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Abstract:

Maturation age and size have important fithess consequences through their effects on survival
probabilities and body sizes. The evolution of maturation reaction norms in response to environmental
covariation in growth and mortality is therefore a key subject of life-history theory. The eco-
evolutionary model we present and analyze here incorporates critical features that earlier studies of
evolving maturation reaction norms have often neglected: the trade-off between growth and
reproduction, source-sink population structure, and population regulation through density-dependent
growth and fecundity. We report the following findings. First, the evolutionarily optimal age at
maturation can be decomposed into the sum of a density-dependent and a density-independent
component. These components measure, respectively, the hypothetical negative age at which an
individual's length would be 0 and the delay in maturation relative to this offset. Second, along any
growth trajectory, individuals mature earlier when mortality is higher. This allows us to deduce, third,
how the shapes of evolutionarily optimal maturation reaction norms depend on the covariation
between growth and mortality (positive or negative, linear or curvilinear, and deterministic or
probabilistic). Providing eco-evolutionary explanations for many alternative reaction-norm shapes, our
results appear to be in good agreement with current empirical knowledge on maturation dynamics.
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Introduction

Age and size at maturation have strong impacts on an individual's fitness, because they affect
its reproductive potential, schedule, and efficiency (Stearns 1992; Charlesworth 1994). Matur-
ing early increases survival until reproduction, lengthens reproductive lifespan, and reduces
generation time. Maturing late increases fecundity at age, lengthens the phase of fast juvenile
growth, and improves offspring survival through parental body-size effects. Furthermore, in-
dividuals face a trade-off between maturing young or at large size, since for any given growth
rate earlier maturation implies smaller size.

Owing to their effects on fitness, age and size at maturation are subject to natural and/or
anthropogenic selection pressures. Plastic variations in age and size at maturation are ubiqui-
tous within species (Stearns 1992) and are often characterized by univariate reaction norms
that describe either age (fig 1A) or size (fig 1B) at maturation as a function of the growth rate
characterizing the experienced environmental conditions. Bivariate maturation reaction norms
extend this concept to joint phenotypic plasticity in age and size at maturation (fig. 1C). Ac-
cordingly, a maturation reaction norm is the curve in the age-size plane connecting the com-
binations of age and size at maturation that are expressed by a given genotype for different
growth rates in the age-size plane (Stearns and Crandall 1984; Stearns and Koella 1986). The
evolution of maturation reaction norms has been the subject of numerous theoretical studies
(e.g., Stearns and Koella 1986; Perrin and Rubin 1990; Berrigan and Koella 1994; Day and
Rowe 2002; Ernande et al. 2004; Dunlop et al. 2007, 2009a, 2009b; Thériault et al. 2008; En-
berg et al. 2009; Jgrgensen et al. 2009). As the costs and benefits of maturing earlier or later
accrue in terms of survival and/or size-dependent fecundity, the rates of somatic growth and
mortality are expected to serve as primary determinants of maturation evolution. These rates
are largely influenced by environmental conditions, including both biotic and abiotic factors.
For instance, growth rates depend on food resources and temperature (Boggs and Ross 1993;

Adolph and Porter 1993), while mortality rates are also influenced by food resources and tem-
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perature, as well as by predators and pathogens (e.g., Anholt and Werner 1995; Werner and
Anholt 1996).

Rates of growth and mortality may covary positively or negatively across environmental
conditions. Such covariation can have many causes. For example, positive covariation may
arise from the trade-off between foraging time and predation risk: individuals that forage
longer or more audaciously acquire more energy and grow faster, but at the same time are
exposed to higher predation risk, and thus to higher mortality (Abrams 1991; Werner and An-
holt 1993; Walters and Korman 1999). In contrast, negative covariation between growth and
mortality rates may arise when the spatial distribution of food resources is heterogeneous,
such that individuals in richer environmental conditions can acquire more energy than those
in poorer conditions, thus benefiting both in terms of growth and survival.

Several theoretical studies have investigated the influence of covariation between
growth and mortality on the evolution of maturation reaction norms. Stearns and Koella
(1986) and Burd et al. (2006) analyzed different negative relationships between growth and
mortality, and found various optimal reaction norms shapes: L-shaped, sigmoid, and V-
shaped in Stearns and Koella (1986), curved or linear with different slopes in Burd et al.
(2006). Berrigan and Koella (1994) extended the analysis to positive relationships and found
other optimal shapes (flat, dome-shaped, and bowl-shaped). However, these studies used von
Bertalanffy’s growth model, which does not account for the crucial energy-allocation trade-
off between somatic growth and reproduction (Day and Taylor 1997). This trade-off is key to
the evolution of maturation. It effectively pitches current against future reproduction: during
and after maturation, energy is allocated to reproduction at the expense of somatic growth,
which in turn reduces future reproduction to the extent that such reproduction increases with
body size. Studies on the evolution of maturation reaction norms therefore need to account for

the energy-allocation trade-off between growth and reproduction.
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Perrin and Rubin (1990) modeled growth and reproduction according to energy-
allocation principles and thereby obtained different optimal maturation reaction norms. How-
ever, their analysis, as those by Stearns and Koella (1986), Berrigan and Koella (1994), and
Burd et al. (2006), suffered from optimizing maturation separately for each environmental
condition. This approach would be appropriate only if the optimal maturation reaction norm
were intended to describe combinations of age and size at maturation occurring across a large
number of separately evolving populations that experience different, but constant, environ-
mental conditions. If, in contrast, the optimal maturation reaction norm is meant to describe
combinations of age and size at maturation occurring in a single evolving population whose
individuals may experience a range of environmental conditions, the fitness of genotypes
needs to integrate across the whole range of environmental conditions these genotypes may
encounter during their lifetime (Houston and McNamara 1992; Kawecki and Stearns 1993).
Considering such an aggregate measure of fitness is especially critical when environmental
conditions influence offspring production. In such cases, populations exhibit source-sink dy-
namics, so that individuals experiencing productive conditions contribute more offspring than
those experiencing unproductive conditions, which results in unequal contributions of sub-
populations to the population’s next generation. Several authors (Van Tienderen 1991; Hous-
ton and McNamara 1992; Kawecki and Stearns 1993; Ernande and Dieckmann 2004; Ernande
et al. 2004) have proposed adequate fithess measures to model the evolution of phenotypic
plasticity. So far, however, these fithess measures have not been applied to the evolution of
maturation reaction norms in response to environmental covariation between growth and mor-
tality.

A population’s source-sink structure depends on the interplay between variability in the
intrinsic productivity of subpopulations and the scale of population-density regulation. In
classical dispersal-selection models, density regulation occurs either locally within each mi-

croenvironment, or globally in a common pool of offspring formed after reproduction in the
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microenvironments. The resultant source-sink structure gives rise to soft selection (Levene
1953) or hard selection (Dempster 1955), respectively, and is critically altered by habitat

choice (Ravigné et al. 2004, 2009). Previous studies of optimal maturation reaction norms,
however, did not incorporate density dependence and, more specifically, density-dependent
energy acquisition, despite its important effects on somatic growth and reproductive invest-

ment, and thus on the selection pressure affecting maturation.

In this study, we investigate the evolution of maturation reaction norms under the influ-
ence of environmental covariation between growth and mortality in a manner that addresses
and overcomes these three issues. We describe the trade-off between somatic growth and re-
production according to energy-allocation principles (Kozlowski and Wiegert 1986;
Kozlowski 1992; Day and Taylor 1997). We use the concept of invasion fithess (Metz et al.
1992), and its application to subdivided populations (Metz and Gyllenberg 2001), to aggre-
gate components of fitness that result from the various environmental conditions individuals
may encounter. We consider populations with density regulation and source-sink structures
implied by density-dependent energy acquisition, in which the growth and fecundity of indi-
viduals is affected by the population’s total biomass. Combining the framework of physio-
logically structured population models (Metz and Diekmann 1986; De Roos et al. 1992; De
Roos 1997) with a selection-gradient approach, we model the evolution of maturation reaction
norms as function-valued traits (Kirkpatrick and Heckman 1989; Gomulkiewicz and
Kirkpatrick 1992; Dieckmann et al. 2006; Parvinen et al. 2006).

After describing how we model life history, environmental conditions, population dy-
namics, and evolutionary dynamics, we analyze the influence of environmental covariation
between growth potential and mortality rate on the shape of evolving maturation reaction
norms. We first consider linear and nonlinear deterministic relationships between growth and
mortality, and then extend our analysis to probabilistic relationships. We find that the evolu-

tionarily optimal age at maturation involves a density-independent and a density-dependent
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component and discuss the importance of density dependence. We also show that, along any
growth trajectory, individuals mature earlier when mortality is higher, and that this one simple
rule helps us explain the shapes of evolving maturation reaction norms under a wide range of

conditions. We finally compare our results with other theoretical and empirical studies.

Model Description

Our model describes the life history of individuals and the environmental covariation between
growth and mortality underlying the population dynamics that determine the evolutionary
dynamics of maturation reaction norms. Below, we present these different components in

turn.

Life History

An individual's net energy acquisition rate, i.e., the surplus energy after accounting for main-
tenance, is assumed to scale with its weightas w?/3 (Kozlowski and Wiegert 1986;
Kozlowski 1992; Day and Taylor 1997). It also decreases with total population bidnass
because of competition for food resourcga?®/ (1+ aB), whereg measures growth poten-

tial (or weight-specific energy acquisition) as determined by environmental condition and
1/a measures the population biomass at which this growth potential is halved because of
density dependence. Although the allometric scaling of metabolic rates is subject to vigorous
debate (e.g. Koztowski and Konarzewski 2004; Brown et al. 2005), the qualitative results of
our study remain unchanged upon varying the energy-acquisition scaling exponent over the
classical range considered in bioenergetics, i.e., from 2/3 to 3/4. Somatic growth and fecun-
dity compete for the allocation of surplus energy. Denoting the realized growth potential by

o, = g/ (1+aB), somatic growth rate and fecundity rate are then given by
ow_ ug,w*” (1a)
oa

and
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b(a) =(1-u)g, \AVC ; (1b)

0

where a denotes ageh fecundity ratew, the weight of a newborn, and the proportion of
net acquired energy devoted to somatic growth, Wittu being allocated to reproduction
(Kozlowski and Wiegert 1986; Kozlowski 1992; Day and Taylor 1997). During the juvenile
stage, all energy is devoted to somatic growtk, , whereas during and after maturation at
age a,, both functions are allocated a share of energy according=texp-h(a-a,,)),
with h measuring reproductive effort.

Translating weight into length according vo= wl®, where & is a constant ant de-

notes an individual’s length, we obtain the dynamics of length growth,

ol 1

EZWUQV 2

At steady state, i.e., at constant total population biomass, the resultant growth trajectory is

linear before maturation and afterwards converges to an asymptotic lgngit. 1C),

I0+%£{,3a fora<a,
I(a) = 3)
1 g9, —h(a-
l(am)+§a}/3h(l_eh( ™) fora>a,,

with length at birthl, = (w,/ )", length at maturatiot(a, ) =1,+a,_g,/ (3w"'®), and asymp-

totic length |, =1(a,) + g, / (3hw'’®). Therefore, age at maturation affects adult and asymp-
totic lengths, as well as size-dependent fecundity (eq. 1). When varying the reproductive ef-
fort h from O to infinity, growth ranges from indeterminate to determinate.

Maturation responds plastically to environmental variability through its dependence on
growth (Stearns and Crandall 1984; Stearns and Koella 1986). Considering only populations
at steady state, a growth trajectory is characterized by its growth potgntidierefore, we
describe age at maturation as a function-valued &a{f) depending on growth potential,

l.e., as a univariate reaction norm that describes variation in maturation age as growth poten-

tial g varies with environmental condition (fig. 1A). Length at maturation is deduced from
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an(9) asl(ay(9)) (fig. 1B), and the bivariate maturation reaction norm is thus obtained as a
parametric curve(a,(9),1(a,(g))) of the growth potentiag (fig. 1C).

For the sake of simplicity, we keep mortality rate constant throughout an individual’s
lifetime, although stage- or size-dependent mortality rates could be considered. An individ-

ual’s survival until agea is therefore obtained as
s(a) =, exp(-ma), 4)

where s, denotes the low survival probability affecting the earliest life stage(). After-
wards, the mortality raten is assumed to vary according to environmental condition. Its co-

variation with growth potentiag) is described in the next section.

Environmental Covariation between Growth and Mortality

Environmental variability generates (co)variation in growth and mortality. We consider de-
terministic and probabilistic relationships between growth potegtiahd mortality ratem.
The deterministic cases allow us to examine detailed effects of the shape of the relationship
on evolving maturation reaction norms, whereas probabilistic cases help us understand matu-
ration reaction norms favored by natural selection in more realistic noisy ecological settings.
We assume that, whilg and m are constant throughout an individual’s lifetime, they
vary among individuals. This can be interpreted as spatial variation in environmental condi-
tions, or more generally as stochastic variation across microenvironments.
For deterministic relationships, mortality rateg (is)treated as a function @f, which
is normally distributedg ~ N(g,04) . To encompass both linear and nonlinear relationships,
we definem § )as a parametric trade-off curve (Appendix A). Two paramejgrand c,
control the relationshipg controls its slope (fig. 2A) and determines whetiher two vari-
ables are independendri(g) /0g =0 for S =0), or if they are dependent, whether they are
correlated positivelydm(g) /dg >0 for £ >0) or negatively §m(g)/0g <0 for £<0). c

controls the curvature of the relationship (fig. 2B), which can be corﬂ/%m/(ag2 >0 for
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c<landp< Qorforc>1andpg> 0, linear (m(g) =m+ £(g—7g) for c=1), or concave
(0°m/dg? <0 for c>1 and < O, or for c<1 and 8 > 0.

Probabilistic covariation between growth and mortality is represented by a bivariate
normal probability density functiomp g(m dlescribing the likelihood that an individual, as a
result of environmental variability, experiences a specific combinatiog @nd m. The
function p @ m) implies meansy andm, standard deviationsy and o,,, a slopeg of the
regression ofm againstg, and a correlation coefficient (fig. 2C). By definition,f and p
have the same sign, so that only the correlation coefficient’s absolute|pdlaenveys extra
information. Linear deterministic relationships are nothing but special cases of probabilistic
relationships, with p| =1. To describe probabilistic relationships, we therefore use the same
parameters as for linear deterministic relationshigs ¢4, M, and #), complemented by

|o|. The standard deviation of mortality ratedig = o, 8/ p.

Population Dynamics and Evolutionary Dynamics

We model the population dynamics resulting from life history using a physiologically struc-
tured population model (Metz and Diekmann 1986; De Roos et al. 1992; De Roos 1997). It
describes the continuous-time dynamics of the demstyg 1, of ihdividuals ageda with

growth potentialg and mortality ratem (Appendix B). Considering populations at equilib-
rium, an individual's length is deduced from its age and growth potential. Reproduction is
panmictic and offspring distribute randomly across environmental conditions according to
their frequencyp g m ) The resulting gene flow among subpopulations experiencing differ-
ent environmental conditions inhibits local differentiation and favors genotypes that respond
plastically to environmental variability. These processes also ensure that unproductive sub-
populations receive net contributions of offspring from productive ones, generating a source-
sink population structure. The stable density g(m ,of)the population at equilibrium can

be found analytically, up to its total biomaBs which must be computed numerically.

10
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Based on this population model, we focus on the evolution of maturation reaction norms
by considering the evolutionary dynamics of the functapn()) determining age at matura-
tion (Appendix B). We use a selection-gradient approach (Abrams 2001), which is consistent
with the frameworks of both quantitative genetics (Lande 1979, 1982; Iwasa et al. 1991;
Abrams et al. 1993) and adaptive dynamics (Dieckmann and Law 1996; Metz et al. 1996;
Geritz et al. 1997). The selection gradiéh;m(g) describes the strength and direction of
selection ona,,(g): for eachg, a positive gradient value indicates that selection favors an
increase inay,(g), while a negative gradient value implies the opposite. The selection-
gradient functionGam (¥ is derived from invasion fitness, following methods developed for
function-valued traits (Kirkpatrick and Heckman 1989; Dieckmann et al. 2006; Parvinen et al.
2006). We use the lifetime reproductive succBgsas a measure of invasion fithess. When
density dependence regulates a population only through a single environmental variable ap-
pearing as a multiplicative factor reducing the rate of offspring production (here the inverse of
total biomass}l/ B reducing the fecunditp, eq. 1b), evolution optimizeR, (but not other-
wise; Mylius and Diekmann 1995; Metz et al. 1996, 2008). The evolutionary dynamics of
an () reach a selection-induced evolutionary equilibrium when the selection gradient van-
ishes,Gy (9) =0. Since in our modeR, is maximized by evolution, the optimal maturation
reaction norma:n([)] that cancels the selection gradient is not only convergence stable but
also locally and globally evolutionarily stable (Meszéna et al. 2001; Dieckmann et al. 2006).

Throughout this study, we denote population equilibria by a tilde and evolutionary equi-
libria by an asterisk. We are interested in the optimal maturation reaction norms that result

when both dynamics have equilibrated.

11
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Results

Constant Growth and Mortality: Higher Mortality Favors Earlier Maturation

To understand the basic features of maturation evolution, we first deal with the simple case of
constant growth potential and mortality rate, to investigate their independent influences. In
this case, maturation age and length are given by a point along a single growth trajectory (fig.

3). The evolutionarily optimal maturation ag*@1 can be found analytically,

. —m? —hm+6h? +y/m* + 4hm®+ 31°m2+ 6hIn+ 364 . &P @aB") . | . 5
8y = ~lo =amitdy g ()

m® +5hm? + 6h?m g

up to the total biomasB™ at population and evolutionary equilibrium, which must be deter-
mined numerically.afn is the sum of a density-independent compom%,]it and a density-
dependent componerﬁ&d :—I03a)1/3(1+ aﬁ*)/g. The latter is the root of the juvenile
growth function (eq. 3, first row)l(é;’d):o, and thus represents the hypothetical age at
which length would equal 0, which is negative by definitieg,; = a,, —8,4 describes the
density-independent timing of maturation relative to an offset measuréia,(pywhile 55,(1
itself is adjusted by density dependence. It follows m@t has to be positive, which is en-
sured as long ab>m [@n the extreme case of determinate growth, i.e.,hfer oo, the
optimal age at maturation relative to the age at length 0 equals twice the average individual's
lifespanl/m, a, -&,,=4,,; - 2/m.

The density-independent componaﬁ{'i evolves towards younger ages when mortality
rate m increases and reproductive efftrtdecreases, sinah:m /om<0 and aa:m oh> 0,
respectively. Notice that these changes are evolutionary and not plastic. Earlier reproduction
is favored when mortality increases, because it improves an individual’s likelihood to produce
offspring before dying, which in turn increases its lifetime reproductive success. For repro-
ductive effort, the evolutionary rationale relies on the trade-off between current and future
reproduction. An increased reproductive effort impairs future reproduction, because it lowers

growth after maturation, and thus size-dependent fecundity (eq. 1b). Concomitantly, current

12
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reproduction is improved, but this effect diminishes with age, since energy allocation to re-
production 1-u = 1-exp(h(a—a,,)) tends to 1 fora — «, independent oh>0. The net

effect is that, counter-intuitively, lifetime reproductive success decreases as reproductive ef-
fort increases, which is compensated for by maturing later and larger (eq. 3).

Mortality rate m and reproductive efforh have also indirect effects on the a@pd at
length O, through biomasB” . These effects are opposite to thoseaﬁn. 58,(1 increases
when m increases dagg /dm=-(30Y3qa/g)dB" /om>0) or h decreases
(dagy /0h = =(3w"3lga/ g)aB” /0h < 0), because total bioma®™ is a decreasing function
of m (65* /om< 0) and an increasing function bf (aé* /oh > 0) (Appendix C).

Despite these opposite effects, the net effects of mortality rate and reproductive effort
on the optimal maturation agzai;1 are qualitatively the same as on its density-independent
componenta:n’i (fig. 3A, 3B). However, for length at maturation, the implications of density
dependence are not negligible. For higher mortality ratesr lower reproductive efforh,
the resultant decrease in total biomags improves the realized growth potential
gj =g/(1+aB"). Despite the associated decrease;i]n the resultant length at maturation is
larger than expected without this compensatory response.

Length |, at birth, growth potentiaty, and strength of density dependenc®nly af-
fect age at length (Had. They have both a direct and an indirect effect via total biorBass
Surprisingly, these effects compensate perfectly, soaiat/ dl,=0a,,/dg =da,,/da =0
(Appendix C). Thereforeaad and the optimal maturation agén are insensitive to variation
in these parameters. More specifically, variatiomgior o affects B" in such a way that the
realized growth potentiafj, =g/ (1+aB’) stays constant. It follows that the optimal age and
length at maturation are also left unchanged (fig. 3C)l Amcreases, fecundity diminishes,
as it is inversely related to initial weight (eq. 1b), so tBatdecreases. Changes B here

result in an increase in realized growth potengélthat compensates for the increasdgn

13
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and results in a constant optimal age at maturation. Nevertheless, the incr@,*a$esinlts in

a larger length at maturation (fig. 3D).

Deterministic Covariation between Growth and Mortality: General Insights

We now examine evolving maturation reaction norms under environmental covariation be-
tween growth and mortality, starting with deterministic relationships. The resulting optimal
age a:n (O at maturation has the same form as in case of constant environment, but now is a

reaction norm depending on growth potengal

g)= -m(g)? - hm(g) + 6h? +\/m(g)4+4hm(g)3+ 3M’m@)y+ 60m g »+ 36* . 3u3(1+aB")
e m(g)° +5hm(g)? + n’m(g) g (6)

= a:n,i (o) + é:),d(g)

Yet, two fundamental differences to the case of constant environment exist: the density-
independent componedn'i g (varies plastically withg, due to its link with mortality rate
m(g), and that the density-dependent comporiié}y g alsd varies plastically withy, be-
cause total biomasB” now stays constant whatever specific environmental condgiaa
considered, sinc&” quantifies the total population biomass across all environmental condi-
tions. As a corollary, the evolution of age at maturation in one environmental condition de-
pends on all other environmental conditions through their joint effect on total biomass. More-
over, owing to the source-sink structure of the population, the evolution of age at maturation
can proceed for environmental conditions that would lead to non-viable populations were
these considered in isolation, as offspring produced by subpopulations in viable conditions are
distributed to those in non-viable conditions.

The direction of plastic changes in optimal age at maturation in response to variation in
growth potential is given by the sign of the derivativeah(g) with respect tag,

0am(g) _ dm(g) 98m; (9) , 08o4(9)

(7)
dg dg om(Q) dg

14
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Any environmental increase in mortality rate leads to a plastic decrease in the density-
independent componert,; g (, $ince day;(g)/dm(g) < 0. Plastic changes ia,,; g( are
thus opposite to the sign of growth-mortality covariatiom(g)/0dg, given by the parameter
£ (Appendix A). Specifically, whergy increasesa,*m d )plastically decreases if mortality
increases with growth A> )) whereas it increases if mortality decreases with growth
(S <0). On the other hand, the a?g'é,d g (aplength O plastically increases wighirrespec-
tive of the growth-mortality relationship, sineﬁaﬁ (g)/og = 3wl/3lo(1+ aé*)/gz >0 (no-
tice that, in contrast to the case with constant growth and mortality, the derivati®¥e isf
not involved, becaus8” depends on the entire distribution of growth potentials, rather than
on any one growth potential from this distribution). Plastic changéé,c]ng will dhus coun-
teract those ira,;,i d )f p is positive, and amplify them if is negative. In the former case,
the direction of net plastic change in the optimal age at matura:q()g) will depend on the
relative amplitude of the two components’ plastic changes. Numerical results show that the
plastic response ofy,(g) is qualitatively driven bya,,; d ) with d,4(g) having only a
weak effect. Consequently, fast-growing individuals mature younger than slow-growing ones
if mortality rate increases with growth potential, and mature older if mortality rate decreases
with growth potential.

If mortality rate and growth potential are independefit=(0, so thatom(g)/dg =0),

the density-independent component is fixéd;{i (g)/0g =0) at

ami(g) = (-m? —hm+6h? +~+/m# + 40m3 +37h2m?2 + 603m+ 360 #) /(m3 + 5hm2 + 6h2m) .
(8)

In this case, plastic changes in the ﬁég g 4t length O have a more conspicuous effect. As
the growth potentialg diminishes,aad ¢ ) (which is negative) decreases, but its absolute
value increases. Therefore, the optimal age at maturation is almost constant for high to mod-

erate values ofj, but decreases for low values gf

15
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No analytical results are readily available to further investigate the impact of the slope
and curvature of deterministic growth-mortality relationships on the shape of optimal matura-
tion reaction norms. Therefore, in the following subsections, we combine numerical results
with approximate analytical insights based on describihqjg) by a second-order Taylor
expansion of the density-independent comporzé,git g around the mean growth potential
g (Appendix D). Comparison between the two types of results confirms that this approxima-

tion is accurate (not shown).

Linear Deter ministic Relationships between Growth and Mortality: Effects of Sope

If mortality rate and growth potential are linearly related=() with slope S, the optimal

reaction norm is approximated by
* * _ . 1 . ~%*
am(9) = ami(9) ~kuB(9 = 8) + S ko8 (9 = 0)° +Ea(0). (9a)

where k; and k, are two positive constants that depend only on reproductive éffarid
mean mortality ratem . This approximation enables three analytical insights. First, the posi-
tion a,;(9)+4,,(g) of the optimal reaction norm,,, ()1 is independent of the slop& so

that # mostly affects the shape afn (0Y, not its position. The constant teraﬁ],i (g) is obvi-

ously independent ofs, Whereaséiald g )can be affected by through its effect on total
biomassB" . Numerical results show th& decreases aB increases, leading to an increase
of a;;,d(g) for all g. This is because a8 increases, highly productive environments (large
g) suffer higher mortality, while less productive environments (loggisuffer lower mor-
tality, leading to the decrease of total biomass. However, the amplitude of this effect is gener-
ally small. Second, the linear termk;3(g — g) confirms the result (eq. 7) that the direction

of plastic changes ila;],i o( s opposite to the sign of the slope Finally, the optimal age at
maturation varies nonlinearly with growth potential because the quadratic term
kzﬁz(g —g)2 /2 is positive. Consequently, if growth potentigl and mortality ratem are

negatively correlatedf < ) the plastic increase ia:n,i g( gccelerates wheg increases,

16
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which is amplified by plastic changes ai;,d g ( Whereas, wherg and m are positively
correlated 3 > 0, the plastic decrease la}m g ( decelerates whegy increases, which is
partly counteracted by plastic changes'a?&h g.()

Optimal maturation reaction norms rotate together with the spgég. 4). Reaction
norms with positive and negative slopes are slightly convex and concave, respectively (fig.
4C-E, 4F-H; this is more visible for reaction norms in grey obtained for larger variability in
growth potential). The reaction norms are curved because of the delay in age at maturation
induced by the effect of decreasing growth potential on the age at length 0, as described in the
previous subsection. Two specific cases are noticeable. When mortality rate and growth po-
tential are independeni3(=0), an almost vertical reaction norm, or maturation-age thresh-
old, evolves (fig. 4B). In contrast, for some positive slgp€around 0.004 in our example;
fig. 4G), an almost horizontal reaction norm, or maturation-size threshold, evolves. Unlike for
the maturation-age threshold, the value offor which such a maturation-size threshold
evolves can only be assessed numerically.

Early maturation does not necessarily imply smaller length at maturation. For instance,
reaction norms with negative slopes (fig. 4F), which evolve for shallow positive growth-
mortality relationships, generate larger lengths at maturation when maturation occurs early.
This is reversed for reaction norms with positive slopes, which are favored for steeper posi-
tive growth-mortality relationships (fig. 4H). Also, wider plastic variation in age and length at
maturation evolves as the growth-mortality relationship becomes steeper. In this case, vari-
ability in growth potential induces a wider variation in mortality rate, which leads to the evo-
lution of broader plastic variation in maturation age, and thus in maturation length.

Finally, the effects on the optimal maturation reaction norm of altering the degret
variation in growth potential depends on the sign of the s|ppdf g =0, increasingo
generates wider reaction norms, encompassing more extreme growth trajectories (fig. 4F-H).

If g <0, increasingsy also displaces reaction norms toward smaller sizes at maturation (fig.
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4C-E). In this case, productive conditions (laggeimply lower mortality, so that they make

a larger contribution tB" than unproductive conditions. Additional variability in productiv-

ity (g) exacerbates this effect, so tHat increases withr 4. Consequently, for a giveg,

the realized growth potentizg: diminishes (compare grey and black growth trajectories for
the mean growth potential, fig. 4C-E), while the optimal maturation age stays roughly con-

stant. This generates a smaller size at any given maturation age.

Nonlinear Deterministic Relationships between Growth and Mortality: Effects of Curvature

We now consider nonlinear deterministic covariation between growth potential and mortality
rate and examine the influence of the curvature parantetam maturation evolution. The

optimal reaction norm is then approximated by
* * J— P 1 J— ~%
3 (0) = 8ni(9.8.0)+k (B.0) = 9)+ Sk, (B.C)G~T) +34(0) (9b)

The main analytical insight from this approximation is that at intermediate growth potential,
optimal maturation is delayed relative to the linear case for convex relationskifisahd
<0, orc>1 and g > 0 and accelerated for concave relationships and < Q, or

c<1 and g > 0. The mortality ratem at intermediate growth potentig is indeed lower

for convex relationships than for linear ones (fig. 5A, curves B and G), which favors delayed
maturation, and higher for concave relationships, which favors earlier maturation (fig. 5A,
curves D and E). More specifically, the constant teﬁ;p(g,ﬁ,c) depends on both the slope

S and the curvature parameterof the relationship. It increases asincreases for positive
growth-mortality covariation £ > ) whereas it decreases for negative covariatpr (). O
The effect ofc on the agec'igﬂ d )t length O is opposite. This is because ascreases for

£ >0, individuals on average suffer less mortality. This results in an increase of total bio-
massB’, and thus in a lower ag@;,d g (at length 0. The converse applies fox . How-

ever, the magnitude of the effect ofon éigﬂ (@) is weak relative to its effect oaj;],i(g,ﬂ,c),

so the latter dominates the effect ©fon the optimal maturation reaction noraf;g([)]. The

18



Marty et al. Evolving maturation reaction norms

coefficientsk; (8,c) andk,(8,c) depend on botl# andc in an analytically intractable way:
no further analytical insights into their effects can be derived.

The direction of plastic changes in maturation age still depends on the stynfat-
growing individuals mature later for negative growth-mortality covariation (fig. 5B to 5D)
and earlier for positive one (fig. 5E to 5G). Convex and concave reaction norms evolve for
negative and positive convex growth-mortality covariation (fig. 5B, 5G), respectively, and for
positive and negative concave covariation (fig. 5E, 5D), respectively. In addition, the curva-
ture of the growth-mortality relationship exacerbates the effect of growth variabjjitsela-
tive to the linear case. Ag, increases, reaction norms are shifted toward older ages and lar-
ger sizes for convex relationships (fig. 5B, 5G), because the average mortality rate decreases

(fig. 5A, grey curves B and G). The converse applies for concave relationships (fig. 5D, 5E).

Probabilistic Covariation between Growth and Mortality: Effects of Correlation Coefficient

We now focus on more realistic cases of probabilistic growth-mortality relationships and in-
vestigate the effect of the linear regression coefficerand of the absolute valug | of the
correlation coefficient. Since in this case no analytical solution can be derived for the optimal
age at maturation, we present only numerical results.

As in the linear deterministic case, maturation reaction norms rotate togethef with
whatever the magnitude op | (left to right columns in fig. 6). Earlier maturation occurs for
fast growth when growth and mortality covary positively, and for slow growth when they co-
vary negatively. Decreasing |, implying lower determinism in growth-mortality covaria-
tion, induces three effects (top to bottom row in fig. 6). First, optimal reaction norms shift
toward older ages and larger sizes. Second, this shift is larger for growth trajectories that are
subject to lower mortality rates, i.e., for steeper growth trajectories when growth and mortal-
ity are positively correlated, and for shallower growth trajectories when they are negatively

correlated. Third, where this shift occurs over the nonlinear part of growth trajectories, the
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reaction norms’ curvature increases, yielding concave reaction norms for positive growth-

mortality covariation and convex reaction norms for negative covariation.

Discussion

Optimal maturation age reflects both density-independent and density-dependent processes

A major novel result of our study is that optimal age at maturation decomposes as the sum of
a density-independent and a density-dependent component. The latter represents the hypo-
thetical negative age at which an individual’'s length would be zero. This means that density
regulation affects optimal maturation reaction norms by shifting this offset age, with density-
independent effects acting on top of the offset. Our finding generalizes an earlier result ob-
tained by Day and Taylor (1997), which was based on the same energy-allocation model as
our study, but was restricted to non-plastic maturation, determinate growth, and density-
independent life histories (see also Lester et al. 2004). In contrast, our result holds for non-
plastic and plastic maturation, determinate and indeterminate growth, and density-dependent
and density-independent life histories. Below, we detail the implications of density depend-
ence.

Density regulation in constant environments. For non-plastic maturation, density de-
pendence results in the optimal maturation age being insensitive to growth potential, strength
of density dependence, and length at birth. This new result contrasts with earlier findings by
Day and Taylor (1997), who predicted a strong positive effect of growth potential on optimal
maturation age, for determinate and density-independent growth.

Density regulation across a continuum of environmental conditions. We consider a con-
tinuum of environmental conditions coupled through density regulation: energy acquisition is
regulated by a population’s total biomass across the full range of environmental conditions.
Consequently, all individuals experience the same density dependence, which, together with

the random dispersal of offspring across all environmental conditions, results in a continuous
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version of hard selection (Dempster 1955; see also Ravigné et al. 2004, 2009). This coupling
of subpopulations in different conditions implies a source-sink population structure, in which
some subpopulations export an oversupply of offspring to others. These features have three
important effects on the evolving maturation reaction norms. First, optimal maturation reac-
tion norms are affected by the length at birth, the growth potential, and the strength of density
dependence, because total biomass is independent of the population density in the specific
environmental condition considered. These new results contrast with those for constant envi-
ronments. Second, the source-sink structure maintains individuals under growth and mortality
conditions that would cause population extinction if experienced in isolation. This enables
evolution of the maturation reaction norm in these non-viable conditions. Third, the evolution
of the maturation reaction norm in a given environmental condition is constrained by all other
environmental conditions, since the population’s total biomass equally affects the hypotheti-
cal age at length 0 across all conditions. Individuals in unproductive conditions suffer stronger
density dependence than if they were isolated, because they experience a higher total biomass
enabled by the more productive conditions. The evolution of a maturation reaction norm’s
density-dependent component is thus dominated by the productive environments. This asym-
metry is exemplified by the effect of growth variation on the position and shape of maturation
reaction norms (fig. 4C-E, black and grey lines). This result extends to density-dependent
plastic life histories previous insights about the evolutionary effects of source-sink population
structure obtained for density-dependent non-plastic (Brown and Pavlovic 1992; Holt and
Gaines 1992) and density-independent plastic (Houston and McNamara 1992; Kawecki and
Stearns 1993) life histories. The novelty here is that density dependence can be the mediator
of the influence of productive environmental conditions on reaction-norm evolution. Previous
treatments of the influence of growth and mortality on the evolution of maturation reaction

norms (Stearns and Koella 1986; Perrin and Rubin 1990; Berrigan and Koella 1994; Day and
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Rowe 2002; Burd et al. 2006) missed these results, because they lacked the joint density regu-

lation of subpopulations across different environmental conditions.

One Smple Rule Helps Explain all Evolutionarily Optimal Reaction Norm Shapes

According to general insights into life-history evolution, investing more energy into growth
by delaying maturation will on average not pay off evolutionarily, if the probability of dying
before reproduction is high (Stearns 1992). Increased mortality thus selects for earlier matura-
tion. This was shown by earlier studies, which, however, were limited to non-plastic matura-
tion (e.g., Koztowski and Wiegert 1987). The new insight provided by our study is that this
rule also applies to adaptive plasticity in age at maturasil@mg any growth trajectory, in-

creased mortality selects for earlier maturation. Consequently, the shapes of evolutionarily
optimal maturation reaction norms can be deduced from how growth and mortality covary
across environmental conditions.

For positively correlated relationships, fast-growing individuals experience higher mor-
tality and therefore mature earlier while whether they mature larger or smaller depends on the
steepness of the relationship (fig. 4F, 4H and 6). Growth trajectories approach the resultant
optimal maturation norms always from below. The converse holds for negatively correlated
relationships except that fast-growing individuals always mature larger (fig. 4C-E and fig. 6).
Considering curvilinear relationships, optimal reaction norms bulge toward younger ages for
concave relationships, i.e., when mortality at intermediate growth is higher than in the linear
case, and to older ages for convex ones (fig. 5). A maturation age threshold (fig. 4B) evolves
when mortality is constant despite variation in growth while a maturation size threshold (fig.
4G) evolves for shallow positive linear deterministic relationships. For probabilistic relation-
ships, lower determinism in growth-mortality covariation favors older ages and larger sizes at
maturation (fig. 6), because the functisfa,m) = s, expma) (which translates mortality
rate m into survival probability) is convex. When mortality varies around its me@) on

a growth trajectory with growth potentig@, the resultant average survival therefore always
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exceedss(a,m(g)). The implied reduction in average mortality favors later maturation. This
weaker average selection pressure toward early maturation relative to the linear deterministic
case can be related to a secondary source-sink population structure for each growth potential:
as sources experience lower mortality than sinks, they contribute more offspring to the next

generation and therefore drive the evolution of maturation.

Comparison with Earlier Theoretical Studies

Effects of growth potential. Studies that describe growth using a monophasic growth
model, such as von Bertalanffy’s model, and fecundity as an allometric function of body size
predict plastically delayed maturation when growth potential decreases (Stearns and Koella
1986; Berrigan and Koella 1994; Burd et al. 2006). This prediction is based on overlooking
the energy trade-off between growth and reproduction (Day and Taylor 1997). Explicitly ac-
counting for the underlying energy allocation, we found that, when growth varies alone, matu-
ration is plastically delayed as growth increases, and, when growth and mortality covary, plas-
ticity in maturation age occurs in the direction opposite to the sign of growth-mortality co-
variation. These results agree with previous studies based on energy-allocation principles
(Perrin and Rubin 1990; Day and Rowe 2002).

Direction of reaction-norm curvature. Like several previous studies, our model predicts
both concave and convex optimal maturation reaction norms. Concave reaction norms evolve
for positive linear (fig. 4F-H), positive convex (fig. 5G), and negative concave (fig. 5D) de-
terministic growth-mortality covariation, and for positive probabilistic covariation (fig. 6).
Convex reaction norms evolve for relationships with the opposite features (fig. 4C-E; 5B; 5E;
6). Also Berrigan and Koella (1994) predicted concave and convex reaction norms, respec-
tively, for convex and concave positive deterministic growth-mortality covariation. However,
for positive linear deterministic covariation, they obtained convex rather than concave reac-
tion norms. This discrepancy with our results is again due to the use of von Bertalanffy's

growth model, which favors delayed maturation as growth decreases.
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Srength of reaction-norm curvature. Using an energy-allocation model, Perrin and
Rubin (1990) obtained convex and concave reaction norms for positive and negative linear
deterministic covariation of growth and survival. Their results qualitatively agree with ours,
although they obtained stronger curvatures. Perrin and Rubin (1990) interpreted these curva-
tures as resulting from the additional selective pressure toward early maturation generated by
the finite lifespan they assumed in their model. Our results show that this specific assumption

Is not at all necessary for obtaining curved reactions norms.

Moded Limitations and Extensions

The variety of shapes we have found for optimal maturation reaction norms results from the
diversity of ecological settings we have considered. However, several model limitations or
extensions that can be important for understanding natural maturation processes and their de-
terminants would be interesting to explore in the future. First, following earlier studies we
assumed that growth variation is purely environmental, whereas it may also be genetic. It is
therefore important to realize that our results are unaffected by the nature of growth variation
as long as it is independent of maturation evolution. In addition, since we were interested in
the ecological determinants of maturation evolution, we did not consider genetic constraints
related to the additive genetic covariance structure of the population and instead focused on
evolutionary equilibria determined by vanishing selection gradients.

Second, processes modifying mortality, such as size-dependent mortality and parental
effects may generate unexpected selective pressures on maturation age and size. Mortality
may decrease with size, due to a lower vulnerability of larger individuals to predators, or in-
crease with size, a typical feature of human harvest regimes (e.g., Ernande et al. 2004; Dunlop
et al. 2007, 2009a, 2009b; Thériault et al. 2008; Enberg et al. 2009; Jgrgensen et al. 2009;
Okamoto et al. 2009). Parental effects may enhance offspring survival through better egg
quality or parental care (Trippel 1995; Berkeley et al. 2004). To account for such parental

effects, Stearns and Koella (1986) defined intrinsic juvenile mortality as a decreasing function
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of age at maturation. They found that increasing extrinsic juvenile mortality delayed matura-
tion, as the higher risk of dying before reproduction due to delayed maturation was counter-
balanced by the concomitant improvement of offspring survival. This conclusion was cor-

roborated by Dunlop et al. (2007) based on an eco-evolutionary model.

Finally, density dependence might affect processes other than energy acquisition. For
example the larval stage is known to be the dominant phase of density regulation in many
species (Stubbs 1977; Stiling 1988; Wootton 1998). For the sake of analytical tractability, we
did not include these additional processes, but they could be accommodated in future exten-

sions.

Comparison with Empirical Knowledge

We conclude this study by highlighting the consistency between some of our results and em-
pirical observations. For determinate growth, we predict that the optimal age at maturation is
roughly proportional to twice the average individual lifespan. This result extends earlier work
by Day and Taylor (1997) and Lester et al. (2004) to populations regulated through density-
dependent energy acquisition. It is consistent with the empirical observation that age at matu-
ration is approximately proportional to average adult lifespan (Charnov and Berrigan 1990;
Charnov et al. 2001). Even more encouragingly, age at maturation indeed equals roughly
twice the average lifespan for Clupeidae (herrings, shads, sardines, hilsa, and menhadens),
Engraulidae (anchovies), Pandalidae (Pandalid shrimps), Sander vitreus (walleye)
(Charnov and Berrigan 1990). Although growth in these species is indeterminate, it declines
markedly after maturation, thus approaching conditions of determinate growth.

Most empirical studies have documented maturation reaction norms with negative
slopes: fast growing individuals generally mature earlier and larger, whatever the taxon
(Stearns and Koella 1986; Berrigan and Koella 1994; Day and Rowe 2002). In a theoretical
study, Day and Rowe (2002) showed that this pattern could arise when constant mortality is

combined with a developmental size threshold. Our results show that positive growth-
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mortality covariation is an alternative, yet not mutually exclusive, explanation for negatively
sloped maturation reaction norms. Indeed, an increase in mortality with improved growth
agrees with most predictions from foraging theory (e.g., Werner and Anholt 1993; Walters
and Korman 1999; Abrams 2001) and empirical studies within and among fish species
(Beverton and Holt 1959; Pauly 1980).

Since natural growth-mortality covariation is probabilistic and tends to be positive, our
results predict that dome-shaped (i.e., concave) maturation reaction norms with a negative
slope will be widespread in nature, as reported by Perrin and Rubin (1990) for fish species.
More recently, a number of empirical studies have estimated probabilistic maturation reaction
norms (Heino et al. 2002) for numerous fish stocks: these indeed turned out to be dome-
shaped, or roughly linear, with negative global slopes (Grift et al. 2003, 2007; Engelhard and
Heino 2004; Olsen et al. 2004, 2005; Barot et al. 2005; Mollet et al. 2007). Only very few
probabilistic maturation reaction norms have been reported to exhibit positive slope (Heino et
al. 2002) or to be roughly flat (Barot et al. 2004). Empirical studies for animal species other
than fish appear to be scarce. Plaistow et al (2004) experimentally tested the model by Day
and Rowe (2002) using soil mites and found a maturation reaction norm with negative slope.
Even though in empirical studies of plant populations phenotypic plasticity of flowering onset
has been extensively treated, it has mostly been examined in terms of threshold size or age for
first flowering, assuming either a size-dependent (e.g., Wesselingh et al. 1997) or age-
dependent flowering probability (e.g., Lacey 1988). As highlighted by Burd et al. (2006), the
joint phenotypic plasticity of both age and size at first flowering in plants has received little
attention in empirical studies, and when both were examined together they were considered as
alternatives. Consequently, empirical results in plants are not directly comparable to our theo-
retical predictions.

In view of an encouraging convergence between theoretical results and empirical obser-

vations, the remaining gaps in understanding all determinants of maturation reaction norms
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call for further theoretical investigations and for the empirical testing of resultant predictions.
A first step towards achieving the latter goal would be to measure patterns of growth-
mortality covariation in wild populations together with their maturation reaction norms and to
assess the observed associations in light of our theoretical predictions. Selection experiments

based on controlled growth-mortality relationships would constitute an appealing alternative.
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APPENDIX A

Deterministic Relationships between Growth and Mortality

We independently control the means of growth potential and mortality rate and the shape of
their relationship, by defining them as sums of means and deviatgprg + Ag and
m=m+Am. We then relateAg and Am through a parametric trade-off curve with a pa-
rameterd ranging between 0 and 1,

Ag = Agmin + (Agmax - Ag min)guc’

Al
Am=Am__ —(Am__—Am_)(1-6)"°, (A1)
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where ¢ controls the curvature of the relationship. We defing,, =-30, and
AQmax =304, Which covers more than 99% of the total variatiorginand Amy,, = =30

and Amy,, =304, so thatp characterizes the slope between the extreng ahd m. Re-
arranging equation (Al) according to these definitions, we obtain the mortalitynrate a

function of the growth potential ,

m(g) = M+3B0, - B((60, ¥ - (g-g+ 3, F }°. (A2)
APPENDIX B

Population Dynamics and Evolutionary Dynamics

Population Dynamics
The rate of change in the densitya d m , o) individuals ageda with growth potentialg
and mortality ratem at timet is given by

on(@,g,m) __odn(a,g,m

ot a -mn(a,g,m), (B1)

with a boundary condition at age 0 giving the number of offspringg f®, with growth

potential g and mortality ratem,
n(0,9,m)=n)p(g.m), (B2a)

where n(0) denotes the total number of offspring produced in the population,
Myax Imax ~ ©

n(0)=j j jb(a,g,B)n(a,g,m)oaog dan. (B2Db)

Mhin Imin am(g)

Individuals randomly distribute across environmental conditions according to their frequency,
as described by the probability density functipng n¢ ,(ejj. B2a). Panmictic reproduction
produces a total number (@f offspring given by the sum over all mature ages, growth po-
tentials, and mortality rates of individual fecunditig§s, g,B) (eq. 1b) weighted by the den-

sity n(@,g,m) of individuals (eq. B2b).
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Population regulation arises through competition for food resources. Density-dependent
energy acquisition is based on total population bionBashich is obtained as the sum over
all ages, growth potentials, and mortality rates of individual weighésg (weighted by the
densityn @ g m) of individuals,
Mpax 9 max
B= j j jw(a,g)n(a,g,m)daog dn. (B3)
Mrin Gmin O

At steady stategn at = QOequation (B1) simplifies to

on(a,g,m) _

-mn(a,g,m), (B4)
oa

which can be solved analytically to obtain the stable population density
n(a,g,m) =n(0,g,m)s(a,m), (B5)

where n (0,g,m) =n(0)p(g,m) is the stable density of offspring after distribution across en-
vironmental conditions and(a, m) (eq. 4) is their survival probability until age
The population’s Lotka-Euler characteristic equation is obtained by inserting equation
(B5) and equation (B2a) into equation (B2b), which gives
Mhax 9 max o

1= [ [ p(@m) | bl@gBs@m)dd dn. (86)

Mhin Ymin am(g)

implying that at steady state, individuals will on average have one descendant, so that the
population replaces itself from one generation to the next. The right-hand side of equation
(B6) equals the lifetime reproductive succégs (Stearns 1992). Because of the dependence

of fecundity b(a,g,§) on total population biomasB, the characteristic equation can be
solved forB. In all cases presented in this study, the characteristic equation has no analytical

solution and must be solved numerically.
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Evolutionary Dynamics

According to the frameworks of quantitative genetics (QG) and adaptive dynamics (AD), the
rate of evolutionary change in the average (QG) or resident (AD) age at matagtinat

gl'OVVt|I rateg is proportional to
—3a 0 |02 NG "Ydg' B7

where Ga,, (DY is the selection gradient arat;fm (CIy is the additive genetic (QG) or mutational
(AD) covariance function (e.g., Kirkpatrick and Heckman 1989; Gomulkiewicz and
Kirkpatrick 1992; Ernande and Dieckmann 2004; Dieckmann et al. 2006).

G, (0! is derived from invasion fitness, which, in our study, is defined as the expected
lifetime reproductive succesR, a,{ a,, Of a rare variant with trai, (l in a resident
population with traita,, ([} that has attained its ecological attractor. This is obtained as the
sum over all ages, growth potentials, and mortality rates of the product of the variant’s fecun-
dity b%(g)(a,g,éam) (defined by equation (1b), wheig =g/ (1+ aéam) with §am denoting
the resident’s total population biomass at equilibrium, areal ® with | following equation
(3) in which a, is replaced bya'.) and its survival probability a(m ,)weighted by the prob-

ability density p @ /m) of offspring distribution across environmental conditions,

Mhax Imax o
R(@nan)= | [ p(g.m) [ b, (20,8, )s@m)d d dn. (B8)
Mrin Imin an (9)

G, (I is then defined as the functional derivative of invasion fitness (Kirkpatrick and
Heckman 1989; Dieckmann et al. 2006) with respect to the variant’?ltméw evaluated at
the residents trait @m(F. \Whenever invasion fitness can be written as

R (@, an) :Iiw F(a,(9),9,B, ), this derivative is obtained (Parvinen et al. 2006) as

0 ~
G =—— F(a.(g9),9,B , B9
. (9) % (9) (aw(9).9 am)%(g):am(g) (B9a)

where according to equation (B8)
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Myax 0
F(a,(9).9.8,)= | p(ag.m) | b, (9B, )s@m)ckdn. (B9b)
Mhin an(9)

Evolution ceases when the expected rate of evolutionary chdmgéy)/dt vanishes
for all values ofg, which can happen under two conditions (Kirkpatrick and Heckman 1989;
Dieckmann et al. 2006). Selection-induced evolutionary equilibria occur when the selection
gradient vanishes for all values gf, G, (g) =0, so that selective forces alone are responsi-
ble for halting evolution. Covariance-induced equilibria occur when the covariance function
a§m (CIY is singular, i.e., whelj.U;(g, 9')G,, (9') dg’ = O for all values ofg while G, #0.
This second type of equilibrium results from constraints caused by the underlying genetic
architecture. Given our limited knowledge of the genetics of maturaﬁéﬂmﬂﬂ)] cannot be

estimated, so this study only focuses on selection-induced equilibria.

APPENDIX C

Derivatives of Total Biomass with Respect to Model Parameters

The total biomas®8” of a population at equilibrium, with optimal reaction noay([)), can-
not be derived analytically, whereas its derivative with respect to any model paranueter
According to equation (B6)R, (a*m,a:n) =1 or, making explicit the dependence on total bio-

mass,R,(a(B"),B")=1. Taking the derivative with respect to any parametsfields

O e s s
&Ro(am(B),B)—O

_|9a,(B)l 0B 0a,(B)| |dR(aB) LB R (a,(B).B)| R (aB)
X |,y Ox 0B | _, 0a  |,_. . OX 0B e s 0X  |aest (§)0-8
(C1)

This equation can be solved faB" / x , which yields

o8 _ 08,(B)/0x|,_, 0R,(aB)/0a| . +OR(@.B)/OH, ;5,0 g
0 0a,(B)/0B|,_, 0R,(a.B)/0a __  +0R/(a,(B).B)/0B|,_,

(C2)
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Applying this method to mortality raten and reproductive investmeht, we can show
that 0B"/om>0 and 8B /oh<0 when w, =wl3<(g /m)® or, equivalently, when
l, <@ /(ma)”?), i.e., when the length of a newborn is smaller than three times the juvenile
growth rateq’ / (3«}”) divided by the mortality raten, a condition that holds for almost any
realistic population.

Applying the same method to growth potentg) strengtha of density dependence,

and lengthl, at birth, we obtain

0B _1+aB ,aB :_B_’andaB __1+oB . (C3)
ag ga Oa a dlg loa

The three derivatives cﬁ’&d with respect to these parameters are thus equal to zero:

9a; ./ 89 = 3¢, [(1+ aB")/g - 008" f3g]/g =0,
9a; ,/ da = 30", (B" +adB 0a]/g =0, (C4)
9a; .10l , = ~3e}°[(1+ aB") +1,008" /3l,]/g = 0.

APPENDIX D

Approximations for Deterministic Growth-Mortality Relationships

The optimal maturation reaction nora) (g) can be approximated by a second-order Taylor

expansion of its density-independent compora%@it g &oyund mean growth potentid,

1) IR ()| SO
g | 094 g | @79 a0

am(g) = am.(g) +

where the constant terra:n,i (g) is the density-independent component at mean growth po-
tential, the coefficient of the first-order term describes the linear effeet}gng of(varia-
tion in growth potentialg around its mearg, and the coefficient of the second-order term

describes the corresponding quadratic effect.
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Figure Captions

Figure 1: Schematic illustration of maturation reaction norfsUnivariate maturation reac-
tion norm a_, ([, showing the relationship between maturation agéy) and growth poten-
tial g. The range of growth potentialg,,, =g - 30, to g, =g +30,, with a mean growth
potentialg and a standard deviatiary , characterizes the extent of heterogeneity in the envi-
ronmental conditions individuals may encount&rResulting univariate maturation reaction
norm | .(.), showing the relationship between maturation lerig(ly) and growth potential

g, deduced from the maturation agg(g) and the growth potentiaj using the growth tra-
jectory (eq. 3)C, Bivariate maturation reaction nor(a, (0l!(a,,(})), showing the combina-
tions of maturation age,,(g) and maturation length(a, (g) that result from different

growth potentialsg .

Figure 2: Examples of covariation between growth potential and mortality Aatkinear
deterministic relationshipsc(= 1) betweeng and m for slopesf = -0.005, -0.004, -0.002,
0, 0.002, 0.004, 0.005 ™. B, Nonlinear deterministic relationships betwegnand m for
curvature parameters = 0.5, 1, 2.5 and slope8 = -0.002, 0, 0.002)™¥3. C, Probabilistic
relationship betweerg and m. Thin lines show equally spaced isoprobability levels of the
probability density functionp(g,m) for a regression slopg = 0.002 g“* and a correlation
coefficient p = 0.5. The thick line shows the linear regression of mortality maten growth

potential g. Other parametersn = 0.2 yr*, § = 45 ¢”0yr*, ando, =5 ¢°Oyr™.
Figure 3: Evolutionarily optimal age and length at maturation for constant growth potential
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and mortality rate. Growth trajectories and optimal combinations of maturation age and length
for different values of the following parametefs:mortality ratesm = 0.1, 0.2, 0.3, 0.4, 0.5

yr ' B, reproductive effort$r = 0.1, 0.2, 0.4, 0.8, 1.6r™*; C, growth potentialsy = 20, 30,

40, 50, 60, 70y”°* yr ! and strengths of density dependenzes 10**, 10*3 10% 10", 10

19 g7*: D, weightsw, at birth, and thus lengths at bitth= (w, / «)"'®, with w, = 0.1, 0.2, 0.3,

0.4, 0.5g. Other parameters (unless stated otherwisg}: 20.42 10°, w = 0.0104 dJcrt,

a =8.68510% @, h=05yf", w,=0.364¢, m=0.2yr", and g=45d¢”°0Oyr". These
choices are meant to represent the life history of a long-lived fish such aGamha (nor-

hua), but the numerical values do not affect any qualitative findings.

Figure 4: Evolutionarily optimal maturation reaction norms for linear deterministic relation-
ships (c = 1) between growth and mortalit%, Growth-mortality relationships for different
sopes # = -0.005 C), -0.004 D), -0.002 E), 0 B), 0.002 E), 0.004 F), 0.005 G) g~ V3,

and for two standard deviations of growth potentig| = 5 (black lines), 10 (grey lines)
g*r't. B to H, Resulting optimal maturation reaction norms (thick lines) and realized
growth trajectories (thin lines, corresponding to minimum, mean, and maximum growth po-

tentials, g,,, =9 -30,, 9, and g, =g +30,). Other parameters as in figures 2 and 3.

Figure 5: Evolutionarily optimal maturation reaction norms for nonlinear deterministic rela-
tionships between growth and mortaliy,. Growth-mortality relationship for different com-
binations of slopep and curvature parameter, (8,c) = (-0.002g™?, 0.5) @), (-0.002

g, 1) ©), (-0.002g™, 2.5) D), (0.002g™?, 2.5) E), (0.002g™"*, 1) F), (0.002g™"?,

0.5) (G), and for two standard deviations of growth potentigl= 5 (black lines), 10 (grey
lines) g”°* yr*. B to G, Resulting optimal maturation reaction norms (thick lines) and realized
growth trajectories (thin lines, corresponding to minimum, mean, and maximum growth po-

tentials, g,,, =9 -30,, 9, and g, =g +30,). Other parameters as in figures 2 and 3.

Figure 6: Evolutionarily optimal maturation reaction norms for probabilistic relationships
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between growth and mortality. Optimal maturation reaction norms (thick lines) and realized
growth trajectories (thin lines, corresponding to minimum, mean, and maximum growth po-
tentials, 9,,, =9 -30,, §, and g,,, =g +30,) resulting for probabilistic growth-mortality
relationships with different combinations of regression slgpeand correlation coefficient
P, and for two standard deviations of growth potentigl= 5 (black lines), 10 (grey lines)

g“®yr . Other parameters as in figures 2 and 3.
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