. 

The MTI has been estimated as the mean weighted TL of fisheries landings for a cut-off TL 

(i.e., TL > value 3.25) (Pauly and Watson 2005), depending on the specific 

area/region/ecosystem and fishery (Pilling et al., 2007). The use of a cut-off TL value for the 

estimation of MTI allows this index to put emphasis on the effects of fishing on the relative 

abundances of the high-TL organisms (mainly fish), which are generally more threatened than 

low TL species, the abundance of which is also more affected by other factors such as climate 

variability (Pauly and Watson 2005). 

The original methodology has been developed further and MTIs at different scales are avail-

able from the Sea Around Us website, hosted by the Fisheries Centre of the University of 

British Columbia (http://www.seaaroundus.org/). The MTIs are calculated from data in the 

Food and Agriculture Organisation (FAO) database on commercial fisheries landings (which 

for some countries have been reconstructed to account for various aspects, notably for small-

scale landings). 

Interpreting the MTI 

MTI addresses issues related to food web integrity, ecosystem functioning, and biodiversity 

loss. Although year to year variability in MTI can be related to natural change in populations 

and is not a key issue in MTI analysis, the existence of a significant downward trend (i.e., 

decline over time) in MTI signifies a reduction in the complexity of the food web, with an 

increasing proportion of the landings consisting of invertebrates and small, short-lived fish. 

The consequences of a reduction in food web complexity are twofold. Firstly, if marine food 

webs have evolved over time to acquire a certain distribution of biomass at different trophic 

levels, then human-induced changes in these relative proportions could have unexpected and 

potentially irreversible consequences for food web integrity. Secondly, any decline in mean 

trophic levels of fisheries landings cannot continue indefinitely and ultimately the overall 

supply of fish for human consumption will also decline. 

The estimation of MTI is based on a few assumptions and has drawbacks. Firstly, when using 

commercial landings data it is calculated for the exploitable fraction of the ecosystem (i.e., 

algae, invertebrates, fish, marine mammals) and does not take into account other important 

biotic components of the marine ecosystems (i.e., bacteria, viruses, phytoplankton, micro-

zooplankton, various marine mammals and turtles). Thus, its‟ use assumes that the exploitable 

fraction is representative of the wider marine bio-diversity. This is not unreasonable since this 

fraction comprises a main part of the ecosystem biomass and is subject to the major drivers of 

change, particularly fisheries exploitation. Secondly, the TL of fish can change as fish grow 

and some species change trophic levels as they get older. TL can also change from year to 

year. Thus the use of a generic TL value might affect the MTI value and the significance and 

sign of the trend. This can be overcome by either using size-based TL when available (Ster-

giou and Karpouzi, 2002) or other trophic metrics (Jennings et al., 2002). In any case, any 

trophic measure is still insensitive to threatened and declining species such as the basking 

http://www.fishbase.org/
http://www.sealifebase.org/
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shark and some species of skates, which often occupy low trophic levels. Finally, the MTI is 

sensitive to the TL values used for different species (e.g. Cury et al., 2005), it might partially 

reflect changes in the way fishers target different species, and does not include discards or 

illegal landings (which however can be included should data or estimates become available). 

All of the above might account for the fact that the mean trophic level has been found to be 

rather insensitive to fishing impacts in certain fish communities (e.g. North Sea: Jennings et 

al., 2002). 

Despite the above mentioned assumptions and drawbacks, the MTI is easy-to-estimate and 

apply as a „large-scale‟ indicator of the health of both fisheries and marine ecosystems, using 

the full range of ecosystem trophic levels, and has been widely used for areas of different spa-

tial scales in both data-rich (e.g., Canada, Iceland, North-Sea) and data-poor areas (e.g., 

Greece, Cuba, Portugal, India, Brazil, Uruguay) (Stergiou in press). 

The Fishing in Balance (FiB) index 

The Fishing in Balance (FiB) index is usually used in conjunction with the MTI and expresses 

the fishery condition in relation to a reference year. It is estimated as follows: 

1

11

1

log
TL

TL

yy

TECatch

TECatch
FiB , 

where y is the year of the time-series, TL is the mean trophic level of the catch, TE is the 

mean energy-transfer efficiency between trophic levels (assumed to be 10%), and 1 refers to 

the first year in a time-series that is used as a baseline. FiB attains a value of 0 for the first 

year of the series and does not vary in periods in which TL and catches change in opposite 

directions. An increase in FiB indicates a geographic expansion of fisheries, and/or exploita-

tion of new species, and/or eutrophication effects. A decline in FiB indicates geographic 

shrinkage in fisheries and/or stock collapses. FiB addresses the same questions and spatial and 

temporal scales are as for MTI. 
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ANNEX 6. ABUNDANCE OF SPECIES 

Below is additional text validation the indicators of the criterion abundance of species. 

Some examples of food web indicator species 

Phytoplankton: 

It is well established that phytoplankton chlorophyll-a increases following elevated nutrient 

input. For example, higher mean concentration of total nitrogen and phosphorus in the water 

column correlated positively with chlorophyll-a, based on a compilation from 92 countries 

world-wide (Smith 2006). Also in situ enrichment experiments (i.e. Fe) at several ocean sites 

consistently results in markedly elevated phytoplankton biomass (Boyd et al., 2007). At the 

same time caution is advocated in interpreting phytoplankton abundance at larger scales as a 

precise measure of trophic status only. This is due to several factors such as, nutrient limita-

tion, predation, nutrient recycling and physical mixing processes which all influence phytop-

lankton growth and their abundance (Thingstad and Sakshaug 1990). 

Interpretation of phytoplankton indicators at higher taxonomic resolution may be strongly 

dependent on specific characteristics of regional seas, and no single indicator can currently be 

employed to adequately compare e.g. the eutrophication state between European seas 

(McQuatters-Gollop et al., 2009). However, some recent reports from different regions can 

provide good examples to be further developed. 

Seven phytoplankton indices have been proposed for the southern Baltic Sea (Sagert et al., 

2008). Among these were total phytoplankton biovolume, the percentage of diatoms and the 

biovolume of different size ranges of diatoms and one indicative species (Woronichinia com-

pacta). This analysis was based on 1163 data sets from 15 sites covering salinities between 5-

10 psu and 13 years of data. The proposed indices were shown to properly classify 3 envi-

ronments with different trophic status. Especially a decrease in Diatoms, accompanied by an 

increase in Dinophytes and Cryptophytes, was also in accordance with observations from 

other marine areas. Hydrographical drivers were not important for the observed phytoplankton 

response in this study. 

Other investigators, however, suggest phytoplankton metrics as promising, but advocate fur-

ther development (Tett et al., 2008, Devlin et al., 2009, Tsirtsis et al., 2008). 

Bacterioplankton: 

Bacterioplankton constitute one of the largest heterotrophic biomasses in the Sea and may be 

used as a proxy for the flux of matter through the microbial compartments in the food web 

(Azam and Malfatti 2007). Billen et al., (1990) showed that bacterioplankton growth and 

biomass are positively related to environment trophic status, also suggesting a general re-

source control of the bacterioplankton community. The relationship to trophic status has also 

been found in other compilations over different environments (Cole et al.,1988), and is also 

established on other scales e.g. as a co-variation with seasons and depths associated with high 

organic productivity (Wikner and Hagström 1999). Modelling studies also support a positive 

response of bacterioplankton to nutrient enrichment (Thingstad 2000). 

Micro-zooplankton and meso-zooplankton: 

Micro- and meso-zooplankton play a key pivotal role in marine food webs. The zooplankton 

community responds to human activities through bottom-up (eutrophication) and top-down 

(fishing) forcing (e.g. Frank et al., 2005).The speed at which the micro- and zooplankton pop-

ulation increase responds to phytoplankton growth determines either the amount of energy 
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directed towards higher trophic levels in the pelagic environment or sinking to the sea floor 

(benthos). The speed of that response may even determine whether phytoplankton blooms 

occur (Irigoien et al., 2005; Rose and Caron 2007). 

Macrobenthos: 

Macrobenthos is mainly exploited in coastal areas rather than deeper waters, however macro-

benthos is a good indicator of the disturbances induced by human pressures in the benthic 

food web such as, deep trawling, oil exploitation, eutrophication, acidification etc (Jones 

1992; Queiros et al., 2006; Rosenberg et al., 2004, Turley et al., 2007). Macrobenthos sam-

pling procedures and analysis protocols are well established for the shelf communities, how-

ever shelf break and in particular deep oceanic areas may require some effort to standardize 

the sampling procedures (Gage 2001). 

Jellyfish: 

Jellyfish are not directly exploited in European waters and therefore not directly manageable. 

However they are sensitive to human pressure through modifications of the benthic habitat 

where the sessile stages develop, and respond to eutrophication, changes in turbidity, over-

fishing of competitors and predators (Purcell et al., 2007; Daskalov 2002). Jellyfish are in-

volved in some spectacular modifications of the food web structure and ecosystem 

functioning such as in the Black Sea (Daskalov 2002) and there are indications of increased 

abundance (Gibbons and Richardson, 2009). Most sampling methods based on nets tend to 

seriously underestimate their abundance (Remsem et al., 2004), although abundance indexes 

have been extracted from routine sampling programs such as the continuous plankton recorder 

(CPR,Gibbons and Richardson., 2009). Furthermore, new methods based on acoustics are 

promising for routine assessment of jellyfish abundance (Brierley et al., 2001; Han and Uye, 

2009; Klevjer et al., 2009). 

Fish (small pelagics and demersal): 

Some small pelagic (e.g. herring, sprat, anchovies) fish and demersal fish (e.g. cod, haddock) 

are directly exploited by human pressure and respond to management. Moreover, both ex-

ploited and non-exploited species can indirectly respond to human perturbation through by-

catch or food web interactions, e.g. trophic cascades (Frank et al. 2005; Casini et al. 2008). 

For example, in the Black Sea the fishery-related decrease in mammals and large pelagic pre-

dators (e.g. tuna, swordfish, Black Sea mackerel) produced an increase in small planktivorous 

fish (sprat, anchovy) with further top-down effects on plankton. A similar process was ob-

served in the Baltic Sea, which after the collapse of cod shifted to a sprat-dominated system 

with implication for the lower trophic levels (Casini et al. 2008). Routine sampling programs 

of fish are ongoing in most of the exploited ecosystems. 

Top predators (tuna, sharks, marine mammals and turtles): 

The abundance of top predators is a measure of the health of the food web. Some of the top 

predators are directly exploited and respond to management (tuna, sharks, seals and birds) 

whereas others are indirectly affected through bycatch (sharks, turtles and purpoises), pollu-

tion and lack of food. Furthermore the selective exploitation of top predators influences the 

food web structure (Bascompte et al., 2005; Frank et al., 2005; Rooney et al., 2006). The dis-

cussion around the role of the decline of tuna and turtles in the increase of jellyfish popula-

tions (Gibbons and Richardson, 2009) indicates that their role in the food web functioning is 

not anecdotal. Monitoring for some species of tuna and marine mammals is relatively well 

developed. Some other species of tuna, sharks and turtles will need to improve the existing 

monitoring systems. 
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sion (by 15 July 2010) should lay down criteria and methodological standards to allow consistency in 
approach in evaluating the extent to which Good Environmental Status (GES) is being achieved. ICES 
and JRC were contracted to provide scientific support for the Commission in meeting this obligation. 

A total of 10 reports have been prepared relating to the descriptors of GES listed in Annex I of the 
Directive. Eight reports have been prepared by groups of independent experts coordinated by JRC 
and ICES in response to this contract. In addition, reports for two descriptors (Contaminants in fish and 
other seafood and Marine Litter) were written by expert groups coordinated by DG SANCO and 
IFREMER respectively. 

A Task Group was established for each of the qualitative Descriptors. Each Task Group consisted of 
selected experts providing experience related to the four marine regions (the Baltic Sea, the North-
east Atlantic, the Mediterranean Sea and the Black Sea) and an appropriate scope of relevant scientif-
ic expertise. Observers from the Regional Seas Conventions were also invited to each Task Group to 
help ensure the inclusion of relevant work by those Conventions. This is the report of Task Group 4 
Food webs.
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