FN Archimer Export Format PT J TI Strain-Dependent Norovirus Bioaccumulation in Oysters BT AF MAALOUF, Haifa SCHAEFFER, Julien PARNAUDEAU, Sylvain LE PENDU, Jacques ATMAR, Robert L. CRAWFORD, Sue E. LE GUYADER, Soizick AS 1:1;2:1;3:1;4:2;5:3;6:3;7:1; FF 1:PDG-DOP-DCN-EMP-MIC;2:PDG-RBE-EMP-MIC;3:PDG-RBE-EMP-MIC;4:;5:;6:;7:PDG-RBE-EMP-MIC; C1 IFREMER, Lab Microbiol LNR, F-44311 Nantes 03, France. Univ Nantes, INSERM, U892, Nantes, France. Baylor Coll Med, Dept Mol Virol & Microbiol, Houston, TX 77030 USA. C2 IFREMER, FRANCE UNIV NANTES, FRANCE BAYLOR COLL MED, USA SI NANTES SE PDG-DOP-DCN-EMP-MIC PDG-RBE-EMP-MIC IN WOS Ifremer jusqu'en 2018 copubli-france copubli-univ-france copubli-int-hors-europe IF 3.829 TC 94 UR https://archimer.ifremer.fr/doc/00036/14753/12087.pdf LA English DT Article AB Noroviruses (NoVs) are the main agents of gastroenteritis in humans and the primary pathogens of shellfish-related outbreaks. Some NoV strains bind to shellfish tissues by using carbohydrate structures similar to their human ligands, leading to the hypothesis that such ligands may influence bioaccumulation. This study compares the bioaccumulation efficiencies and tissue distributions in oysters (Crassostrea gigas) of three strains from the two principal human norovirus genogroups. Clear differences between strains were observed. The GI.1 strain was the most efficiently concentrated strain. Bioaccumulation specifically occurred in digestive tissues in a dose-dependent manner, and its efficiency paralleled ligand expression, which was highest during the cold months. In comparison, the GII.4 strain was very poorly bioaccumulated and was recovered in almost all tissues without seasonal influence. The GII.3 strain presented an intermediate behavior, without seasonal effect and with less bioaccumulation efficiency than that of the GI.1 strain during the cold months. In addition, the GII.3 strain was transiently concentrated in gills and mantle before being almost specifically accumulated in digestive tissues. Carbohydrate ligand specificities of the strains at least partly explain the strain-dependent bioaccumulation characteristics. In particular, binding to the digestive-tube-specific ligand should contribute to bioaccumulation, whereas we hypothesize that binding to the sialic acid-containing ligand present in all tissues would contribute to retain virus particles in the gills or mantle and lead to rapid destruction. PY 2011 PD MAY SO Applied And Environmental Microbiology SN 0099-2240 PU Amer Soc Microbiology VL 77 IS 10 UT 000290473200004 BP 3189 EP 3196 DI 10.1128/AEM.03010-10 ID 14753 ER EF