FN Archimer Export Format PT J TI Development of a Pacific oyster (Crassostrea gigas) 31,918-feature microarray: identification of reference genes and tissue-enriched expression patterns BT AF DHEILLY, Nolwenn LELONG, Christophe HUVET, Arnaud FAVREL, Pascal AS 1:1,2;2:1;3:2;4:1; FF 1:PDG-DEL-PC;2:;3:PDG-RBE-PFOM-PI;4:; C1 Univ Caen Basse Normandie, UMR Physiol & Ecophysiol Mollusques Marins M100, IBFA, IFR ICORE 146, F-14032 Caen, France. IFREMER, UMR Physiol & Ecophysiol Mollusques Marins M100, F-29290 Plouzane, France. C2 UNIV CAEN, FRANCE IFREMER, FRANCE SI BREST SE PDG-DEL-PC PDG-RBE-PFOM-PI IN WOS Ifremer jusqu'en 2018 copubli-france copubli-univ-france IF 4.073 TC 50 UR https://archimer.ifremer.fr/doc/00048/15956/13397.pdf LA English DT Article AB Background: Research using the Pacific oyster Crassostrea gigas as a model organism has experienced rapid growth in recent years due to the development of high-throughput molecular technologies. As many as 56,268 EST sequences have been sequenced to date, representing a genome-wide resource that can be used for transcriptomic investigations. Results: In this paper, we developed a Pacific oyster microarray containing oligonucleotides representing 31,918 transcribed sequences selected from the publicly accessible GigasDatabase. This newly designed microarray was used to study the transcriptome of male and female gonads, mantle, gills, posterior adductor muscle, visceral ganglia, hemocytes, labial palps and digestive gland. Statistical analyses identified genes differentially expressed among tissues and clusters of tissue-enriched genes. These genes reflect major tissue-specific functions at the molecular level, such as tissue formation in the mantle, filtering in the gills and labial palps, and reproduction in the gonads. Hierarchical clustering predicted the involvement of unannotated genes in specific functional pathways such as the insulin/NPY pathway, an important pathway under study in our model species. Microarray data also accurately identified reference genes whose mRNA level appeared stable across all the analyzed tissues. Adp-ribosylation factor 1 9arf1) appeared to be the most robust reference for normalizing gene expression data across different tissues and is therefore proposed as a relevant reference gene for further gene expression analysis in the Pacific oyster. Conclusions: This study provides a new transcriptomic tool for studies of oyster biology, which will help in the annotation of its genome and which identifies candidate reference genes for gene expression analysis. PY 2011 PD SEP SO Bmc Genomics SN 1471-2164 PU Biomed Central Ltd VL 12 UT 000295881300001 DI 10.1186/1471-2164-12-468 ID 15956 ER EF