Growth of the Pacific oyster (Crassostrea gigas) in a high-turbidity environment: Comparison of model simulations based on scope for growth and dynamic energy budgets

Type Article
Date 2011-11
Language English
Author(s) Barille Laurent1, Lerouxel Astrid1, Dutertre Mickael1, Haure Joel2, Barille Anne-Laure3, Pouvreau StephaneORCID4, Alunno-Bruscia MarianneORCID4
Affiliation(s) 1 : Univ Nantes, Equipe Mer Mol Sante, Fac Sci & Tech, EA 2160, F-44322 Nantes 3, France.
2 : IFREMER, Lab Conchylicole Pays Loire, F-85230 Bouin, France.
3 : Bio-Littoral, Faculté des Sciences et des Techniques, B.P. 92 208, 44322 Nantes Cedex 3, France
4 : IFREMER, RBE PFOM PI, F-29840 Argenton En Landunvez, France.
Source Journal Of Sea Research (1385-1101) (Elsevier Science Bv), 2011-11 , Vol. 66 , N. 4 , P. 392-402
DOI 10.1016/j.seares.2011.07.004
WOS© Times Cited 29
Keyword(s) Oyster, Dynamic Energy Budget model, Scope for growth model, Turbidity
Abstract We compared growth simulations by dynamic energy budget (DEB) and scope for growth (SFG) models of the Pacific oyster Crassostrea gigas, cultivated in Bourgneuf Bay on the French Atlantic coast. This bay is located at a latitude in the middle of the European range of the species, and is characterized by high concentrations of suspended particulate matter (SPM) and a marked gradient between high-turbidity sites in the north (daily SPM > 500 mg L-1) and intermediate-turbidity sites in the south. The models use two forcing variables: seawater temperature and food density. We tested two indices of food availability: chlorophyll a and microalgal concentrations. In the SFG model, food intake is simulated by a type-II Holling functional response, as in the DEB formulation, and the effect of turbidity in both models is therefore taken into account principally through the half-saturation coefficient for this functional response. Chlorophyll a concentrations were three to four times higher at the high-turbidity site, but oyster growth rates were significantly lower at this site than at the intermediate-turbidity site. A comparison of observed and simulated values showed that the DEB model performed better than the SFG model if microalgal concentration was used as an index of food availability, with the SFG model underestimating oyster growth in summer and autumn. However, the SFG model was much more efficient if chlorophyll a concentrations were used, with the DEB model systematically overestimating summer and autumn growth. This comparison suggests that both SFG and DEB simulations could be improved, to give a more accurate description of oyster growth in a turbid environment, and that the pre-ingestive selection mechanisms used by suspension feeders in turbid environments should probably be included in the formulation of feeding processes.
Full Text
File Pages Size Access
Author's final draft 24 402 KB Open access
11 764 KB Access on demand
Top of the page

How to cite 

Barille Laurent, Lerouxel Astrid, Dutertre Mickael, Haure Joel, Barille Anne-Laure, Pouvreau Stephane, Alunno-Bruscia Marianne (2011). Growth of the Pacific oyster (Crassostrea gigas) in a high-turbidity environment: Comparison of model simulations based on scope for growth and dynamic energy budgets. Journal Of Sea Research, 66(4), 392-402. Publisher's official version : , Open Access version :