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Fish length frequency histograms from research surveys are of prime importance for identifying habitats of different life stages, as well
as for stock assessment. However, no method has thus far been available for mapping these histograms as spatially varying curves. Here,
a procedure is applied to map spatially connected curves, and detail is given on how it can be applied to map the length frequency
histograms. At each sample location, a fish length frequency histogram is given as a vector of non-independent values. The histogram is
first modelled as a polynomial expansion on the basis of orthogonal polynomials. Then, the polynomial coefficients are mapped by
co-kriging, after fitting a model of co-regionalization. The length frequency map is finally derived by linearly combining maps of
polynomial coefficients. An estimation variance associated with the map is also derived. Maps of anchovy length distributions are
produced by applying the method to midwater trawl length data from the PELGAS acoustic surveys in the Bay of Biscay. This
novel approach extends the application of kriging techniques to curves or functions, opening new perspectives for mapping more
complex information than just the values of fish density.
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Introduction
Body size is an important ecological attribute of a fish, because
length influences its ability to use habitats efficiently (Werner
and Gilliam, 1984). Spatial segregation by length is common in
marine fish populations with complex life cycles, where individual
fish make ontogenic shifts in habitat (e.g. ICES, 2010). In this
context, maps of fish length are useful for various purposes in fish-
eries science, including estimating population abundance by
research survey, ecological understanding of life cycle patterns,
spatial modelling of populations, and designing marine protected
areas (MPAs). During demersal trawl surveys and pelagic acoustic
surveys, abundances per species and length class in trawl samples
are used routinely to derive estimates of fish population abun-
dance at length and age. Fish length also plays a key role in the
survey-based assessment of pelagic fish stocks by acoustic
methods, because the target strength of an individual fish, i.e. its
acoustic reverberation index, is a direct function of fish length.
An acoustic estimate of fish abundance is in that case obtained
by combining maps of mean fish length and acoustic backscatter
(Woillez et al., 2009). Another important application of maps of
fish length is for parametrizing spatially explicit population
models. In such models, maps of fish length or age and habitat
connectivity are in general parametrized based on mean spatial
patterns emerging by averaging length and age maps over many
years (Christensen et al., 2009). MPAs are designed based on
such maps that characterize the habitats of particular life stages
(Botsford et al., 2009). However, variation across the years in
spatial distribution may jeopardize the effectiveness of a MPA
(van Keeken et al., 2007), so a procedure is needed to map

length distributions of fish and the associated estimation
variances.

Fish length is often mapped as mean length (Chapter 4 of
Rivoirard et al., 2001). In that case, it is assumed that a fish
length frequency histogram is adequately represented by the
mean value, i.e. that it is more or less unimodal. This assumption
can be reasonable, because small and large fish usually occupy
different habitats, but when several cohorts are found in the
same area, such histograms will be either bimodal or more
complex in shape. Another approach is to map fish density for par-
ticular length groups (van Keeken et al., 2007), targeting the
mapping to a particular portion of the histogram. However, differ-
ent length groups cannot be mapped coherently if they are mapped
separately, because their coherent mapping requires the modelling
of spatial cross-correlation between length groups. Co-kriging
(Chapter 5 of Chilès and Delfiner, 1999) can therefore be both
useful and necessary, because it allows coherent mapping across
length groups. The methodology used is designed to map the
length frequency distribution as a continuous curve. It is flexible
and applicable to many and varied types of distribution pattern.
Although more complex than simple block-averaging the length
distribution of the data (Supplementary Figure S1), the method
has the advantages of kriging, which are (i) optimal interpolation
at each point of a grid, and (ii) calculation of the corresponding
estimation variance.

Contrary to the mapping of fish density or mean length, which
consists of estimating one value at each grid node, mapping a fish
length frequency histogram requires the mapping of a function or
curve, i.e. a vector of non-independent values. In functional data
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analysis (Ramsay and Silverman, 2005), functions are generally
modelled and smoothed as linear combinations of basis functions.
Nerini et al. (2010) developed a method for mapping spatially con-
nected curves, which in practice amounts to (i) modelling the
curves by polynomial expansion, and (ii) co-kriging the poly-
nomial coefficients. Here, we explore and discuss the applicability
of this method to mapping fish length frequency histograms from
fisheries survey data. We then apply the methodology to a series of
anchovy length measurements obtained from midwater trawls per-
formed during acoustic surveys in the Bay of Biscay to illustrate its
potential for size-dependent habitat mapping. To our knowledge,
this is the first time that this method has been applied to fisheries
survey data and for such histograms to be mapped as continuous
curves.

Material and methods
Data
Fish length data were obtained by sampling the catches of mid-
water pelagic trawls during the PELGAS cruise, a pelagic acoustic
survey conducted by Ifremer in the Bay of Biscay each spring since
2000. During the acoustic surveys, trawls were made on echotraces
for identification purposes and to collect fish for recording bio-
logical parameters (Petitgas et al., 2003a). Most fish echotraces
were organized vertically, located between 0 and 50 m of the
seabed. They were fished using a 25-m vertical opening midwater
trawl towed close to the seabed. The mean haul duration was
45 min at 4 knots, yielding a trawled distance of 3 nautical miles
(miles hereafter). The catch was sorted and weighed by species
after each haul. A random subsample of each species was taken
to establish length frequencies for each haul. The data were orga-
nized in a matrix form, with stations as rows and length classes as

columns. For each haul, the sampled length frequency histogram
was a vector of the proportions at length, which summed to
unity. The position of a trawl was taken as the track midpoint.
The target species was anchovy, and total length was measured
to the nearest 0.5 cm below.

First, the entire set of 497 trawls performed over the period
2000–2010 was used to map the probability of anchovy presence.
For that, at each haul location x, an indicator of anchovy presence
I(x) was defined as I(x) = 1 if the anchovy catch was ≥2 kg, and
I(x) = 0 otherwise. Then, trawls with sufficient anchovy measure-
ments to construct an anchovy length frequency histogram were
selected. These “positive” anchovy hauls needed at least 30
anchovy to be measured and a total anchovy catch of at least
2 kg. Using this criterion, we retained a total of 226 positive
anchovy hauls from the surveys conducted between 2000 and
2010 (Figure 1).

The probability of anchovy presence over the series was mapped
using the entire set of trawls. Then, the length frequency distri-
bution using positive hauls only was mapped. Finally, we combined
the map of the probability of anchovy presence with that of anchovy
length frequency to assess the spatial patterns of the “most
probable” size-dependent potential habitats, i.e. habitats occupied
by anchovy with sufficient probability during the 10-year survey
series. In our analyses, time was collapsed by pooling the hauls
from different surveys.

Mapping fish presence: indicator kriging
The indicator of anchovy presence was mapped by ordinary
kriging in a moving neighbourhood (Chapter 3 of Chilès and
Delfiner, 1999). The same grid was used as for fish length fre-
quency mapping. Ordinary kriging is a linear estimator in

Figure 1. Location of the midwater trawl hauls used in this study, all years pooled, 2000–2010.
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which the weights assigned to the samples are such that the esti-
mator is unbiased and of minimal variance. The procedure con-
sists of (i) computing and modelling the variogram, g(h), and
(ii) solving the ordinary kriging system at each grid node (see
Appendix).

Mapping length frequencies: polynomial expansion
and co-kriging
Let y(i,t) represent a curve at location xi, where t varies in the
interval t. Sampling provides information on the spatially
connected curves y as a vector of n values at each sample location
xi, i ¼ {1, . . .. ,N}. The curves y(i,t) can be expanded on a basis of
orthogonal polynomials fk:

y(i, t) =
∑+1

k=0

zk(i) fk(t), (1)

where zk(i) is the coefficient at location xi of the polynomial of
degree k and fk(t) the value of the polynomial of degree k for par-
ameter t (e.g. length). Nerini et al. (2010) showed that a geostatis-
tical estimate of the curve y(t) at unknown location x0 can be
obtained by co-kriging the z coefficients:

yCK(o, t) =
∑P

k=0

zCK
k (o) fk(t), (2)

where CK refers to co-kriging, and function y is approximated by
the polynomial expansion of order P. Polynomial expansion allows
one to model the experimental vectors of observed values as
smooth continuous curves. Co-kriging allows one to map the
polynomial coefficients jointly, making use of their spatial cross-
correlations. The procedure therefore yields a map of continuous
curves.

Equation (2) was applied to estimate the proportions of fish at
length t. Building on the fact that the co-kriging estimate of a
linear combination of variables is the combination of their
co-kriged estimates (Chapter 5 of Chilès and Delfiner, 1999),
the map of the proportions of fish within a given length range
[t1,t2] can be derived from the maps of the co-kriged polynomial
coefficients:

∫t2

t1

y(x, t)dt

( )CK

=
∑P

k=0

zCK
k (x)

∫t2

t1

fk(t)dt. (3)

Fitting an appropriate model of the spatial variation in curves
y(i,t) depends on the appropriate definition of (i) the order P of
the polynomial expansion, and (ii) the spatial cross-correlations
between polynomial coefficients. The order P depends on the
curve complexity to be modelled: the higher the polynomial
degree, the more complex the oscillations of y modelled. The
spatial cross-correlations between coefficients will characterize
how portions of the curve (for different values of t) co-vary at dis-
tance vector h apart, i.e. how small, medium, and large values of
fish length are spatially cross-correlated. The spatial covariation
of polynomial coefficients is used in the co-kriging procedure,
resulting in a map of the fish length histograms and preserving
the relative proportions between length classes (because they all
sum to unity).

The steps of the method can be summarized as follows:

(i) select the orthogonal polynomial basis and define the order P
of polynomial expansion to model the data curves at the
sample locations;

(ii) at each sample location xi, estimate the polynomial coeffi-
cients zk(i) {k ¼ 0, . . . ,P};

(iii) compute the (P + 1, P + 1) matrix of cross-variograms
between the polynomial coefficients;

(iv) fit a linear model of co-regionalization to the multivariate
dataset of polynomial coefficients (P + 1 variables valued
at N locations);

(v) carry out co-kriging of the polynomial coefficients;

(vi) estimate the histogram at each grid node using the poly-
nomial expansion [Equation (2)] and derive the estimation
variance.

It was deemed convenient to use the normalized Legendre
polynomials (Chapter 1 of Gautschi, 2004), which are orthonor-
mal on the interval [21, +1]:

�+1

−1
fk(t)fq(t)dt = 0 for k = q.

The Legendre polynomials were computed by the three-term
recurrence relation

f0(t) = 1; f1 t( ) = t;

(k + 1)fk+1(t) = (2k + 1)tfk(t) − kfk−1(t);
t [ [−1,+1]; k ≥ 2,

and normalized by dividing by their norm, ||wk || =
������������
2/(2k + 1)

√
.

The length values l in the interval [l1, l2] were transformed into
variable t in the interval [21,+1] as: t = 2(l − l0)/(l2 − l1);
l0 = (l1 + l2)/2. In the present study, the same length classes
were measured at each station, so each curve y(i,t) was valued at
the same values of t, which corresponded to a sampling discretiza-
tion of interval t, irrespective of the sample location xi. We there-
fore had N stations and the same n length classes at each station.

In steps (i) and (ii), polynomial expansions were fitted to his-
togram curves by least squares, with increasing polynomial degree.
The polynomial degree retained was defined based on a
goodness-of-fit (gof) criterion defined as

gof (i, nk) =
∑

t y(i, t) −
∑nk

k=0 ẑk(i) fk(t)
[ ]2

∑
t [y(i, t)]2 , (4)

where i is the spatial location index and nk the degree of the poly-
nomial expansion.

The gof includes a scaling factor in its denominator, allowing
for comparison of the fits of different polynomial expansions to
different curves y. As the degree nk increases, the gof decreases.
The retained nk ¼ P degree was defined as the lowest degree for
which the average gof over all stations i was ,0.05. That value
was near the inflection point of the decreasing gof vs. nk curve,
beyond which the decrease in gof slowed notably. The selected
polynomial order induced a 5% reduction in the total variability
of the experimental histograms when fitting the polynomial
expansion.

In steps (iii)–(v), the polynomial coefficients zk(i), i ¼ {1, . . .
N}, k ¼ {0, . . . ,P} formed a set of spatially co-varying variables.
Co-kriging was used to estimate each variable by taking into
account its spatial correlation with all other variables (see the
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Appendix). Polynomial coefficients were considered as
quasi-stationary in space: their true (unknown) means were
assumed to be constant or varying sufficiently smoothly to be con-
sidered as constant in restricted neighbourhoods around each grid
point (ordinary kriging). In step (vi), the estimation variance of
the polynomial expanded curve y(0,t) [Equation (2)] was approxi-
mated by combining the polynomial co-kriging estimation var-
iances (Appendix).

A linear model of co-regionalization (Chapter 23 of
Wackernagel, 1995; Chapter 5 of Chilès and Delfiner, 1999) was
used to co-krige the polynomial coefficients. This model required
joint modelling of the direct and cross-variograms gkk′ h( ) between
all variables k and k′, k ¼ {0, . . . ,P}, k′ ¼ {0, . . . ,P}. In this versatile
model, direct and cross-variograms are linear combinations of a
small number s of elementary unit variance structures gu(h):
gkk

′ (h) =
∑s

u=1 bu(k, k
′ ) gu(h). Joint modelling of all (cross-) var-

iograms was achieved using the algorithm of Goulard and Voltz
(1992), which ensures that the model-based variances are non-
negative through the inequality bu(k, k′)| | ≤

������������������
bu(k, k) bu(k′, k′)

√
,

u ¼ {1, . . . s}. This inequality states that the elementary structures
comprising the cross-variograms are those already in the direct
variograms. Therefore, in practice, the elementary structures u
are first identified in the direct variograms and subsequently
used to model the cross-variograms. The algorithm of
Goulard and Voltz (1992) then allows for joint fitting of all
(cross-)variogram sills bu(k,k′), k ¼ {0, . . . ,P}, k′ ¼ {0, . . . ,P},
u ¼ {1, . . . s}.

Fitting the linear model of co-regionalization, co-kriging the
polynomial coefficients and kriging the indicator of fish presence
were performed using the R library RGeoS (Renard and Bez,
2008).

Results
Probability map of fish presence
The variogram of the indicator of fish presence (not shown) was
isotropic and modelled as the sum of a nugget effect (sill ¼
0.145) and a spherical variogram (sill ¼ 0.105, range 120 miles).
The probability map of anchovy presence (Figure 2) showed a

strong spatial pattern. Two habitats had a very high probability
of fish presence: the shelf break close to 44.758N 28W, and an
area off the Gironde estuary close to 45.58N 1.58W. These areas
were contained inside a larger area south of 46.58N and east of
2.58W, where anchovy had a high probability of presence.
Outside that rectangle, anchovy presence was sporadic. As all
the data collected over the 10 years of research cruises were
treated together, a low probability of anchovy presence might be
attributable to either a sporadic occurrence across years or
spatial heterogeneity, or both.

Polynomial expansion
Polynomial expansions were fitted to the sampled fish length fre-
quency histograms with increasing polynomial degree. The varia-
bility in the gof between stations for a fixed degree characterized
the ability of the polynomial expansion to model the different situ-
ations. We attempted to both minimize the average gof and the
between-station gof variability. The gof decreased with increasing
polynomial degree, rapidly until 10–138, and more slowly beyond
that (Figure 3). Interstation gof variability also decreased with
increasing polynomial degree (Figure 3). However, some intersta-
tion variability was present at higher polynomial orders, meaning
that the sample histograms were noisy at some stations. A
too-smooth fit would jeopardize the mapping of rapid spatial
transitions in the modes of the histogram. The polynomial
degree retained was P ¼ 13, corresponding to a gof of 0.05,
which was a satisfactory compromise between a low gof and a
smooth-enough fit of the histogram at all stations.

Co-regionalization model
The 14 polynomial coefficients zk, k ¼ {0, . . . ,13}, formed a
co-regionalized set of variables. Direct and cross-variograms
were computed with a lag of 5 miles. No particular anisotropy
was detected on direct variograms, so only omnidirectional cross-
variograms were computed and modelled. Most of the direct

Figure 2. Probability map of anchovy presence, 2000–2010.

Figure 3. Boxplots of the gof criterion when fitting the observed fish
length frequency histograms at sampled stations with the Legendre
polynomial expansions of increasing degree. The dashed line
represents a gof value of 0.05.
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variograms showed a nugget effect and a spherical component,
and some a linear component with no obvious sill (Figure 4).
All variograms were modelled with two structures (u ¼ {1,2}): a
nugget effect and a spherical model with a correlation range of
20 miles. The reason was that both linear and spherical models
behave linearly for short distances, which applies within the
kriging neighbourhoods used (see below). When the structure u
(e.g. the correlation range) in the cross-variogram gij(h) between
variables zi and zj was the same as on the direct variograms, the
ratio bu(i, j)/

���������������
bu(i, i) bu( j, j)

√
was close to 21 or +1 (negative or

positive cross-correlation). Alternatively, when the structure on
the direct variograms was not present on the cross-variogram,
the ratio was close to zero (no cross-correlation). The result of
the automatic fit for each of the variance–covariance matrices
bu (u ¼ {1,2}) can be seen by plotting the values in the plane
(b1,b2) (Figure 5): cross-variograms displayed either both struc-
tures (points with abscissa and ordinate close to +1 or 21),
only one structure (points along the x- or the y-axis), or no
structure (points close to the origin). A few pairs of polynomials
were highly correlated [i.e. close to (+1,+1), pairs 0-4, 2-6,
1-5], and a larger number were anti-correlated [close to
(21,21)], and most pairs were scattered around the origin,
meaning that they displayed the two structures, but with small
or medium coefficients. Examples of different cross-variogram
fits are given in Figure 6.

Figure 4. Multivariate fit of the direct variograms, with each variogram modelled as the sum of a nugget effect and a spherical model with a
range of 20 miles. The sills are fitted automatically using the algorithm of Goulard and Voltz (1992). The cross-variogram parameters are
shown in Figure 5.

Figure 5. Multivariate fit of the cross-variograms. The figure plots
the sills bu(i,j) (u ¼ {1,2}) fitted to each of the two elementary
structures for all cross-variograms i 2 j (i , j). Indices 1 and 2
identify the nugget (abscissa) and the spherical component
(ordinate), respectively; i and j indices identify the variables: i ¼ {0,
. . . , P 2 1}, j ¼ {1, . . . ,P}, i , j.

2090 P. Petitgas et al.
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Co-kriging and mapping the histogram
The polynomial coefficients were estimated by ordinary co-kriging
at each point of a regular grid, using samples in a particular neigh-
bourhood around each grid point. In ordinary kriging, the con-
straint on the weights (see Appendix) results in the estimate
being kept close to the neighbourhood data mean. The smaller
the neighbourhood, the more constrained the estimate to the
local means, and therefore the more local transitions on the
kriged map. The risk of using a neighbourhood that is too small
is the overall bias, the overall kriged mean differing from the
data mean. Different neighbourhoods (disc radius and number
of sample points) were tried and an overall non-bias criterion cal-
culated. The neighbourhood retained was the one that minimized
the quantity

∑P
j=0 �zj − �zCK

j , where �zj is the average over sample
locations, and �zCK

j the average over the gridded kriged values
(Figure 7). The grid mesh size was 15 miles in latitude and 10
miles in longitude, compatible with the spatial resolution of the
sampling. The neighbourhood was a disc of radius 25 miles. The
minimum and the maximum numbers of samples retained in
the neighbourhood were 3 and 10, respectively. Some grid
points were not estimated because of a lack of samples in their
close neighbourhood.

The map of the anchovy length frequency histogram was then
derived from the maps of the polynomial coefficients using
Equation (2), which provided a length frequency vector y(x,l )
for any length l, l [ [l1, l2], at each grid node x.

Histogram maps in areas of probable fish presence
The anchovy length frequency map was combined with the
anchovy presence map. Only grid points where the probability
of anchovy presence was .0.20 were considered. In areas where
the probability was less, the observations were not considered con-
sistent enough. The map shows the relative proportions of length
classes in areas where anchovy were found consistently during the
cruise series (Figure 8). Although frequency at length was esti-
mated as a continuous curve, together with the estimation var-
iance at length, only selected length classes are shown in
Figure 8, for the sake of clarity. There was consistently a greater
proportion of small anchovy in areas off the mouths of the
rivers Gironde (45.58N 01.58W) and Loire (478N 38W). Large
anchovy were proportionally more common offshore, the biggest
concentrations in an area near the shelf break, south of 468N,
and along the 28W meridian. Anchovy of medium size were
found in most areas.

To illustrate the spatially explicit estimation of continuous
length frequency histograms, we selected three estimated histo-
grams in three areas where large, small, and medium-sized fish
were respectively dominant (Figure 9). It is of note that, owing
to the polynomial decomposition, the estimated histogram at
any location is a continuous curve, with possibly a complex, multi-
modal shape. The estimation variance can be high for specific
length classes as a result of the combination of the squared poly-
nomial values at length and the co-kriging variances (see
Appendix).

Figure 6. Four examples of fitted cross-variogram models selected from the plot in Figure 5. Upper left, cross-variogram between variables
z4 and z6, with the two components (nugget and spherical) well represented; lower left, cross-variogram between variables z6 and z7, with
the components little represented; upper right, cross-variogram between variables z9 and z13, with both components half represented;
lower right, cross-variogram between variables z4 and z11, with the spherical component half represented and the nugget little represented.
The black lines represent the limits of model acceptability, according to the positivity constraint.
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Maps of the proportions of fish of length less or greater than a
threshold were derived from Equation (3) in the most probable
anchovy habitats (probability of presence .0.2; Figure 10).
Large anchovy (length .16 cm) were dominant (relative pro-
portion .0.6) in southern offshore habitats. In contrast, small
anchovy (length ,12 cm) were generally less dominant (relative
proportions always ,0.55), meaning that they consistently
shared their habitats with large and medium-sized fish, in a
given year and across years, even in the core areas of their spatial
distribution.

Discussion
The procedure of Nerini et al. (2010) was well suited to mapping
fish length frequency histograms as spatially connected curves. The
procedure is based on (i) a polynomial expansion, and (ii)
co-kriging. The length frequency histogram is modelled as a con-
tinuous curve using a polynomial expansion at each point, and
co-kriging ensures coherence between the proportions of different
length classes. Other methods can be applied to modelling the
length frequency histogram, but the mapping will necessarily
require co-kriging. The reason for this is that co-kriging ensures

that the probability of a fish being in a given length interval is esti-
mated coherently, so corresponds to the difference in the
co-kriging estimates of the frequencies of the two bounds of the
interval, which would not be the case if each bound was estimated
by monovariate kriging. As a result, the estimated length frequen-
cies naturally sum to unity, as do the length frequency data.

The experimental histogram at each sample point could be dis-
cretized into n length groups corresponding to particular life
stages, and the n frequency values could be co-kriged. This
would allow for mapping of a discretized histogram. Here, the
length frequency histogram was modelled as a continuous curve,
allowing for the mapping of any length value. Modelling curves
using polynomial expansions is a classical procedure in functional
data analysis (Ramsay and Silverman, 2005). Other curve-
modelling methods were not attempted here. Another advantage
of using orthogonal polynomials in modelling the histogram of
fish length is that the polynomial coefficients can be simulated
and combined geostatistically, facilitating simulation of the
spatial distribution of the fish length histogram.

If the curve to be modelled was known, a polynomial expansion
could be fitted to match that curve exactly. Here, the true curve
was unknown, and we selected a particular error level (the residual
sum of squares) to estimate it. The order of the polynomial expan-
sion influences the complexity and smoothness of the curves mod-
elled. The residual variability around the modelled histograms was
considered to be pure noise and was not accounted for explicitly in
the analysis. The residuals implicitly influenced the direct and
cross-variograms, so were implicitly accounted for in the analysis.
Polynomial expansions can be fitted to experimental histograms
by regression or quadratic methods, because the polynomials
form an orthogonal basis. In our case, polynomial coefficients
were estimated by least squares. This was possible because the
fish were measured with the same minimum resolution (0.5 cm)
and all length classes were valued at each sample point. When
experimental values are collected along y(i,t) curves with different
sampling resolutions, the curves sampled must be interpolated
first along t: ỹ(i, t). Then the polynomial coefficients can be esti-
mated quadratically as zk(i) =

�
t

ỹ(i, t) fk(t) dt. Nerini et al.
(2010) used that procedure. In our case, spline smoothing of the
experimental length frequency histograms generated occasional
undesirable border effects, leading us to fit the polynomial coeffi-
cients by least squares.

Here, to select the number of polynomials, we used gof criteria
based on the residual sum of squares. The Akaike information cri-
terion (AIC: Chapter 2 of Burnham and Anderson, 2002) could

Figure 7. Boxplots of the polynomial coefficients: left, data; right, kriged maps.

Figure 8. Map of anchovy length frequency histograms in areas
where the probability of anchovy presence is .0.2.
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also be used to choose between models with a varying number of
parameters (polynomials), because it penalizes the residual stat-
istics with the number of parameters. In our case, assuming
Gaussian residuals, AIC suggested use of a similar number of poly-
nomials (between 11 and 13: not shown) as the gof.

In our analysis, we combined a map of the probability of fish
presence with a map of fish length frequency to characterize size-
dependent anchovy habitats in spring in areas where anchovy was
common in the surveys from 2000. Large anchovy specifically
occupied highly probable habitats near the shelf break. In contrast,
the highly probable coastal habitat off the Gironde estuary con-
tained mainly small anchovy and larger length groups.
Less-probable habitats north of 46.58N off the Loire estuary held
a mixture of small and medium-sized fish. These findings are

consistent with previous knowledge of the anchovy life cycle,
derived from analysis of mean fish length (Chapter 8 of Petitgas
et al., 2003b; ICES, 2010). However, the maps presented here are
of better resolution and overall characterize the distribution of
anchovy length groups more effectively. Such maps are also
directly applicable for fisheries spatial management.

Further, the combination of fish length frequency maps with
maps of fish acoustic density opens the way for a fully spatially
explicit approach to computing fish-stock acoustic abundance
estimates at length, along with their estimation variance. Also,
using orthogonal polynomials in modelling the histogram of
fish length facilitates simulation of the spatial distribution of
the fish length histogram, and hence that of fish abundance at
length.

Figure 9. Examples of estimated anchovy length frequency histograms at points numbered 135, 178, and 310. The vertical bars indicate a
confidence interval of +2 estimated standard deviation above zero. The map in the upper right corner shows the location where the kriged
histograms are situated.

Figure 10. Maps of the proportion of anchovy ,12 cm (left) and .16 cm (right) in areas where the probability of anchovy presence is .0.2.
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As co-kriging preserves the functional relationships between
variables in the estimates, the methodology is well suited to
mapping the vectors of functionally related values characterizing
fish communities, such as species proportions, length distri-
butions, and growth curves. Our results therefore apply new
tools, to extend the application of kriging techniques to curves
or functions, opening new perspectives for mapping more
complex information for ecosystem, conservation, or biodiversity
studies.

Supplementary material
A simple average of the length distribution in the cells of the
interpolation grid showing the advantages of co-kriging is pro-
vided as Supplementary material at the ICESJMS online version
of this paper.
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Appendix
Kriging and co-kriging equations
Kriging is a linear estimator that is by construction unbiased and
of minimum variance. Although equations can be found in geos-
tatistical text books (e.g. Wackernagel, 1995; Chilès and Delfiner,
1999), we here provide the same notations and in matrix form
the kriging and co-kriging equations necessary for the current
study.

Ordinary kriging with moving neighbourhood
of the indicator of fish presence
The target variable is the indicator of fish presence. The mean of
the target variable is unknown, but assumed to be constant or
varying sufficiently smoothly to be considered as constant in a
local neighbourhood around the grid points. The kriged
estimate of the indicator of fish presence at point x0 is
IK (0) =

∑
a[V0

l(a) I(a), where a is the index of sample point
xa in the vicinity V0 of x0. The estimate is unbiased if the
weights l satisfy

∑
a[V0

l(a) = 1. The kriging variance is the
minimum estimation variance and is obtained from the weights
that solve the kriging system:

Gab I
I′ 0

[ ]
Lb

m

[ ]
= Ga0

1

[ ]
,

where Dab is the matrix block of dimension (n0,n0), where entry
g(a,b) is the variogram value for the distance |xa 2 xb| between
the n0 samples in the neighbourhood V0; Da0 the column vector
of dimension n0 where entry g(a, 0) is the variogram value for
the distance |xa 2 x0| between sample xa of the neighbourhood
V0 and grid node x0; Lb the column vector of dimension n0

where entry lb is the kriging weight assigned to sample xb of
the neighbourhood V0; and I a column vector of unit values of
dimension n0 and m, a Lagrange multiplier.

The kriging variance is s2
K = L

′

bGa0 + m.

Ordinary co-kriging with moving neighbourhood
of the polynomial coefficients
The target variables are each of the P + 1 polynomial coefficients.
The co-kriging estimate zCK

j 0( ) of the polynomial coefficient of
degree j at grid node x0 is a linear combination of all the poly-
nomial coefficients (indexed by k) at stations xa in neighbourhood
V0 of x0:

zCK
j (x0) =

∑P

k=0

∑
a[V0

lkj(a) zk (a), j = {0, 1, . . . , P}.

Unbiasedness (E[zj(x0) 2 zj
CK(x0)] ¼ 0) is achieved by
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applying the following constraints on the weights:∑
a[V0

lkj(a) =dkj, k = {0, . . . ,P}, j = {0, . . . ,P},

where dkj ¼ 1, if j ¼ k and 0 otherwise. The weights that minimize

the estimation variance E zj(x0 − zCK
j x0( )

( )2
[ ]

under the unbia-

sedness constraints are the solution of the following linear
(co-kriging) system (Chapter 5 of Chilès and Delfiner, 1999):

Gkk′ Fkk′

F
′

kk′ 0

[ ]
Lkj

mkj

[ ]
= Gkj

dkj

[ ]
,

where

Gkk′ =

g00(a,b) · · · g0k(a,b) · · · g0P(a,b)
..
.

· · · ..
.

· · · ..
.

gk0(a,b) · · · gkk(a,b) · · · gkP(a,b)
..
.

· · · ..
.

· · · ..
.

gP0(a,b) · · · gPk(a,b) · · · gPP(a,b)

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

is the matrix block of dimension ((P + 1)n0,(P + 1)n0), where
entry gkk′ (a,b) is a block of dimension (n0,n0) containing the
cross-variogram values between variables k and k′ for all distances
|xa2 xb| between the n0 samples in the neighbourhood V0;

Gkj =

g0j(a, 0)

..

.

gkj(a, 0)

..

.

gPj(a, 0)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is the column vector of dimension (P + 1)n0, where entrygkj(a, 0) is

a column vector of dimension n0 containing the cross-variogram
values between variable k and variable j for all distances |xa2 x0|
between samples in neighbourhood V0 and the grid point x0;

Lkj =

l0j(b)
· · ·

lkj(b)
· · ·

lPj(b)

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

is the column vector of dimension (P + 1)n0, where entry lkj(b) is

the column vector of dimension n0 containing the co-kriging
weights assigned to variable k at sample locations xb for estimating
variable j at location x0;

mkj =

m0j

..

.

mkj

..

.

mPj

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is the column vector of dimension (P + 1) where entry mkj is the
Lagrange parameter assigned to variable k for estimating variable j;
Fkk′ is a matrix block of dimension ((P + 1)n0, (P + 1)) where the
kth column is a vector made of zero values except for the n0 lines cor-

responding to variable k, where values are 1; F
′

kk′ is the transpose of

Fkk′ ; 0 is a matrix block of dimension ((P + 1), (P + 1)) filled with
zero values; and dkj is a column vector of dimension (P + 1) corre-

sponding to the constraints on the sum of the kriging weights
when estimating variable j, where dkj equals 1 if k ¼ j, and 0
otherwise.

Using the above notations, the co-kriging estimation variance
for variable j is

s2
CK( j) = L

′

kjGkj + m jj.

Developing the estimation variance of the curve y(0,t) requires
computation of the covariance between estimation errors
E[ej1ej2] for pairs of variables j1, j2:

E [ (y(0, t) − y(0, t)CK)2 ] =
∑P

j=0

fj(t)2s2
CK( j)

+
∑
j1=j2

∑
f j1 (t) f j2 (t)E[e j1 e j2 ],

E[e j1e j2] = L
′

kj2Gkj1 + m j2j1.

Computation of the covariance between estimation errors
requires the left-side term [Lkj, mkj]

′ and the right-side term
[Dkj, dkj] of the co-kriging system. In this study, we did not con-
sider the covariance terms between estimation errors, leading to
a probable inflation of the estimation variance of y(0,t).
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