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Abstract :  
 
In this letter, we address the characterization of objects in 3-D sonar images of the water column 
obtained by a multibeam echo sounder. Compared with classic 2-D images from a monobeam echo 
sounder, these 3-D images provide finer scale observation of the pelagic biomasses and new tools to 
characterize 3-D distributions. By viewing object patterns as realizations of spatial point processes, we 
investigate descriptive spatial statistics. This method is then applied to 3-D fisheries acoustics data set 
for characterization of the distribution of pelagic fish schools. Reported experiments illustrate the 
relevance of the proposed descriptors. The comparison of our method with 2-D sonar data analysis 
further demonstrates the information gain from using 3-D sonar imagery.  
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1. Introduction 
 
Monitoring marine ecosystems is a major issue in the current context of global environmental 
change. Echosounder systems provide a remote sensing device to monitor the distribution of 
pelagic environment, typically plankton and fish distribution [2]. The echosounder emits an 
acoustic pulse that is backscattered by objects of the water column and provides an acoustic 
image of the distribution of the pelagic biomass. Besides these traditional echosounders that 
form 2D images of the pelagic environment by utilizing depth and vessel displacement 
information, new multibeam systems offer finer-scale 3D images with an additional 
transversal dimension. Figure 1 depicts typical examples of the 3D structures which appear 
more complex with a multibeam echosounder than captured through a 2D echosounder. For 
instance, a single aggregation in 3D images is typically viewed as a collection of small 
patches in 2D images. Figure 2 illustrates the variety of aggregation patterns that can be 
observed, including well-defined schools, patchy aggregations, diffuse layers, etc. Whereas 
the processing of fisheries acoustics data have mostly dealt with the characterization and 
classification of fish schools in 2D [3], these 3D observations emphasize the need for new 
descriptors characterizing both fish schools and their spatial distribution. The main 
contributions of this paper are therefore to adapt point process statistics to marked point 
process (section II) and to take into account the trapezoidal geometry of 3D sonar echoes 
(section III). This method is applied to real fisheries acoustics data (section III). We also carry 
out a quantitative evaluation of the proposed descriptors for the categorization problem 
(section IV). 
 
 
 

2. Descriptors of the spatial distribution of objects in images 
 
A. Spatial patterns formed by objects in images 
 
In our work, we assume that both object extraction and associated object characterization 
result from an appropriate image pre-processing step. In order to do this, let us consider a 
set of M processed images. We define the image index m such that 1 _ m _ M, and the 
object index n in image m such that 1 _ n _ N(m). The position of any object xmn is defined 
in the Euclidean space RL, where L denotes the image dimension (typically L = 2 or L = 3). 
Let us denote the feature vector describingobject n in image m by fmn. Object sets fxmn; 
fmngmn are viewed as realizations of random marked point processes. A random point 
process is defined in [4] as follows: a point process _ on RL is a measurable map from a 
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Fig. 1. The same area is viewed by a multibeam echosounder
(top) and by a monobeam echosounder (bottom). The 3D
image (multibeam echosounder) is at finer scales and provides
description of fish schools in the water column.

Fig. 2. Examples of multibeam acoustic observations depicting
different types of distributions of fish aggregations: dense ball-
like sardina aggregation (top left), patchy anchovy distribu-
tions (top right and bottom right), and diffuse blue whiting
with low-density structures (bottom left).

probability space {Ω,F ,P} to a measurable space
R. For instance, a realisation of point process ξ in
image m can be represented as:

ξm =
N∑

n=1

δXmn (1)

where δX denotes the Dirac measure centered on X ,
N is an integer-valued random variable and Xmn are
random elements in RL.

Our objective is to characterize the probability
space {Ω,F ,P} from observation sets {xmn}mn.

We rely on descriptive statistics computed as mo-
ments of the random processes; more particularly
second-order moments associated to Ripley’s K-
function [5].

B. Descriptive statistics of point processes
To characterize a point process, the first-order

moment, that describes the intensity of a homoge-
neous point process, is defined along the lines of
[5] as:

K =

∫
B

ρ(v)dv (2)

where ρ(v) is the probability density function of the
number of points in an infinitesimal volume dv and
B denotes the support of analysis. This first-order
moment does not however characterize the spatial
interactions between points. Hence, second-order
moments are used [6] [7]. In our case, we consider
the covariance structure of the count variable, i.e.
descriptive statistics of pairs of points of finite
random sets which is given by:

K =
1

V

∫
V

∫
B

ρ(2)(x1, x2)dx1dx2 (3)

where ρ(2)(x1, x2) is the probability density function
of the pairs of points in infinitesimal volumes dx1
and dx2, and V is the whole volume of interest.

In the case of an isotropic and stationary process,
the density ρ(2)(x1, x2) only depends on the distance
between points (||x1 − x2| |). Defining regions Br

as spheres parameterized by their radius r, we use
the Ripley’s K function whose empirical estimation
from a given realization of the point process is given
by [6] [7] as:

K(r) =
1

V

N∑
i=1

N∑
j=1,j 6=i

1Br(xi, xj) (4)

where 1Br(xi, xj) = 1 if {xi, xj} ∈ Br, and
1Br(xi, xj) = 0 if not. Note that Br is centered
in xi.

C. Marked point process
The second-order moment defined above

can be extended to marked point process. Let
{xn, yn}1≤n≤N be a marked point process, where
{xn}n refers to point positions and {yn}n to
discrete marks (yn ∈ N) encoding relevant features
of the objects. We consider that a mapping from
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object feature vector to object categories exists
and that these categories define the discrete marks.
In this work, this is achieved using unsupervised
clustering in the feature space using the k-means
algorithm [8] [9].

Ripley’s K-function is extended to marked point
process as follows. For any pair of object categories,
an associated Ripley’s K-function is computed, i.e.
the expected number of points of one category in a
sphere centred at a point of the realization of another
category is found. Formally, for the object categories
p and q and the analyzing radius r, the considered
descriptive statistics is given by:

Γp,q(r) =
N∑
i

1

Vi(r)

N∑
j=1,j 6=i

1Br(xi, xj|yi = p, yj = q)

(5)
Vi(r) is a normalization coefficient that expresses
intersection between the volume V and the sphere
B.

These second-order spatial statistics can be
viewed as spatial cooccurrence statistics of object
sets in images. Parameterized by a spatial radius
and object category pairs, they provide a joint
characterization of a set of objects in an image,
both in terms of object characteristics and of spatial
organization.

III. APPLICATION TO FISHERIES ACOUSTICS
DATA

Data processing tools for fisheries acoustics data
have mainly focused on school detection, character-
ization and classification [10] [11] [12] [13] [2]. The
development of school extraction software made the
data processing easier [14]. Other analysis scales,
especially school clusters, are also of key interest to
understand and characterize fish distribution. How-
ever, they remain weakly explored. Along the lines
of [15] [16], we address here the characterization
of school clusters at a typical scale of one-nautical-
mile-long echograms [2] [17]. We evaluate the
feasibility of the proposed spatial statistics of fish
schools w.r.t. previous work, especially [16], for an
echogram-classification task.

A. Proposed approach
In the reported experiment, the extraction of

fish schools is issued from a thresholding-based

detection scheme. Let us denote the position of the
extracted schools by xmn and the associated feature
vectors by fmn. Extracted features are the length,
height, width, volume, and backscattering strength.
They comprise morphological features (size and
water column position) and energy features (back
scattering strength). These features are categorized
by an unsupervised k-means method to obtain fea-
ture marks ymn. Spatial statistics of school sets are
then computed for each echogram. The analysis of
the distribution of the distance between fish schools
revealed a bimodal distribution. For properly incor-
porating the two modes, two radius values were
chosen: 2.5m and 10m

Fig. 3. The intersection volume Vi(r) is calculated between
the trapezoidal prism V (left) due to multibeam geometry and
sphere B(r) localized in xi with radius r. The definition of
elementary area Suv (right) allows to generalize all situations.

B. Corrections for echosounder geometry

In Eq.(5), Vi(r) is a normalization coefficient that
expresses the intersection between the volume V
and sphere B, the center of sphere B being inside
V . We should take here into account the geometry
of the images acquired by echosounders [6] (refer
Figure 2). In 3D, volume V is a trapezoidal prism
which leads to complex formulation for coefficient
Vi(r). One could set Vi(r) to constant value but this
causes underestimation for Γp,q(r). Objects close to
image boundaries would be weighted low because
of the empty area outside the trapezoidal prism V .
Consequently, the mean number of points in the
sphere B close to boundaries of volume B would
be lower than the mean number of points closer to
the center. Next, we propose a general expression
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for the computation of volume Vi(r) according to
the geometry of multibeam echosounder.

As illustrated in figure 3, we define the following
variables:
• P1, P2, PS , PI : planes that define the trape-

zoidal prism.
• S11, S12, S13, S14: exterior surfaces of sphere
B relative to planes.

• S21, S22, S23, S24: interior surface of sphere B
relative to plane intersection.

The intersection area Ai(r) (in the plane {Y, Z})
between disk localized in xi with radius r and
trapezoid (in the plane {Y, Z}), can be expressed
as a function of {Suv}1≤u≤2,1≤v≤4:

Ai(r) = −3A(r) +
2∑

u=1

4∑
v=1

Suv (6)

where A(r) = πr2 denotes the disk area with radius
r. If the sum of {Suv} is computed, by considering
all the possible intersections that depend on the
disk localization and on the disk radius, 3A(r)
must be subtracted to find the intersection area. The
integral over the third dimension X gives the final
intersection volume:

Vi(r) =

∫
X

Ai(r(x))dx (7)

Equation (7) and the definition of Ai(r) provides a
general expression for the computation of Ripley’s
K statistics for any sphere B intersecting the trape-
zoidal prism V and for any radius r.

IV. EXPERIMENTS

A. Dataset
The considered fisheries acoustics dataset in-

volves three classes of echograms: (a) 63 echograms
comprising large and dense schools of sardines, (b)
72 echograms depicting a mixture of anchovy and
horse mackerel with complex school shapes, (c)
87 echograms depicting scatterred schools involving
a mixture of anchovy and horse mackerels. All
echograms were obtained from a scientific survey
carried out by Ifremer1 in June 2008 in the Bay
of Biscay. This dataset was acquired with both a
3D and a 2D echosounder, so that we can evaluate
the relevance of the proposed descriptors of school
clusters for both 3D and 2D echograms.

1French Research Institute for Exploitation of the Sea.

B. Echogram classification

In this section we evaluate the relevance of vari-
ous echogram descriptors for the echogram classifi-
cation task. We use 50-fold cross-validation, and in
each run we split the dataset into a class-balanced
training set and a class-balanced test set. Next, we
compute classification statistics (mean and variance)
for the positive class. In this work, we use random
forests [1] as the baseline classification tool.

We compare the following echogram descriptors:
• Sea bed depth (referred to as ”Depth”). All

descriptors are correlated to seabed depth. We
propose to use seabed depth as a baseline
reference to check for the relevance of the
improvement brought by additional features.

• Global descriptors proposed by Burgos and
Horne [16] (referred to as ”Burgos”): the
school density in the image, the percentage
of spatial occupancy, the fragmentation index,
the median distance, the relative school area
in the image, the 10th-50th-90th percentiles of
the area, the depth, and of the acoustic density
(Sv) of the schools.

• Cooccurrence Ripley’s statistics (referred to as
”Ripley”). We compute the spatial statistics
detailed in Section II.

For the experiments, we considered two thresholds
for the extraction of fish schools (-60dB and -54dB)
based on the work of experts. We concatenate the
descriptors computed for the school sets associated
with each threshold to form the feature vector which
is subsequently used for echogram classification.

Results are reported in Table I for both multibeam
(3D) and monobeam (2D) data. The mean correct
classification rate is reported as a function of the
number of training instance.

Overall, the correct classification rate increases
with the increase in the size of the training set.
This shows that a larger number of annotated im-
ages leads to better echogram classification. These
experiments also point out the advantage of using
the multibeam technology. For all descriptors, an
increase in correct classification rates is observed
(7% mean improvement with Burgos to 12% mean
improvement with the proposed spatial statistics).
Multibeam technology offers an actual 3D visu-
alization of school structures whereas monobeam
echosounder provides a coarser 2D transversal ob-
servation of 3D structures. In particular, schools
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observed in the 2D echograms often refer to cluster
of small 3D schools that can not be perceived due to
the lower resolution of the monobeam echosounder.
Then, the 3D echogram achieves better characteri-
zation and discrimination of school clusters. Though
echogram categorization is partially correlated to
seabed depth, we show that the proposed echogram
characterization significantly outperforms the geo-
graphical categorization of echograms from seabed
depth (typically the correct classification rate is
improved from 10% to 25%).

Regarding the different feature sets, those pro-
posed by Burgos and Horne [16] outperform spatial
statistics of school clusters when considering 2D
echograms. That might be explained by the rather
low mean number of fish schools. We had about
16 fish schools per 2D echogram compared to 168
fish schools per 3D echogram. This makes the
computation of spatial school statistics less robust.
By contrast, experiments with 3D echograms show
that the best performances are obtained using the
proposed spatial statistics (91% vs 94%). This val-
idates the utility of the proposed descriptors.

2D 3D
Training 30 60 90 120 30 60 90 120
Test 159 129 99 69 159 129 99 69
Depth 0.71 0.72 0.72 0.71 0.71 0.72 0.72 0.71
[16] 0.79 0.83 0.85 0.87 0.89 0.90 0.91 0.91
This work 0.76 0.79 0.83 0.84 0.91 0.93 0.94 0.94

TABLE I

Mean correct classification rates for both multibeam sensor
(3D images) and moonbeam sensor (2D images). The row
“Training” contains the total number of training instances.
The row “Test” contains the total number of test instances.

Results are obtained with different descriptors: seabed depth,
[16], proposed spatial statistics (This work).

V. CONCLUSION

The development of global image descriptors is
a key topic for remote sensing applications. In
this context, we have proposed global descriptors
for object distributions in an image. They rely on
spatial statistics of the patterns formed by object
sets extracted in images.

This approach has been applied to fisheries acous-
tics datasets involving 2D and 3D images of clusters
of fish schools. We have evaluated the proposed
descriptors for an image classification task and have

proven its relevance to previous work. Reported
experiments also stress that finer characterization
of fish aggregation patterns can be achieved upon
using multibeam 3D echosounder instead of the
classical 2D echosounder. These results open door
for further investigation of the spatial organization
of fish aggregations.

REFERENCES

[1] L. Breiman, “Random forest”, Machine Learning, 45, 5-32,
2001.

[2] J.E. Simmonds, and D.N. MacLennan, “Fisheries acoustics:
theory and practice”, Oxford: Blackwell Science Ltd, 2005.

[3] R. Lefort, R. Fablet, and J.M. Boucher, “Object recognition
using proportion-based prior information: application to fisheries
acoustics”, Pattern Recognition Letters, vol. 32(2), pp. 153-158,
2011.

[4] M. Jacobsen, “Point processes theory and applcations”, Springer,
Probabilities and its Applications, 2006.

[5] B.D. Ripley, “Spatial statistics”, John Wiley, New York, 1981.
[6] F. Goreaud, and R. Plisserier, “On explicit formulas of edge

effect correction for ripley’s k-function”, Journal of Vegetation
Science, vol. 10, pp. 433-438, 1999.

[7] M. Schlather, “On the second-order characteristics of marked
point processes”, Bernoulli, vol. 7, pp. 99-117, 2001.

[8] S.P. Lloyd, “Least square quantization in PCM”, IEEE Transac-
tions on Information Theory, vol. 28(2), pp. 129-137, 1982.

[9] N. Dala, and B. Triggs, “Histograms of oriented gradients for
human detection”, International Conference on computer Vision
and Pattern Recognition, vol. 2, pp. 886-893, 2005.

[10] G.A. Rose, and W.C. Leggett, “Hydroacoustic signal classifica-
tion of fish schools by species”, Canadian Journal of Fisheries
and Aquatic Sciences, pp. 597-604, 1988.

[11] C. Scalabrin, and X. Lurton, “Fish schoals amplitude analysis”,
European Conferenceon Underwater Acoustic, vol. 2, pp. 807-
814, 1994.

[12] C. Scalabrin, N. Diner, and A. Weill, “Automatic shoal recogni-
tion and classification based on Movies-B software”, Oceans’94,
vol. 2, pp. 319-324, 1994.

[13] D. Reid, “Report on echo trace classification”, ICES Co-
operation Research Report 238, 2000.

[14] A. Weill, C. Scalabrin, and N. Diner, “Movies-B: an acoustic
detection descriptor software, Application to schoal species’
classification”, Aquatic Living Resources , vol. 6, pp. 255-267,
1993.

[15] P. Petitgas, and J.J. Levenez, “Spatial organisation of pelagic
fish: echogram structure, spatio-temporal condition and biomass
in Senegalese waters”, ICES Journal of Marine Science, vol. 53,
pp. 147-153, 1996.

[16] J.M. Burgos, and J.K. Horne, “Characterization anc classifica-
tion of acoustically detected fish distribution”, ICES Journal of
Marine Science, vol. 65, pp. 1235-1247, 2008.

[17] M. Woillez, J.C. Poulard, J. Rivoirard, P. Petitgas, and N. Bez,
“Indices for capturing spatial patterns and their evolution in time,
with application to European hake (Merluccius merluccius) in the
Bay of Biscay”, ICES Journal of Marine Science, vol. 64, pp.
537-550, 2007.


