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distribution in the eastern English Channel? Using habitat
modelling and GIS to predict habitat utilization
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Conservation of fish habitat requires knowledge of how spatial distributions of species are related to environmental factors. Habitat
modelling and mapping are useful in predicting species—environment relationships. Species abundance is modelled as a function of
environmental parameters to understand species habitat utilization better. The influence of environmental factors on plaice
(Pleuronectes platessa) distribution was investigated for two life stages and over two seasons. Generalized linear modelling and quantile
regression modelling were used to relate the relative abundance of (juvenile and adult) fish to environmental predictors (seawater
temperature, salinity, water column depth, bed-shear stress, and sediment type) in autumn and summer. The resulting regression par-
ameters were used to map preferential and potential habitat distributions within a geographic information system. Models were eval-
uated by comparing predicted against observed abundances. Seabed sediment type was the main significant predictor of plaice
preferential and potential habitats, whereas other factors did not show such a clear influence. The results contribute to a better under-

standing of the spatial ecology of the species.
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Introduction
Ecosystem-based management approaches appear to be the most
efficient way to achieve the goal of sustainable fisheries (Link,
2002). A necessary component of this approach is the identifi-
cation and understanding of habitat utilization, including how
the environment can influence species distribution patterns on
various spatial and temporal scales and during different life
stages (McConnaughey and Smith, 2000; Martin et al., 2009).
For this purpose, it is important to consider the relationships
between species and habitat, where habitat is defined as the set
of environmental factors defining the conditions of presence, sur-
vival, growth, and reproduction of a given species.

In natural systems, changes in environmental factors influence
the distribution of species and their use of habitat. If conditions

change markedly, species will attempt to maintain themselves in
locations that are as favourable to growth and survival as possible
(Gibson, 1997). The requirements of individual fish do not remain
constant during their development, so a suitable habitat for larvae
may not be suitable for juveniles or adults (Martin et al., 2010).
The transition from one life-history phase to the next is often
accompanied by a change in habitat preference. For example,
young age classes are particularly vulnerable to predators and

extremes of environmental conditions and are often concentrated

in nursery areas where the trade-off between growth and survival is
optimized (Gibson et al., 2002).

A topical research theme in fishery ecology is the relationship
between species and their environment. Habitat modelling (mod-
elling species distribution) and geographic information systems
(GIS) are important and innovative tools utilized to try to under-
stand better how species make use of their habitat (Guisan and
Zimmerman, 2000; Eastwood et al., 2003). One of the most used
techniques to model species distribution is generalized linear mod-
elling (GLM), but also GAMs, in which the mean (central ten-
dency) species response to environmental factors is estimated
(Oksanen and Minchin, 2002). GLMs describe and predict the
preferential habitat (the portion of potential habitat used on
average over time), but do not properly estimate the limiting
effect of the environment on species distribution (Cade et al.,
1999). As the growth rate of a species is determined by the most
limiting resource (Hiddink and Kaiser, 2005), the real response
of a species to a given limiting factor can only be quantified if
all other factors are at non-limiting levels, which is unlikely in
nature. The meaningful determination of the limiting effect of
environmental variables on species response requires a study of
the upper bounds of species abundance response to environmental
factors. The use of quantile regression (QR), whereby any relative
limit (quantile) of the observed data distribution may be modelled
rather than the mean (Cade and Noon, 2003; Koenker, 2005),
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allows estimation of the effects of limiting factors on species abun-
dance and the description of potential (or maximal) habitat (Vaz
et al., 2008).

GLM and linear QR were used for modelling the habitat use of
European plaice (Pleuronectes platessa) in the eastern English
Channel, an important area for marine resources and fisheries
(Carpentier et al., 2005). European plaice are bentho-demersal
fish that around the British Isles spawn and recruit mainly (75—
80%) in the English Channel (Nash et al, 2000). They are
exploited by several countries (France, Belgium, and the UK)
and represent the most abundant benthic fish species landed
from the eastern Channel (Mahé et al, 2006). However, in the
past 20 years, plaice landings have more than halved (from
8366 t in 1978 to 3146t in 2006; ICES, 2008).

In this context, it is necessary to improve our knowledge of the
spatial distribution of the species at various life stages to provide
information for effective management. Previous studies have
tried to relate the distribution of flatfish to single environmental
factors, e.g. depth, temperature, and sediment type (Smale et al.,
1993; Albert et al., 1998; Ellis et al., 2000; Amezcua and Nash,
2001), but the general knowledge of how these species use and
change their habitat during different life stages using a complex
approach (testing several environmental predictors together)
remains poor. Younger fish, because of their smaller body size,
may be more limited in their swimming and competitive abilities
and may be confined to smaller or different areas from older,
bigger fish. Moreover, the environment of the eastern English
Channel is subject to seasonal variation (Carpentier et al., 2009),
notably in terms of temperature and salinity spatial patterns.
Models were therefore developed for two seasons (summer and
autumn) and two life stages to study possible seasonal and onto-
genetic changes in habitat utilization.

Material and methods

Survey data

The Centre for Environment, Fisheries and Aquaculture Science
(Cefas) conducted a Beam Trawl Survey (BTS) annually in July/
August between 1989 and 2006. Samples were collected using a
commercial 4-m beam trawl at fixed stations, following a depth-
stratified sampling strategy. The standard annual survey had a
total of ~100 stations (Figure la). The gear had a minimum
mesh size of 40 mm and was towed at 4 knots (ground speed)
for 30 min at a warp length adjusted to bottom depth. Water
column depth, temperature, and salinity were recorded using
sensors attached to the beam trawl; temperature/salinity data
were not available for all stations and years.

The Channel Ground Fish Survey (CGFS), a survey by the
Institut Francais de Recherche pour I'Exploration de la Mer
(Ifremer), was carried out each year in October between 1988
and 2006 on board the research vessel “Gwen Drez”. The survey
extended from the eastern English Channel to the southern
North Sea (Figure 1b). The study area was subdivided into rec-
tangles of 15 latitude and 15" longitude using a systematic
sampling strategy. The sampling gear was a very high (3 m) vertical
opening bottom trawl (also known as a GOV trawl) with a
minimum 10-mm mesh in the codend. Trawls lasted 30 min at
an average speed of 3.5 knots. This sampling gear is well adapted
to the various seabed types encountered in the study area.
Between 1997 and 2006, temperature and salinity (surface and
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Figure 1. Stations sampled in 2006 during (a) the BTS, and (b) the
CGFS surveys (fixed station sampling schemes).

bottom) were also measured, using a sensor attached to the head-
line of the trawl.

For both surveys, the fishing method was standardized:
sampling stations each year were at similar locations, and identical
sampling gear was used. After each haul, all fish were sorted, ident-
ified, counted, and their length measured.

Abundance indices at each station were standardized to
density (number of fish per km?), which was tested for normality
(using histograms, skewness, and kurtosis) and log-transformed
[logio(x + 1), where x is density, to reduce the skewness of the
distribution (Legendre and Legendre, 1998)]. Such a transform-
ation is widespread in numerical ecology (Legendre and
Legendre, 1998) and has a fairly similar effect on the data to a
direct log(x) transformation when data values are >0.1, as is
the case here. Length at age 1 was estimated using the von
Bertalanffy growth function (von Bertalanffy, 1938), then used
to separate data for O-group (<18.0cm) and 14 group
(>18.1 cm) fish. Both surveys were designed to target different
components of the fish fauna and did not catch all species
with equal efficiency. Nevertheless, for plaice, both life stages
were well represented in the catches (Figure 2).

Environmental predictors

For habitat modelling, sea surface temperature and salinity, water
column depth (all three measured during the surveys described
above), bed-shear stress, and seabed sediment type (Larsonneur
et al., 1979) were used as predictors (see a summary of the obser-
vations in Supplementary Table S1). Five main categories of
seabed deposit were used: pebble, gravel, coarse sand, fine sand,
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Figure 2. Frequency of plaice densities (log-transformed) for (a) 0-group plaice in the BTS, (b) 1+ year plaice in the BTS, (c) 0-group plaice in

the CGFS, and (d) 1+ year plaice in the CGFS.

and mud. Bed-shear stress (in Newton m ™~ 2) was estimated using a
two-dimensional hydrodynamic model of the northwest European
shelf developed at the Proudman Oceanographic Laboratory
(Aldridge and Davies, 1993). It was used as a proxy for bed friction
resulting from tidal currents. Preliminary studies of single variable
relationships between species density and environmental predic-
tors showed that these were close to linear, as expected because
the range of environmental variables was relatively narrow. As a
result, GLMs and linear QRs were preferred to GAMs and
non-linear QRs. However, second-order polynomials were added
as continuous variables to increase model flexibility in depicting
the species response. Correlations among explanatory
variables were tested before model development. Preliminary
exploratory analyses showed that none of them were truly
co-linear, so all environmental variables were tested including
first-order interactions.

Habitat modelling

The strong discontinuity between the zero values and positive
density data (Figure 2) leads to a two-stage approach, where (i)
presence/absence and (ii) density models were selected separately,
and a delta model evaluated. In the particular case of trawl
samples, as a consequence of both trawl geometry and species be-
haviour, zero observations may indicate either low density or true
absence, with different processes governing presence probability
and density levels (Martin et al., 2005). A two-step approach there-
fore seemed suitable (Stefansson, 1996; Barry and Welsh, 2002),
first modelling the presence/absence data using a binomial distri-
bution and logit link function, then modelling presence-only data
(i.e. positive log-transformed densities) using a Gaussian distri-
bution with a canonical (i.e. identity) link function. Model

selection was carried out through backward selection based on
Chi-squared  tests (presence/absence data) or F-tests
(presence-only data) at a test level of 0.05. This approach was
chosen rather than the Akaike information criterion to be coherent
with the QR selection procedure that uses significance tests for
variable selection. The binomial model predicted the probability
of presence (or probable habitat), and the Gaussian model pre-
dicted positive density levels on a log scale. The probability of pres-
ence was then multiplied by the predicted density level to obtain
the final predicted value or preferential habitat model (also
referred to as a delta model).

Linear QRs were estimated for five quantile intervals ranging
from the 75th to the 95th using the variable selection procedure
proposed by Vaz et al. (2008), based on backward elimination.
Significance tests of all second-order polynomials and interactions
were made, and the variable associated with the largest p-value
across the five quantiles was removed from the model (when
>0.05). The reduced model was re-run for all five quantiles and
significance tests performed again to eliminate additional variables
according to the same rule, until all remaining variables were sig-
nificant for at least one quantile. Main effects were tested only
when associated interactions and the second-order polynomials
had been eliminated. If the resulting model had all variables sig-
nificant over more than one quantile, the highest of these quantiles
was selected as the model best representing the upper bounds of
species catch density limited by the environmental variables. The
coefficients of the final models were then used, within a GIS, to
produce habitat maps.

For each habitat model, the adjusted coefficient of
determination (also known as adjusted R?) was used to measure
the goodness of fit. The adjusted coefficient of determination
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accounts for the number of observations and explanatory par-
ameters (Legendre and Legendre, 1998).

All modelling was carried out using the R software and its
MASS (version 7.3-5) package.

Model evaluation and uncertainty

For evaluating all final fitted delta GLMs and QRs, observed and
predicted values were compared using Spearman’s rank corre-
lation coefficient (r;) and its associated p-value, because r; does
not assume a linear relationship. In addition, a Wilcoxon
signed-rank test was applied to pairs of observations and mean
predictions. This test was preferred to others because it does not
require any distributional assumptions. For a Spearman’s rank
correlation test, the test was considered passed if p < 0.05 and
s > 0.1. For the Wilcoxon signed-rank test, the null hypothesis
of the test is that observed and predicted values are unrelated, so
it was considered passed if p > 0.05.

For QR models, a correct classification (CC) test, defined by the
proportion of observed values in the evaluation dataset that fall
below those predicted (Eastwood et al, 2003) was used. To
increase the robustness of this test, the results of which may be
strongly affected by data heterogeneity, a resampling procedure
was adopted. For each model, 1000 resampled datasets were pro-
duced by resampling with replacement separately the initial
dataset of observed and predicted values. The test was considered
passed if the selected quantile for a particular model was less than
the upper confidence limit of the bootstrapped proportion of CC.

As the evaluation tests were relatively permissive, the relative
prediction or model error (defined as the absolute difference
between observed and predicted species abundance and/or prob-
ability of presence relative to the maximum observed value) and
the pattern of residuals as a function of the original observation
were also explored to check model fit. For QRs, however, the
error was set to zero if the observed value was lower than the pre-
dicted value (which is the expected behaviour of that type of
model). The spatial distribution of the model error ratios was
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mapped for each model, a value of 1 corresponding to the
maximum possible prediction error. The model prediction error
can therefore be interpreted as a percentile of model uncertainty.

To interpret regression coefficients in the presence of interactions
and polynomial terms, presence probabilities and densities were pre-
dicted for the observed range of values of the significant explanatory
variables to illustrate the species response along one given environ-
mental gradient, all other variables remaining constant at their
mean value (Elith et al., 2005; Vaz et al., 2008). In addition, survey
density distribution maps were created in ArcGIS (ESRI, ArcGIS
9.1) to be compared with mapped model predictions.

Mapping model predictions

For each life stage (0-group or 14 group) and season (summer or
autumn), GLM and QR models were developed using depth,
temperature, and salinity measured in situ at each station during
the surveys. For bed-shear stress and seabed sediment type, the
information was extracted (using a GIS) at each survey location
from digital continuous maps of these parameters, then used for
model development. For mapping model predictions, these two
maps (of bed-shear stress and seabed sediment type) were used
directly. For depth, a continuous digital map was produced that
merged bathymetry and mean sea level (corresponding to a
mid-tide coefficient) derived from a three-dimensional hydrodyn-
amic model (Le Roy and Simon, 2003; see Carpentier et al., 2009,
for further detail). The temperature and salinity digital maps were
produced by averaging annually interpolated survey maps for the
period 19882006 (Carpentier et al., 2009). The fitted final models
together with local environmental variables were then used to
produce predicted values on a fine grid; these were then mapped
within the GIS.

Results
Environmental factors relevant to plaice habitat

In all, 12 models were developed to cover the probable/preferen-
tial (GLM) and potential (QR) habitats of 0-group and 1+ group

Table 1. Significant predictors of the GLM and RQ models, along with the number of significant interactions and the proportion of

variance explained by the models.

Life Bed-shear Adjusted
Period stage Model Salinity Depth Temperature stress Sediment Interaction R?
GLM
July/ 0-group  Presence + - + bell M-CS-FS-P-G  stress:sed and sal:depth 0.29
August Density + — + + stress:sal, stress:depth, and 0.13
sal:depth
1+ Presence +/- - G-M-CS-FS-P temp:sed and depth:sed 0.30
Density -2 - - + M-P-G-FS-CS  stress:sed, sal:temp, 0.16
sal:depth, and temp:sed
October ~ 0-group  Presence + +2 -2 M-FS-CS-G-P  stress:depth and depth:sed 0.43
Density - -2 0.17
1+ Presence +2 +2 + FS-M-G-CS-P  stress:sal and depth:sed 0.39
Density - + 0.13
Regression quantiles
Jul/Aug 0-group  RQ 95 - + - M-P-FS-CS-G  depth:sed and stress:sed 0.19
1+ RQ 95 + + P-G-M-FS-CS  stress:sed 0.16
October ~ 0-group  RQ 95 M-FS-G-CS-P  depth:sed 0.81
1+ RQ 90 - - + + G-CS-FS-P-M  stress:sed, sal:sed, and 0.33
temp:sed

— /4 indicates that the variable was significant at the « level of 0.05 and that the regression coefficient was negative/positive, and bell that the
second-order polynomial term was significant. Seabed sediment types are listed in the order of decreasing regression coefficients (M, mud; FS, fine sand; CS,

coarse sand; G, gravel; P, pebble).
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Figure 3. Predicted densities as a function of the significant explanatory variables for the GLM binary and Gaussian models in July/August for
0-group and 1+ group plaice. Each plot illustrates the response along a given environmental gradient, with all other variables remaining
constant at their mean value. When significant, the effect of each sediment type is plotted as separate lines.

plaice in the eastern English Channel over two seasons.
Coefficients of determination for final models ranged from 0.13
to 0.81, higher values indicating better model fit for autumn
(0.13-0.81) than for summer (0.13-0.3) for both age groups
and both modelling approaches (Table 1). Hence, the tested
environmental variables had less predictive power for the spatial
distribution of 0-group and 1+ plaice in summer. For both
GLM models and QRs, depth and temperature were always signifi-
cant, so were structuring plaice habitat at both seasons and life
stages considered. In summer, 0-group plaice showed an affinity
for mud and fine sediments and shallow water, in contrast to
the 14 group which was found mainly on coarser sediments in
summer and finer muddy sediments in autumn (Figures 3-5).
As a result of first-order interaction between the continuous vari-
ables and sediment type, the form of certain species responses
varied with sediment type. The 0-group showed a negative
relationship with depth in most models, whereas the relationship
between older fish (14 group) and depth varied depending on the
sediment type on which they occurred. Young plaice (0-group)

exhibited a strong preference for fine sediment such as mud and
fine sand, unlike older fish (1+ group), which preferred coarse
(mainly pebble and gravel) sediments. This was reflected in the
pattern of distribution of the two life stages. Indeed, during
summer, younger fish preferred shallow water with low to inter-
mediate tidal currents, whereas older fish were distributed more
widely. In autumn, the distribution pattern contracted along the
coasts, and the potential habitat model illustrated the affinity of
the species for sandy to gravelly sediment types. The relationship
with temperature seemed to switch between the two seasons,
with a negative or trough-shaped relationship in autumn and a
positive relationship in summer. This is particularly true for the
0-group in summer, as shown by the GLM (Figure 3) and the
QR model (Figure 5). The effects of salinity and bed stress on
juveniles were weak, showing a slightly positive effect of high
salinity in summer and a negative effect of bed stress in both
seasons (Figures 3—5). This positive effect of salinity, owing
to a very minor interaction with depth, was not found in
the QR.
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Predicting the spatial distribution of plaice and its
uncertainty
The mapped predicted plaice densities for the finally selected
models were fairly consistent across modelling approaches, in par-
ticular for the 1+ group (Figure 6). Corresponding maps of uncer-
tainty showed that delta-GLM predictions were more uncertain
than the QR approach for which predictions were only locally
highly uncertain (Figure 7). The predicted spatial distributions
were coherent with the distributions obtained directly from the
CGFS and BTS data (as an average across 1988-2006 for BTS
and 1989-2006 for CGFS; Figure 8). Predicted density maps
based on QR models, which represent potential habitats, were
usually more optimistic, i.e. covering larger surface areas, than dis-
tributions predicted with the delta-GLM models that corre-
sponded to preferential habitats.

In July, 0-group preferential habitats (Figure 6a) were close to
the coast, near estuaries on both French and British coasts, and
prediction uncertainty was greater at the coasts but low in the

central areas, suggesting almost no uncertainty about the spatial
extent of areas where the species was absent (Figure 7a). The
potential habitat model highlighted coastal areas extending off-
shore as favourable (Figure 6e). For those predictions, the error
was almost null across the region except in the southwest, where
it was high (Figure 7e). In October, 0-group preferential habitat
was spatially more restricted than in July, encompassing coastal
areas close to estuaries (Figure 6¢). The corresponding potential
habitat map was similar to the preferential one, but it exhibited
a more dispersed offshore spatial distribution in the Straits of
Dover and the southern North Sea (Figure 6g). Older fish (1+
group) were generally found in the same areas as younger ones,
but had a more offshore distribution pattern. In July, the 1+
group preferential habitats were found across the Straits of
Dover, in the southern North Sea, and in the bays of the rivers
Seine and Veys. There were no fish in the central Channel where
the water is deeper. The potential habitat maps indicated favour-
able habitats farther offshore. In October, the distribution



1506

1

i\
i

—— Mud —#— Gravel
—&— Finesand —©— Pebble

RQ model 0-group

V. Lauria et al.

(July—August)

o{~* Coarse sand o o
17 18 19 20 02 (3 10 14 0 15 20 25 30 35 4
Temperature Stress Depth
RQ model 1+group (July—August)
uwy uw
th <
?a,'-'
=
[T __,_.,..———-—-‘"‘"""-‘ ™
b =1 ‘_———‘___._‘..-—r——"'"
g
E™ “
>
[}
=- -
o (=]
17_ 18 19 20 02 06_ 10 @ 14
Temperature Stress
RQ model 1+group (October)
wn uw 4 T8
>|‘:r = - e
7
=
g (] (o] [k el
2 oug o4 o4 o
g = / i i -
(=] B (=} (=L [=F .--.-"""-"——v——-——v-
%_ 15 16 17 B 31 32 33 34 b 05 10 15 20 25 30 10 15 20 25 30 35 40
Temperature Salinity Stress Depth

Figure 5. Predicted maximum densities as a function of the significant explanatory variables for QR models in July/August and October for
0-group and 1+ group plaice. Each plot illustrates the response along a given environmental gradient, with all other variables remaining
constant at their mean value. If seabed sediment type was a significant predictor of the model, the effect of each sediment type on the
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pattern of both preferential and potential habitats contracted
along the coasts, though the preferential habitat was very uncertain
(Figure 7).

Model evaluation

For all final models, there was a strong and significant positive
correlation (Spearman’s correlation test) between observed and
predicted density values (Table 2). This was confirmed by the
plot of observed values against model-predicted values
(Supplementary Figure S1). The Wilcoxon signed-rank test for
GLMs revealed a weakness of the models in predicting realistic
density levels (Table 2). The results of the CC test (for QR
models) suggested that those models performed relatively well,
predicting the correct proportion of values higher than the
model’s quantile (Table 2).

Discussion

In marine ecosystems, environmental factors play an important
role in determining fish distributions. In previous studies, flatfish
distributions have only been related to single environmental
factors (Smale et al., 1993; Albert et al., 1998; Ellis et al., 2000;
Amezcua and Nash, 2001), but the models developed here con-
tained the explanatory variables sea surface temperature, bed-
shear stress, salinity, depth, and seabed sediment type (sands,
gravels, and mixed substratum). For both summer and autumn,
habitat models showed that the predicted distribution of
0-group plaice was more coastal than that of the 14 group,
which spread farther offshore, confirming the results of previous
studies conducted in the English Channel (Riou et al, 2001).
This distribution pattern seems to be specific to the eastern
English Channel and may be explained by the abiotic factors of
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July/August, and (c) 0-group and (d) 1+ group plaice in October. Predicted (QR-95 model) population density (log,o-scale) representing
potential habitat for (e) 0-group and (f) 1+ group plaice in July/August, and for (g) 0-group and (h) 1+ group plaice in October.
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plaice in July/August, and (c) 0-group and (d) 1+ group plaice in October. QR-95 model for (e) 0-group and (f) 14 group in July/August, and

(g) for 0-group and (h) 14 group in October.

the area (Carpentier et al., 2009). Others have noted this different
pattern between juvenile and adult plaice in the North Sea, where
0-group are normally found in shallow water, but then move
gradually offshore as they grow. Surveys in the Wadden Sea,
however, have demonstrated that 1-group plaice are almost
absent from the area where they once were very abundant. This
is probably linked to changes in the productivity of the region,
but also to the changing temperature of the southern North Sea
(van Keeken et al., 2007).

Environmental variables
Water temperature tends to be the main factor explaining seasonal
movements of flatfish between onshore and offshore habitats,

principally in shallow water where temperature fluctuations are
greater than in deeper water (Gibson, 1997). Overall, water temp-
erature in the study area is closely linked to bathymetry, with the
warmest water found shallow in summer, and deeper in winter
(Carpentier et al., 2009). Tidal currents are also strong in the
area, and they enhance water mixing at moderate depths through-
out the year (Hoch and Garreau, 1998). These environmental con-
ditions were reflected in the different habitat preference of young
and adult plaice. In fact, bed-shear stress limited mainly adult
habitat selection. In addition, the coastal distribution of juveniles
was strongly positively related to water temperature and bed-shear
stress in summer, demonstrating that young plaice prefer shallow
warmer water.
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Figure 8. Survey density (logo-scale) distribution maps: (a) 0-group, (b) >14 group plaice in July/August (BTS 1988 —2006); (c) 0-group, (d)
1+ group plaice in October (CGFS survey 1988 -2006). Maps were created by averaging across years for each survey.

Table 2. Model evaluation results using the bootstrapping procedure.

Spearman correlation

Wilcoxon test

Period Model Life stage rs p-value W+ p-value CC test
July/August Delta-GLM 0-group 0.48 ok 206 675 (<0.05)
1+ group 0.61 ok 385 459 (<0.05)
QR 0-group 0.44 o 95.34
1+ group 0.46 ok 95.34
October Delta-GLM 0-group 0.48 ok 101 063 (<0.05)
1+ group 0.69 ok 216 556 (<0.05)
QR 0-group 0.35 ok 97.14
1+ group 0.66 o 88.93

CC test, correct classification test. Values in parenthesis indicate that the test failed. Spearman’s correlation coefficient (r,), p-value < 0.001 (***); Wilcoxon

test (W+), p-value >0.05 (***).

The coastal distribution of young fish may also be driven by
predation, which is size-dependent with younger stages suffering
greater mortality (Power, 1987). Shallow water increases the pro-
tection from predation and any factor that increases growth rate
will reduce predation vulnerability. In summer, warmer coastal
waters are likely to favour faster growth, so influencing the
coastal distribution of young plaice (Gibson et al., 2002). Both pre-
ferential and potential habitat maps reflected this difference. The
relationship with temperature, however, was not as strong and
clear in autumn as in summer. Adult plaice seemed to have a
more offshore distribution and less affinity for warm water than
younger stages. Fonds et al. (1992) hypothesized that large fish
are less dependent on warm water for faster growth than smaller
fish. Such a relationship was confirmed for adult plaice in the
potential habitat models, showing that temperature can have a

limiting effect on habitat selection in combination with different
sediment types. The preferential habitat model, however, showed
no clear relationship between water temperature and habitat
selection.

Substratum type was the most important predictor in explain-
ing plaice spatial distribution, especially during the early life stage.
Juvenile plaice are strongly habitat-specific during their early
benthic stage, with juvenile plaice occupying selected sediments
preferentially based on grain size (Gibson and Robb, 2000). This
situation is determined principally by the ability of fish to bury
in the sediment, food abundance, and by the necessity to shelter
from predators (Gibson, 1994; Stoner and Abookire, 2002). In
accord with this, 0-group plaice showed a preference for fine sedi-
ments (fine sand and mud) in both seasons and both model types,
with some fish living on pebbles during summer. Finer sediments
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have the advantage of requiring less energy for burying, which has
a clear survival advantage (Gibson and Robb, 1992). In contrast,
adult fish seem to prefer coarser sediments.

Plaice undergo an ontogenetic change in diet as they grow, and
this may explain the different distribution patterns found between
adults and juveniles (Piet et al., 1998). Juveniles feed mainly on
infaunal polychaetes and bivalves, whereas adults take a large pro-
portion of epibenthic crustaceans, small fish, and echinoderms
(Piet et al., 1998). Also, sediment type plays a major role in the
spatial distribution of benthic invertebrates, perhaps explaining
the wider distribution of plaice in summer, when there is probably
more food immediately available in the area. Our results agreed
with those of earlier studies (Gibson et al., 1996) in showing
that plaice distribution remains relatively stable throughout the
year, although it may change/evolve in summer through move-
ments towards deeper water, as a result of prey availability.

In agreement with the findings by Creutzberg et al. (1978), sal-
inity changes had no effect on the spatial distribution of plaice of
either life stage or season. Also, there was no marked evidence of
salinity limiting habitat selection. Although our predicted
habitat maps agreed with earlier findings, the resulting models
remained complex and did not isolate a single environmental vari-
able effect.

Methodology

Predicting and modelling fish habitat distributions require good
knowledge of abiotic factors on a fine spatial scale. The five
environmental variables tested here have indirect and overlapping
effects on fish distribution and may share a substantial amount of
variation. This generally results in overfitted models that may
predict the spatial distribution adequately without necessarily
identifying the underlying driving factors (Loots et al., 2010). To
overcome this problem, Loots ef al. (2010) suggested model selec-
tion based on predictive performance rather than model goodness
of fit.

The GLM evaluation (Wilcoxon’s signed-rank test) revealed
that this two-step approach predicted the presence/absence distri-
butions better than density levels. Species distribution models are
restricted to modelling species response to the environment, which
alone cannot be expected to explain the spatial distribution of fish
populations, unless it is very strong. Biotic mechanisms are
expected to affect spatial distribution too. Loots et al. (2010)
showed for North Sea spawning plaice that temporal changes in
the spatial distribution seemed to be primarily influenced by
population size and demography. In that study, variations in
hydrographic conditions such as temperature and salinity did
not appear to control interannual fluctuations in spatial distri-
bution. The importance of density-dependent effects has also
been demonstrated for small pelagic fish (Planque et al., 2011)
and other flatfish species concomitant with environmental
effects (Spencer, 2008). Density-dependent or demographic
effects were not tested here because the main aim was to investigate
plaice spatial distribution in response to environmental variables.

Two types of approach were used here. GLMs are expected to
give more realistic predictions than QR models, which model
the upper bound of the density distribution and therefore overes-
timate local species densities. In contrast, with QR models, the
effects of limiting factors on species distributions can be studied.
The use of both modelling approaches is basic to answering con-
trasting ecological questions regarding fish habitat selection.
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Supplementary material

Supplementary material is available at the ICESJMS online version
of this manuscript. Table S1 provides metadata for BTS and CGFS
surveys, and Figure S1 shows observed values plotted against
model-predicted values.
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