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Abstract:  
 
Free-surface flows past submerged obstacles in a channel are considered. The fluid is assumed to be 
inviscid and incompressible and the flow to be irrotational. The first-order approximation of long 
nonlinear surface waves over one or two bumps results in a forced Korteweg–de Vries (fKdV) 
equation. Solutions of the stationary fKdV equation are constructed and their stability is studied, either 
analytically or numerically. These various solutions include solitary waves over a single bump, solitary 
waves with two humps over a double bump, table-top solutions over a double bump and fronts.  
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1. Introduction 
 
The question of flow over topography with nonlinearity and dispersion included is an intriguing one, 
which is reviewed for example in the book by Baines [1, Sect. 2.6]. Indeed, a forcing disturbance 
moving steadily in a channel can generate a variety of interesting flows. With two disturbances, the set 
of possible flows is even larger. Here we take a frame of reference moving with the disturbance(s). In 
the case of two disturbances, they are assumed to move at the same speed. Let a be a typical wave 
amplitude, λ a typical wavelength, h0 the water depth in the channel away from the obstacle(s), U the 
speed of the moving disturbance(s) and b 
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the height of the obstacle(s).1 Let us also introduce the Froude number
F = U/c0, where c0 =

√
gh0. The fluid is assumed to be inviscid and

incompressible and the flow to be irrotational. When a/h0, (h0/λ)2,
F −1 and b/h0 are all comparably small, a good model for the study of
flows over topography is the forced Korteweg–de Vries (fKdV) equation.
The literature on this subject is so vast that it is not possible to give
here a full account. In what follows we have selected only a few samples
of the literature. The fKdV equation has been formally derived for
forcing by a moving pressure pattern by Akylas [2], and for forcing by
topography in more general stratification by Grimshaw & Smyth [3].
Patoine & Warn [4] used the fKdV equation in the context of the
interaction of long, quasi-stationary, baroclinic waves with topography.
Pratt [5] used the fKdV equation to explain some experiments related
to atmospheric flow over mountains. The fKdV equation was then used
by Wu [6] to explore the basic mechanism underlying the generation of
upstream advancing solitons by moving disturbances. Shen [7] studied
steady solutions of a fKdV equation for channels of arbitrary cross
section. Camassa & Wu [8, 9] performed a stability analysis of forced
steady solitary wave solutions and confirmed their analytical findings
with accurate numerical simulations. Gong & Shen [10] explored various
solitary wave solutions of the fKdV equation under several types of
forcing, including a two semi-elliptic bump forcing. Shen et al. [11] in-
vestigated soliton collisions governed by the fKdV equation. In the case
of a single obstacle, Dias & Vanden-Broeck [12] found new solutions
called generalised hydraulic falls. These solutions are characterized by
a supercritical flow on one side of the obstacle and a train of waves
on the other. However, in the case of a single submerged bump, the
generalised hydraulic falls are unphysical because the waves do not
satisfy the radiation condition. Dias & Vanden–Broeck [13] computed
new stationary solutions for the flow past two obstacles of arbitrary
shape. These solutions are characterised by a train of waves ‘trapped’
between the obstacles. It was shown that the generalised hydraulic
falls of Dias & Vanden-Broeck [12] describe locally the flow over one
of the two obstacles when the distance between the two obstacles is
large. Binder, Vanden–Broeck & Dias [14] compared solutions of the
fKdV equation with potential flow solutions for the flow past multiple
obstacles. Donahue & Shen [15] investigated numerically the stability
of the hydraulic fall and cnoidal wave solutions of the fKdV equation.

Maleewong, Asavanant & Grimshaw [16] added surface tension ef-
fects to the fKdV equation and investigated steady solutions. Subse-

1 In the case of two obstacles, there is some arbitrariness in this choice. In fact,
we implicitly make the assumption that the ratio of obstacle heights is neither too
small nor too large, without going into mathematical details.
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quently Grimshaw, Maleewong & Asavanant [17] examined the stability
of these steady solutions.

The main goal of the present paper is to review first the stability
of the supercritical solitary wave and hydraulic fall solutions in the
presence of a single obstacle, in the framework of the fKdV equation.
Then new results are presented for two obstacles lying at the bottom,
in particular for table-top like solutions. Results of a novel analysis
of the stability problem are confirmed by integrating numerically the
fKdV equation. In section 2, we introduce the fKdV equation as well
as its Hamiltonian structure, which will be useful for the stability re-
sults of section 6. In section 3, we derive exact steady solitary wave
solutions of the fKdV equation with a single obstacle by using an
inverse method. Inverse methods have a long history in hydrodynamics.
Although equivalent methods have been rediscovered many times since,
the first statement of the method appears to be due to Sautreaux [18].
The technique is described for example in Wehausen & Laitone [19],
pp. 736-740. E. O. Tuck himself used this technique in a number of
publications. See Tuck & Roberts [20] for a detailed account. After
constructing the exact solutions, we review known stability results.
Section 4 deals with hydraulic fall solutions, again in the presence of
a single obstacle. The same inverse technique leads to exact solutions.
Their stability is studied numerically. In section 5, we derive exact
steady solitary wave solutions with two humps in the presence of two
bottom-mounted obstacles by using the same inverse method. Again
we study their stability numerically. In section 6, new exact table-
top solutions are constructed in the presence of two obstacles. A novel
theoretical analysis allows one to predict stability or instability for two
special cases. The analytical results are confirmed numerically. Finally
a conclusion and discussion section is provided at the end of the paper.

2. The forced Korteweg–de Vries (fKdV) model

The classical KdV equation, which includes both non-linearity and
dispersion, can be extended to admit arbitrary forcing functions if the
forcing disturbances are limited to unidirectional motion, say

B∗ = B∗(x∗ + Ut∗), (2.1)

representing a left-going (or right-going) bathymetry when U is positive
(or negative). These forcing functions are supposed to be sufficiently
smooth, localized and to vanish identically for time t∗ < 0. In the
derivation of KdV type equations, it is also assumed that the velocity
U is close to critical so that F−1 = O(ε). The small number ε is usually
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defined as the square of the ratio between the undisturbed water depth
h0 and a typical wavelength λ. One also requires both the ratio between
wave amplitude and h0 and the ratio between the height of the distur-
bance and h0 to be O(ε). Then stretched coordinates are introduced and
asymptotic expansions are assumed. More or less rigorous derivations
of the fKdV equation can be found in several papers. Here we mention
three papers: Lee, Yates & Wu [21] and Shen [22, 23]. Shen [22] noted
that quite surprisingly the range of validity of the stationary fKdV
equation is not restricted to small bumps and small amplitudes! After
a few substitutions and integrations, as well as a switch to dimension-
less variables, one obtains the following fKdV equation as a model for
open-channel flow past obstructions:

ηt =
1
6
ηxxx +

3
4

(η2)x − (F − 1)ηx +
1
2
Bx, (2.2)

where B is the dimensionless forcing term. The link between the phys-
ical variables and the variables appearing in the fKdV model is (∗ are
used for the physical quantities):

x =
x∗ + Ut∗

h0
, η =

η∗

h0
, B =

B∗

h0
, t =

c0t
∗

h0
.

The fKdV equation (2.2) has a Hamiltonian structure. This struc-
ture was used for example by Camassa & Wu [9] to investigate nonlinear
stability properties. The fKdV equation can indeed be written as

ηt =
∂

∂x

δH
δη
, (2.3)

where H is the Hamiltonian:

H(η) =
1
6

∫
R

(
−1

2
η2
x +

3
2
η3 − 3(F − 1)η2 + 3Bη

)
dx. (2.4)

One takes 〈u, v〉 →
∫
R uv as scalar product.

Linearizing equation (2.3) near a stationary solution η̃ yields

ηt =
∂

∂x
Lη,

where L is the Hessian of the functional H:

Lη =

[
δ2H
δη2

]
η=η̃

(η) =
1
6

(ηxx + 9η̃η − 6(F − 1)η) .

The linear spectral problem Lη = λη can be written as a first-order
linear system:
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JUx(x) = C(x, λ)U(x), U(x) =

 η

ηx

 , J =

 0 1

−1 0


C(x, λ) =

 6(F − 1)− 9η̃ + 6λ 0

0 −1

 .
(2.5)

Let σ(L) denote the spectrum of L. Assume that 0 /∈ σ(L) and that
the stationary solution η̃ is symmetric (this implies that the bottom
is symmetric). Then, according to Chugunova & Pelinovsky [24], the
following relationship between the number of eigenmodes of L and those
of ∂xL holds:

n+ = Nunst +N+
imag, (2.6)

where n+ is the number of strictly positive eigenvalues of L, Nunst is the
number of unstable modes of ∂xL and N+

imag is the number of imaginary
eigenvalues of ∂xL with multiplicities associated with eigenvector u such
that 〈u,Lu〉 > 0.

Note that Chugunova & Pelinovsky [24] only consider the case of a
flat bottom. Since the stationary solution is assumed to be symmetric,
the proof can be extended to the case with obstacles. The kernel of ∂xL
is now empty and there is no need to take into account the generalized
kernel of ∂xL. More details can be found in Chardard [25].

3. One obstacle: Review of localised solutions and their
stability

In this section we derive exact steady solutions of the fKdV equation
(2.2) by using an inverse method. Since this technique has been used
by several authors, this section is simply a review of known results.
One prescribes the profile of the free surface and then calculates the
corresponding shape of the bottom. Only supercritical flows with F > 1
are considered.

Assume that the wave at the surface of the channel is of the form

η = A sech2βx. (3.7)

One looks for a corresponding localized bump at the bottom. In order
to do this, one substitutes (3.7) into (2.2) and integrates once, assuming
that the bathymetry vanishes at infinity:

B(x) =
1
3

(
6(F − 1)η − 9

2
η2 − ηxx

)
. (3.8)
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This expression can be written explicitly as

B(x) =
A

6

(
12F − 12− 8β2

cosh2 βx
+

12β2 − 9A
cosh4 βx

)
. (3.9)

The bottom, which is symmetric, is a linear combination of two local-
ized bumps, one with a sech2 behavior and the other one with a sech4

behavior. As long as both coefficients in the linear combination are
positive, the bottom will be a localized bump, of maximum amplitude
G obtained at x = 0 and equal to the sum of both coefficients. If one
fixes the maximum amplitude G, there is an infinity of choices for the
parameters. There are two obvious possibilities: (i) either to take the
coefficient of the sech2 bump to be G and the other one to be zero; (ii)
or to take the coefficient of the sech4 bump to be G and the other one
to be zero. These two possibilities lead to two systems of two equations: A(12F − 12− 8β2) = 6G

A(4β2 − 3A) = 0
,

 A(12F − 12− 8β2) = 0

A(4β2 − 3A) = 2G
. (3.10)

Assuming that F and G are fixed, one finds in each case two values for
the amplitude A and the corresponding value for β: A = F − 1±

√
(F − 1)2 −G

β =
√

3A
4

,

 A = F − 1±
√

(F − 1)2 − 2G
3

β =
√

3
2(F − 1)

,

(3.11)
as long as the Froude number is larger than the minimum value

Fmin = 1 +
√
G, Fmin = 1 +

√
2G
3
. (3.12)

Note that for the sech4 bump the coefficient β does not depend on the
wave amplitude A.

The bifurcation diagram that one obtains is well-known. A detailed
mathematical description is provided by Shen [7]. One obtains two
branches of solutions: a perturbation of a uniform flow (with the minus
sign for A) and a perturbation of a solitary wave (with the plus sign for
A). If one adds an arbitrary constant to the expression (3.9) for B, it
will still be a solution of equation (2.2). Figure 1 shows the bifurcation
diagram for both the sech2 and sech4 bumps.

In order to integrate numerically the fKdV equation, we used the
Fourier spectral method briefly described in Appendix A.1. The partial
differential equation is solved on a periodic domain. We performed the
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Figure 1. Branches of exact steady solutions of the stationary fKdV equation in the
amplitude vs Froude number plane, when there is a single obstacle at the bottom.
Left: sech2 bump; Right: sech4 bump. The solid lines indicate stability, the dashed
lines instability.

following numerical computations. First we tested the exact solution.
By inserting the exact solution for η in the time-dependent code, we
checked that the solution does not change. Then we started with a flat
free surface (η = 0), for various values of the Froude number larger than
Fmin. The numerical solution always converged after some time to the
stationary solution with the minus sign for A. Finally, we perturbed the
stationary solutions by multiplying them by a factor smaller or greater
than one.

The stability of the flow past an obstacle in either form of (3.11)
has already been studied by Camassa and Wu [8, 9], both analytically
and numerically. They used the Hessian of the Hamiltonian (2.4) and
perturbative methods in order to reach conclusions on the stability. We
briefly recall these results in our set of parameters (the stability results
are indicated as well in Fig. 1).

In the case of the sech2-type obstacle, the perturbed solitary wave
solution with A = F − 1 +

√
(F − 1)2 −G is always unstable. In con-

trast, the perturbed uniform flow solution A = F − 1−
√

(F − 1)2 −G
is stable if and only if G ≤ 80

81(F − 1)2.
In the case of the sech4-type obstacle, the perturbed solitary wave

solution with A = F − 1 +
√

(F − 1)2 − 2G/3 is unstable whereas the
perturbed uniform flow solution A = F − 1 −

√
(F − 1)2 − 2G/3 is

stable.
Numerical results are given for a sech2-type obstacle in Fig. 2 (per-

turbed uniform flow) and in Fig. 3 (perturbed solitary wave). The
perturbed uniform stream is stable in the sense that when it is slightly
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Figure 2. Evolution of the stable perturbed uniform flow solution when F = 1.32
and G = 0.1, with a sech2-type obstacle. The initial condition is the exact solution
times 0.9 (left) and 1.05 (right).
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Figure 3. Evolution of the unstable perturbed solitary wave solution when F = 1.32
and G = 0.1, with a sech2-type obstacle. The initial condition is the exact solution
times 0.9 (left) and 1.05 (right). In both cases the solution evolves toward the
perturbed uniform stream above the bottom-mounted obstacle centred at x = 0.

CDNV_R2.tex; 7/09/2010; 23:57; p.8



9

perturbed the numerical results show evidence of the tendency of the
system to recover the stationary state (the decrease in amplitude of
the wave on the right of Fig. 2 is real, even if it cannot be seen clearly
on the figure). The perturbed solitary wave is unstable. With a per-
turbed initial condition which is smaller than the stationary solution,
the solitary wave decreases in amplitude and goes directly towards the
perturbed uniform stream. With a perturbed initial condition which is
larger than the stationary solution, a large solitary wave is generated
and propagates to the left (upstream), leaving behind a small stationary
wave, which is the perturbed uniform stream. This is the well-known
generation of upstream advancing solitons by moving disturbances ex-
plained by Ertekin et al. [26] and Wu [6]. A full account of numerical
results with the same type of initial conditions can be found in Camassa
& Wu [8]. The main purpose of this section was to check that our
numerical code reproduces earlier results.

4. One obstacle: Review of fronts and their stability

The topic of hydraulic falls is discussed in detail in all classical books on
hydraulics. Hydraulic falls are generated by an obstacle. They connect a
subcritical uniform flow with a supercritical uniform flow. They are only
observed with subcritical flow upstream, as described for example in the
monograph by Viollet et al. [27]. Forbes [28] investigated hydraulic falls
experimentally, and he and others, including the authors themselves,
computed hydraulic falls by solving the full Euler equations (Vanden–
Broeck [29], Forbes & Schwartz [30], Dias & Vanden–Broeck [31], Dias
& Vanden–Broeck [32]). The stability of fronts has been less studied.2 In
order to investigate the stability of fronts, we first use the same inverse
method as above to compute exact fronts, which connect two different
uniform flows upstream and downstream of the obstacle. Assume that
the front at the surface of the channel is of the form

η = A (1 + tanhβx), β 6= 0. (4.1)

It is a rising front if β > 0 and a falling front if β < 0. We look for a
corresponding bump at the bottom. In order to do this, we substitute
(4.1) into (2.2). Again, after integration, one obtains Eq. (3.8). We do
not write explicitly the expression for B(x) but we impose that B → 0
at ±∞. It leads to

A =
2
3

(F − 1).

2 One of the reviewers brought to our attention the recent paper by Donahue &
Shen [15], where a stability analysis of fronts is performed in the same spirit as in
the present paper. Our results are in perfect agreement.
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Note that the resulting shape of the obstacle is not symmetric. One has
a one-parameter family of such exact fronts,

η =
2
3

(F − 1) (1 + tanhβx), (4.2)

for a given Froude number. This implies that the flow is subcritical on
the top part of the solution and supercritical on the bottom part of the
solution.

One also has

B(0) = 2(F − 1)
2
3

(F − 1)− 3
2

4
9

(F − 1)2 =
2
3

(F − 1)2.

If β tends to zero, then ηxx converges uniformly to zero and 2
3(F − 1)2

is the maximal height of the obstacle. It is also worth noticing that if
we had replaced the hyperbolic tangent by another smooth function
with the same limits at +∞ and −∞ and a bounded second derivative,
then the maximal height would have also converged to 2

3(F − 1)2 when
β → 0.

Numerically, the case of fronts is harder to handle since periodic
boundary conditions cannot be used. The numerical scheme that we
used is described in Appendix A.2. We found that the falling front is
stable as shown on Fig. 4. Donahue & Shen [15] perturbed the falling
front with white-noise and reached the same conclusion. As one can see
on the right part of Fig. 4, the rising front is much less robust than
the falling one, thus explaining why only falling fronts are observed in
nature. The rising front becomes localized above the bottom-mounted
obstacle. However, it is difficult to draw general conclusions on the
stability since the boundary conditions play an important role in the
evolution of the front.

5. Two obstacles: Exact localised solutions with two humps
and their stability

Supercritical flows over two obstacles on a channel bottom were consid-
ered both by Gong & Shen [10] and Binder, Vanden–Broeck & Dias [14].
While Gong & Shen [10] only considered the fKdV model, Binder,
Vanden–Broeck & Dias [14] calculated fully nonlinear solutions by a
boundary integral equation method in addition to deriving weakly non-
linear solutions. Classical solutions were recovered and new solutions
were found. In this paper, we investigate the stability of only two types
of solutions: solutions with two humps above the two bottom-mounted
obstacles in this section and table-top solutions in the next section.
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Figure 4. Left: Falling front (4.2) for F = 1.3 and β = −0.1. The front is stable.
Right: Rising front (4.2) for F = 1.3 and β = 0.5. The front is unstable. The initial
condition is the exact solution plus 0.1 sech(0.5x).

In this section we assume that the solitary wave at the surface of
the channel is of the form

η(x) = A1 sech2β1(x− x1) +A2 sech2β2(x− x2), (5.3)

that is the superposition of two solitary waves η1(x) and η2(x) centred
at x = x1 and at x = x2, respectively. We look for a corresponding
double bump at the bottom. In order to do this, we substitute (5.3) into
(2.2). Again, after integration, one obtains Eq. (3.8). The expression
for B(x) can be written explicitly as

B(x) = B1(x) +B2(x)−B12(x), (5.4)

where B1(x) and B2(x) are given by Eq. (3.9), with x replaced respec-
tively by x− x1 and x− x2. The term B12(x) is equal to

B12(x) = 3η1(x)η2(x).

If the separation between the two bumps is sufficiently large, this term is
extremely small. So, as a first approximation, one could for given values
of F , G1 (size of the first obstacle) and G2 (size of the second obstacle)
find the corresponding values of A1, β1 for the first obstacle and A2, β2
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Figure 5. Exact solutions (5.3) for a channel bottom with two bumps. (a) Same size
obstacles, with a perturbation on a uniform flow and a perturbation on a solitary
wave; (b) Same as (a) with the obstacles closer; (c) Same as (a) with different size
obstacles; (d) Same as (c) with the obstacles closer.

for the second obstacle as if there were no interaction between them.
But it turns out that we can use this inverse method for constructing
exact solutions even if the two obstacles are not that far from each
other. We now summarize the method for constructing bottoms with
two bumps for which we know exact solutions. Choose F , G1 and G2.
Then compute A1, β1 and A2, β2 from one of the two formulas (3.11).
Four examples are shown in Fig. 5: two with obstacles of the same size
and two with obstacles of different sizes.

Having these exact solutions, we then study their stability numer-
ically. We follow the same approach as in the previous section: we
perturb the stationary solutions by multiplying them by a factor smaller
or greater than one. Like in the single obstacle case, the perturbed
uniform flow is stable, as long as the two obstacles are not too close:
when it is slightly perturbed the numerical results show evidence of
the tendency of the system to recover the stationary state as shown on
Fig. 6.
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Figure 6. Evolution of the perturbed uniform flow solution η(x, t) when F = 1.5,
x2 − x1 = 20, G = 0.3, with two sech4-type obstacles. The initial condition is the
exact solution times 0.9 (left) and 1.05 (right).
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Figure 7. Evolution of the perturbed solitary wave solution η(x, t) when F = 1.5,
x2 − x1 = 20, G = 0.3, with two sech4-type obstacles. The initial condition is the
exact solution times 0.9 (left) and 1.05 (right). In both cases the solution evolves
toward the perturbed two-hump uniform stream above the two bottom-mounted
obstacles.
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Figure 8. Evolution of the solution which is a ‘perturbed’ uniform flow on the
lefthand side and a perturbed solitary wave on the righthand side when F = 1.5,
x2 − x1 = 20, G = 0.3, with two sech4-type obstacles. The initial condition is the
exact solution times 0.9 and 1.05 respectively.

Next we consider the stability of the perturbed solitary wave solu-
tion. Like in the single obstacle case, the perturbed solitary wave is
unstable. This can be seen on Fig. 7. With a perturbed initial condi-
tion which is smaller than the stationary solution, the solitary waves
decrease in amplitude and go directly towards the perturbed uniform
stream, even if the disturbance moving to the right temporarily per-
turbs the signal above the right bump. With a perturbed initial condi-
tion which is larger than the stationary solution, solitary waves are gen-
erated by the moving disturbances and propagate upstream, leaving be-
hind a small two-hump stationary wave above the two bottom-mounted
obstacles, which is the perturbed uniform stream.

Finally we consider the stability of the solution which is a perturbed
uniform flow on one side and a perturbed solitary wave on the other
side. These solutions are unstable. This can be seen on Fig. 8, where
the perturbed uniform stream is on the left, and Fig. 9, where the
perturbed uniform stream is on the right. In Fig. 8 with an initial
condition smaller than the steady solution (left plot), nothing spectac-
ular occurs: the perturbed uniform flow goes back to the stationary
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Figure 9. Evolution of the solution which is a ‘perturbed’ solitary wave on the
lefthand side and a perturbed uniform flow on the righthand side when F = 1.5,
x2 − x1 = 20, G = 0.3, with two sech4-type obstacles. The initial condition is the
exact solution times 0.9 and 1.05 respectively.

state and the perturbed solitary wave goes to the perturbed uniform
flow. A small disturbance moves downstream. In Fig. 8 with an initial
condition larger than the steady solution (right plot), the upstream
advancing soliton generated above the right obstacle interacts with the
perturbed uniform stream. A new disturbance then moves downstream
and seems to excite a second upstream advancing soliton. In Fig. 9
with an initial condition smaller than the steady solution (left plot),
the perturbed solitary wave goes to the perturbed uniform flow and
the perturbed uniform flow goes back to the stationary state but it
feels the influence of the disturbance originating above the left obstacle
and moving downstream. In Fig. 9 with an initial condition larger than
the steady solution (right plot), there is an upstream advancing soliton
generated above the left obstacle. Otherwise, the perturbed uniform
flow goes back to the stationary state and the perturbed solitary wave
goes to the perturbed uniform flow.
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6. Two obstacles: Exact table-top solutions and their
stability

In the previous section we considered solutions which were essentially
localized solitary waves above each obstacle. Binder, Vanden–Broeck
& Dias [14] found many more solutions in the presence of two obsta-
cles, in particular supercritical solutions with a train of waves trapped
between the obstacles. The distance the obstacles are apart determines
the number of waves trapped between the two obstacles. For the sym-
metric flows with two identical obstacles, solutions can be viewed as a
matching of a generalised hydraulic rise over a single obstacle with a
generalised hydraulic fall over a single obstacle. It turns out that these
trapped waves can be eliminated midstream by satisfying a condition
on the Froude number. For the full Euler equations, this condition was
derived by Binder, Vanden–Broeck & Dias [14] by using the conser-
vation of mass and the dynamic boundary condition. These waveless
solutions depend on one less parameter and either the Froude number
or the obstacles height comes as part of the solution.

In the context of the fKdV equation, we assume now that the free
surface is of the form depicted on Fig. 10:

ηβ,L = A tanhβ(x− L)−A tanhβ(x+ L), A =
2
3

(F − 1). (6.1)

In other words, it is the superposition of two fronts centred at x = L
(rising front) and at x = −L (falling front), where L is a positive param-
eter and β negative. We look for a corresponding double bump at the
bottom. In order to do this, we substitute (6.1) into (2.2). Again, after
integration, one obtains Eq. (3.8). The bottom, which is symmetric, is
denoted by Bβ,L. However each “individual” obstacle is not symmetric.
The value of L must be large enough to allow for two separate bumps
at the bottom and a real table-top free-surface profile.

Next we investigate the stability of these solutions. In addition to
the numerical results, we first provide some analytical results on the
stability. These results are only partial: indeed they do not provide
stability or instability for all cases. More details can be found again
in Chardard [25]. First we study the spectrum of the Hessian of the
Hamiltonian (2.4) with the help of Sturm-Liouville theory. We assume
that β < 0 and L > 0. One is interested in the eigenvalues of the
Hessian L of the Hamiltonian near η = ηβ,L when B = Bβ,L.

The essential spectrum of L is σ(L) = [2(F−1),+∞[ and 0 does not
belong to it. Let n+(β, L) be the number of strictly positive eigenvalues
of Lβ,L. Chardard [25] showed that the number n+(β, L) can jump by
at most one as β and L vary continuously.
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Figure 10. Table-top solution (6.1) past two obstacles when L = 20, F = 1.2 and
β = −0.5.

If β and x are fixed, then ηβ,L(x) is an increasing function of L and

L1 < L2 ⇒ ∀u 〈u,Lβ,L1u〉 ≤ 〈u,Lβ,L2u〉.

Consequently, n+(β, L) is an increasing function of L when β is fixed.
When L = 0, η = 0 and therefore n+(β, 0) = 0. It follows that there
exists a sequence Li(β), 0 < L1(β) < L2(β) < . . ., such that n+(β, L) =
i if and only if L ∈]Li(β), Li+1(β)], e.g.

n+(β, L) =
+∞∑
i=1

1]Li(β),+∞[(L).

We provide some estimates of Li(β) when F = 1.2 and β = −0.3 in
Table I. One can also find an analytical estimate of Li+1(β) − Li(β).
Let ζβ,L be a solution of system (2.5) when λ = 0 such that

lim
x→−∞

ζβ,L(x) = 0.
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Table I. Estimates of Li(β) when F = 1.2 and
β = −0.3.

L1(−0.3) 2.36823 L6(−0.3) 9.32896

L2(−0.3) 3.65133 L7(−0.3) 10.7628

L3(−0.3) 5.04097 L8(−0.3) 12.1967

L4(−0.3) 6.46378 L9(−0.3) 13.6306

L5(−0.3) 7.89555 L10(−0.3) 15.0646

The number n+(β, L) is equal to twice the number of rotations of ζβ,L
around zero. If we set η̃β,∞ = 4

3(F − 1), then

Cβ,∞(λ) =

 −6(F − 1) + 6λ 0

0 −1

 ,
which is approximately the value of Cβ,L(x, λ) when x is close to 0.
When λ = 0, the wavelength ` of the associated system is 2π/

√
6(F − 1)

(0 is then in the essential spectrum). Therefore, when 2L increases by
`, the flat zone on which Cβ,L(x, λ) ' Cβ,∞(λ) also increases by `. The
number n+(β, L) should increase by approximately `(2

√
6(F − 1))/π.

So one could expect that

Li+1(β)− Li(β) ∼i→∞
π

2
√

6(F − 1)
.

For F = 1.2, the numerical value is 1.4339, which is consistent with
Table I.

We now use formula (2.6) for this particular solution. Recall that
(2.6) states that

n+(β, L) = Nunst +N+
imag,

where Nunst is the number of unstable modes of ∂xLβ,L and N+
imag is

the number of oscillatory modes u of ∂xLβ,L such that 〈u,Lβ,Lu〉 > 0.
If Nunst 6= 0, the stationary solution is unstable. Otherwise, it is said
to be spectrally stable. There are two cases for which it is possible to
conclude on the stability of the table-top solutions:

− L ∈ [0, L1(β)[. The solution is stable (see Fig. 11). But then the
solution is not really a table-top solution since the obstacles are
not really separated.
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Figure 11. Stable solution (6.1) when L = 2, β = −0.3 and F = 1.2 (In that case
n+(−0.3, 2) = 0). The initial condition was a perturbation of the stable solution.

− L ∈ ∪i∈N]L2i+1(β), L2i+2(β)[. The table-top solution is unstable.

In the first case, the lowest eigenvalue of Lβ,L is strictly positive.
Therefore Nunst = 0. From section 5 of Camassa & Wu [8], this also
implies the non-linear stability of the stationary solution.

In the second case, n+(β, L) is an odd number and there is no
zero eigenvalue. Since N−imag is even, Nunst is odd and hence non-zero.
Therefore, the solution is unstable.

If L ∈ ∪i∈N[L2i+2(β), L2i+3(β)], none of the previous arguments
works. However, numerical simulations seem to indicate that these
solutions are also unstable.

We tried to determine the stability of table-top solutions by in-
tegrating numerically the fKdV system. Except for L ∈ [0, L1(β)[,
all the table-top solutions we observed were unstable, although some
instabilities were slower to appear than others. In fact, there were two
kinds of leading instabilities:

− Some oscillations increased alternatively in the left and in the right
of the table-top part of the solution. This seems to indicate a
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Figure 12. Instability developing on the table-top solution (6.1) when L = 50,
β = −0.3 and F = 1.2 (In that case n+(−0.3, 50) = 34). The leading instability
seems to be associated to a complex eigenvalue, since the instability has not a
uniform growth rate (the instability appears alternatively on the right and the left
of the table-top solution). There are 16 oscillations developing between the two edges
of the solution, which is quite close to the 17 expected oscillations.

leading pair of complex eigenvalues (see Fig. 12). Note that time
starts at t = 300 in the figure, since nothing happens before.

− Some oscillations grew rather uniformly on the table-top part of
the solution. This seems to indicate a leading real eigenvalue (see
Fig. 13).

In both cases, the oscillations eventually grew to the point of escaping
from the trap.

We observed that the period of the oscillations appearing in the
table-top part of the solution could be accurately predicted by the
dispersion relation of the system when η = ηβ,∞ = 4

3(F − 1). The
dispersion relation for η = ηβ,∞ = 4

3(F − 1) is indeed

ω = k

(
k2

6
− (F − 1)

)
.

If one looks for stationary oscillations, then ω = 0. This implies k = 0 or
k =

√
6(F − 1), so that the wavelength of the oscillation is 2π/

√
6(F − 1).

As a consequence, one could expect roughly L
√

6(F − 1)/π oscillations
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Figure 13. Instability developing on the table-top solution (6.1) when L = 52,
β = −0.3 and F = 1.2 (In that case n+(−0.3, 52) = 35). Here, the leading instability
seems to be associated to a real eigenvalue, since it grows rather uniformly. There
are 17 oscillations developing between the two edges of the solution, which is quite
close of the 18 expected oscillations.

developing between the obstacles and these oscillations were indeed
observed.

7. Conclusion and discussion

While there have been several papers devoted to the stability of so-
lutions of the fKdV equation when the forcing is a single obstacle,
there have been many fewer studies on multiple forcing. After review-
ing briefly the stability results for localized solutions above a single
obstacle and the much more recent stability results for fronts, we have
concentrated on the stability of flows past two obstacles. Rather than
computing numerical solutions of the stationary fKdV equation, we
have used the inverse method to construct channel bottoms providing
exact expressions for the free-surface deformation. Two types of free
surfaces have been considered: free surfaces with two localised humps
above the two bottom-mounted obstacles and table-top free surfaces.
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We have numerically demonstrated the stability of solutions with two
localised humps which are perturbed uniform streams. We have an-
alytically (partially) and numerically demonstrated the instability of
table-top solutions.

The main motivation to introduce two obstacles was to try to gen-
erate the generalised critical flows first calculated by Dias & Vanden-
Broeck [12]. These generalised critical flows lack physical meaning be-
cause the waves do not satisfy the radiation condition which requires
that there be no energy coming from infinity. However Dias & Vanden-
Broeck [13] showed that the radiation condition can be satisfied by
introducing a second obstacle in the channel. The waves can then be
trapped between the two obstacles. The present results seem to indicate
that these solutions are unstable.

Binder, Vanden–Broeck & Dias [14] and Binder, Dias & Vanden–
Broeck [33] considered various kinds of forcings, including two bumps
and a step. A plethora of surface-wave profiles were found. There are a
lot of stationary free-surface profiles for which the stability has not been
investigated yet. Flows in which the disturbance lies on the free surface
are also interesting. Binder & Vanden-Broeck (2005) showed that there
are no subcritical or critical solutions satisfying the radiation condition
for steady flows past a flat plate. Binder, Vanden–Broeck & Dias [34]
used a weakly nonlinear theory to show that solutions for subcritical
and critical flows can be constructed provided the flat plate is replaced
by a curved plate. Again no stability studies of these solutions have
been performed yet.

One can conclude by stating that a rigorous analytical proof of the
stability or instability of all the known stationary profiles of the fKdV
model is yet to be provided.
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Détermination des lignes de courant. J. Math. Pures Appl. 7, 125–159.

19. Wehausen, J.V. & Laitone, W.V. 1960 Surface waves. In: S. Flügge (ed.),
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25. Chardard, F. 2009 Stabilité des Ondes Solitaires, PhD Thesis, Ecole
Normale Supérieure de Cachan, France, http://tel.archives-ouvertes.fr/tel-
00426266/en/.

26. Ertekin, R.C., Webster, W.C. & Wehausen, J.V. 1986 Waves caused by
a moving disturbance in a shallow channel of finite width. J. Fluid Mech. 169,
275–292.

CDNV_R2.tex; 7/09/2010; 23:57; p.23



24

27. Viollet, P.-L., Chabard, J.-P., Esposito, P. & Laurence, D. 1998
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Appendix

A. Details about the numerical simulations

Two methods have been used for the various numerical simulations: a
Fourier spectral method for all the cases where the solution goes to zero
both at plus and minus infinity (the periodicity required by the spectral
method is then satisfied), and a finite difference scheme to compute
the fronts in section 4 (the periodicity condition is no longer satisfied).
Note that Donahue & Shen [15] used a different method to compute
fronts: they treated fronts as phenomena observed near the bump. They
overcame the difficulty associated with the non-periodicity by using a
very large value for the end of the domain (say x = W ) and letting the
stationary solution extend only to ±(1/2)W . Hence the end conditions
at x = ±W are still zero. Of course a discontinuity is introduced but
it was found that the resulting disturbance did not affect the solution
in the vicinity of the bump.
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A.1. Simulation on a periodic domain

Suppose that x takes values in the interval [−W W ].3 In order to work
in the interval [−π π], we use the scaling coefficient S = π/W :

Sx = xnew, xnew ∈ [−π π].

Equation (2.2) becomes

ηt =
1
6
S3ηxxx +

3
4
S(η2)x − (F − 1)Sηx +

1
2
SBx, (A.1)

where the same notation has been kept for the sake of simplicity.
The numerical integration is performed by using a Fourier spectral

method. The fKdV equation is then discretized in space by using the
following grid with 2J-points:

(ηt)j =
(

1
6
S3D3η +

3
4
SD(η2)− (F − 1)SDη +

1
2
SBx

)
j
, j = 1, . . . , 2J

(A.2)
where D is the spectral derivative. Recall that the operator D acts as
follows:

(D̂u)r = irûr for − J + 1 ≤ r ≤ J − 1, (A.3)

where .̂ denotes the Discrete Fourier Transform.
Equation (A.2) is then discretized in time by using the explicit

fourth-order Runge–Kutta method.

A.2. Simulation on a finite interval

For the front solutions, it is difficult to use periodic boundary condi-
tions. So we used a finite difference scheme with the following boundary
conditions:

ux(−W, t) = uxx(−W, t) = 0, u(W, t) = 0. (A.4)

In Colin & Gisclon [35], it is proved that the Korteweg–de Vries equa-
tion subject to these boundary conditions is locally well-posed as long
as the initial data also satisfies these boundary conditions. Colin &
Gisclon [35] also provided a semi-implicit finite difference scheme of
order one which we adapted to the fKdV equation:(
un+1 − 1

6
D−D−D+un+1 − un −∆t

(
(
3
2
un + (F − 1))D+un −Bx

))
j

= 0

3 Even though solutions are computed in the interval [−W W ], they are not
necessarily shown on the entire interval in the figures
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when j ∈ {3, . . . , J − 1}. The superscripts refer to time discretization
and D+ and D− denote respectively

(D+v)j =
vj+1 − vj

∆x
, (D−v)j =

vj − vj−1

∆x
.

The boundary conditions are discretized by:

u1 = u2 = u3, uJ = 0.

The obvious drawbacks of this approach are that spectral precision
is lost and a linear inversion is necessary. If one wants to use another
value than 0 for u(W, t) on the right, especially in the case of a rising
front, one can make the following change of variable: u → u + C and
F → F − 2

3C.
Note that Higgins et al. [36] have introduced an efficient series-

solution method for free-boundary problems arising from flow over
topography.
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