**Geochimica et Cosmochimica Acta** Volume 82, 1 April 2012, Pages 92–112 <u>http://dx.doi.org/10.1016/j.gca.2011.02.007</u> © 2011 Elsevier Ltd. All rights reserved

## Mercury dynamics in lake sediments

Stéphane Feyte<sup>a</sup>, Charles Gobeil<sup>a,\*</sup>, André Tessier<sup>a</sup>, Daniel Cossa<sup>b</sup>

<sup>a</sup> INRS-ETE, Université du Québec, 490 de la Couronne, Québec, QC, Canada G1K 9A9 <sup>b</sup> Ifremer, Centre Méditerranée, BP330, 83507 La Seyne sur Mer, France

\*: Corresponding author:

. Tel.: +1 418 654 2589; fax: +1 418 654 2600. E-mail address: Charles.Gobeil@ete.inrs.ca (C. Gobeil).

#### Abstract:

Triplicate porewater depth-profiles of pH and concentrations of total Hg (Hg<sub>7</sub>), methylmercury (MeHg), Fe, Mn, sulfate, total sulfide, total zero-valent sulfur, organic C and major ions were determined at two sampling dates in a perennially oxygenated basin and a seasonally anoxic basin from Lake Tantaré, a Canadian Shield lake. The vertical distribution of Hg<sub>7</sub>, MeHg, acid volatile sulfide, total S, Fe, Mn, Al and organic C were also determined in dated sediment cores from the same lake basins and from the deepest site of two other lakes, one also located in the Canadian Shield and the other in the Northeastern part of the Appalachian Mountains. Application of a one-dimensional transport-reaction equation to the dissolved Hg<sub>7</sub> and MeHg profiles constrains the depth intervals (zones) where these species are produced or consumed in the sedimentary column and yields estimates of net reaction rates of Hg<sub>7</sub> or MeHg in each of the zones as well as their fluxes at the sediment water interface.

sediment-water interface.

Dissolved Hg<sub> $\tau$ </sub> and MeHg diffused from the overlying water into the sediments, except for MeHg at one of the sampling dates in the perennially oxygenated basin. About 97% and 50% of the MeHg flux to the sediments is presently deposited with settling particles in the perennially oxygenated and seasonally anoxic basins, respectively. Removal of porewater Hg<sub>7</sub> and MeHg occurred at all dates and sampling sites. Comparison of the consumption zones of porewater Hg<sub> $\tau$ </sub> and MeHg with the profiles of ancillary parameters, coupled with thermodynamic calculations, suggest that pure Hg mineral phases do not form in the sediments, that Hg<sub>7</sub> and MeHg adsorption onto authigenic Fe oxyhydroxides occurs in minor proportions, and that the association of Hg<sub> $\tau$ </sub> and MeHg to Fe sulfide phases or sulfidized organic matter is possible. Assuming that the net consumption of MeHg in the porewaters was essentially due to demethylation, an apparent first-order rate constant for MeHg demethylation of 0.04–0.8 d<sup>-1</sup> was estimated. Production of porewater MeHg occurred only in the perennially oxygenated basin, at sediment depths where SO<sub>4</sub> was consumed. Assuming that the net production of porewater MeHg was essentially due to methylation, an apparent first-order rate constant for Hg methylation ranging between 0.006 d<sup>-1</sup> and 0.1 d<sup>-1</sup> was calculated. These field-derived Hg methylation and MeHa demethylation rate constant values are within the range of those derived from Ha-spiked experiments. We also show that the post-depositional redistribution of total Hg during the early stages of sediment diagenesis is minor and that the solid-phase Hg<sub>7</sub> record can be used to reconstruct the evolution of the anthropogenic  $Hg_{\tau}$  deposition.

| 1  |                                                                                                                      |
|----|----------------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                                      |
| 3  | Mercury dynamics in lake sediments                                                                                   |
| 4  | Stéphane Feyte <sup>1</sup> , Charles Gobeil <sup>1,*</sup> , André Tessier <sup>1</sup> , Daniel Cossa <sup>2</sup> |
| 5  |                                                                                                                      |
| 6  | <sup>1</sup> INRS-ETE, Université du Québec, 490 de la Couronne, Québec, QC, Canada G1K 9A9                          |
| 7  | <sup>2</sup> Ifremer, Centre Méditerranée, BP330, 83507 La Seyne sur Mer, France                                     |
| 8  |                                                                                                                      |
| 9  |                                                                                                                      |
| 10 |                                                                                                                      |
| 11 |                                                                                                                      |
| 12 |                                                                                                                      |
| 13 |                                                                                                                      |
| 14 |                                                                                                                      |
| 15 | * Corresponding author. Fax: +1 418 654 2600                                                                         |
| 16 | E-mail address: Charles.Gobeil@ete.inrs.ca                                                                           |
| 17 |                                                                                                                      |
| 18 |                                                                                                                      |
| 19 |                                                                                                                      |
| 20 |                                                                                                                      |
| 21 |                                                                                                                      |
| 22 |                                                                                                                      |
| 23 |                                                                                                                      |

## 24

25

#### ABSTRACT

26 Triplicate porewater depth-profiles of pH and concentrations of total Hg (Hg<sub>T</sub>), 27 methylmercury (MeHg), Fe, Mn, sulfate, total sulfide, total zero-valent sulfur, organic C and major 28 ions were determined at two sampling dates in a perennially oxygenated basin and a seasonally 29 anoxic basin from Lake Tantaré, a Canadian Shield lake. The vertical distribution of Hg<sub>T</sub>, MeHg, 30 acid volatile sulfide, total S, Fe, Mn, Al and organic C were also determined in dated sediment 31 cores from the same lake basins and from the deepest site of two other lakes, one also located in 32 the Canadian Shield and the other in the Northeastern part of the Appalachian Mountains. 33 Application of a one-dimensional transport-reaction equation to the dissolved  $Hg_T$  and MeHg34 profiles constrains the depth intervals (zones) where these species are produced or consumed in the 35 sedimentary column and yields estimates of net reaction rates of Hg<sub>T</sub> or MeHg in each of the zones 36 as well as their fluxes at the sediment water-interface.

37

38 Dissolved Hg<sub>T</sub> and MeHg diffused from the overlying water into the sediments, except for 39 MeHg at one of the sampling dates in the perennially oxygenated basin. About 97% and 50% of 40 the MeHg flux to the sediments is presently deposited with settling particles in the perennially 41 oxygenated and seasonally anoxic basins, respectively. Removal of porewater Hg<sub>T</sub> and MeHg 42 occurred at all dates and sampling sites. Comparison of the consumption zones of porewater Hg<sub>T</sub> 43 and MeHg with the profiles of ancillary parameters, coupled with thermodynamic calculations, 44 suggest that pure Hg mineral phases do not form in the sediments, that Hg<sub>T</sub> and MeHg adsorption 45 onto authigenic Fe oxyhydroxides occurs in minor proportions, and that the association of Hg<sub>T</sub> and 46 MeHg to Fe sulfide phases or sulfidized organic matter is possible. Assuming that the net

| 47 | consumption of MeHg in the porewaters was essentially due to demethylation, an apparent first-                |
|----|---------------------------------------------------------------------------------------------------------------|
| 48 | order rate constant for MeHg demethylation of 0.04-0.8 d <sup>-1</sup> was estimated. Production of porewater |
| 49 | MeHg occurred only in the perennially oxygenated basin, at sediment depths where $SO_4$ was                   |
| 50 | consumed. Assuming that the net production of porewater MeHg was essentially due to                           |
| 51 | methylation, an apparent first-order rate constant for Hg methylation ranging between 0.006 $d^{-1}$          |
| 52 | and 0.1 $d^{-1}$ was calculated. These field-derived Hg methylation and MeHg demethylation rate               |
| 53 | constant values are within the range of those derived from Hg-spiked experiments. We also show                |
| 54 | that the post-depositional redistribution of total Hg during the early stages of sediment diagenesis          |
| 55 | is minor and that the solid-phase $Hg_T$ record can be used to reconstruct the evolution of the               |
| 56 | anthropogenic Hg <sub>T</sub> deposition.                                                                     |
| 57 |                                                                                                               |
| 58 | 1. INTRODUCTION                                                                                               |
| 59 |                                                                                                               |
| 60 | The increase in atmospheric deposition of mercury as a result of industrialization has                        |
| 61 | stimulated the in situ production of methylmercury (MeHg) in aquatic systems and the                          |
| 62 | incorporation of this neurotoxic compound into food chains (Evers et al., 1998; Hammerschmidt                 |
| 63 | and Fitzgerald, 2006b; Munthe et al., 2007). The potential harmful consequences for human health              |
| 64 | and wildlife and possible adverse economical effects on the fishing industry raised by this issue             |
| 65 | have led to a marked interest over recent years for unraveling Hg cycling in aquatic systems                  |
| 66 | (Fitzgerald et al., 2007). This study is in line with this general objective; it focuses on Hg                |
| 67 | dynamics in recent sediment deposits which are considered to be a key location for MeHg                       |
| 68 | formation (Krabbenhoft et al., 1998; Kainz et al., 2003; Hammerschmidt et al., 2006).                         |
| 60 |                                                                                                               |

| 70                                                                                                                                 | Current inferences on <i>in situ</i> Hg <sub>T</sub> and MeHg mobility and on the processes involving these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 71                                                                                                                                 | species in modern sediments are mostly derived from measurements in the solid phase alone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 72                                                                                                                                 | (Lockhart et al., 2000; Rydberg et al., 2008) or from laboratory experiments involving bacterial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 73                                                                                                                                 | cultures (Compeau and Bartha, 1985) or incubations of Hg-spiked pure solid phases, sediments or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 74                                                                                                                                 | lake water (Gunneriusson et al., 1995; Tiffreau et al., 1995; Miller, 2006; Ramlal et al., 1986;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 75                                                                                                                                 | Hintelmann et al., 2000; Eckley et al., 2005). We submit that measuring Hg <sub>T</sub> , MeHg and ancillary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 76                                                                                                                                 | parameters in sediments and porewaters, combined with thermodynamic and kinetic modeling,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 77                                                                                                                                 | provides an alternative to constrain in situ Hg <sub>T</sub> and MeHg mobility, physico-chemical processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 78                                                                                                                                 | involving $Hg_T$ and MeHg and their reaction kinetics. Although porewaters are sensitive indicators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 79                                                                                                                                 | of reactions that occur in the solid phase, most studies reporting porewater profiles of $Hg_T$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 80                                                                                                                                 | MeHg, with a few exceptions (Goulet et al., 2007; Merritt and Amirbahman, 2007, 2008), only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 81                                                                                                                                 | provided a qualitative interpretation of their results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 82                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 82<br>83                                                                                                                           | 2. METHODS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 82<br>83<br>84                                                                                                                     | <b>2. METHODS</b><br>In this paper, the concentrations of dissolved and solid-phase species X are designated by [X]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 82<br>83<br>84<br>85                                                                                                               | 2. METHODS<br>In this paper, the concentrations of dissolved and solid-phase species X are designated by [X]<br>and {X}, respectively. We assume that dissolved non-methylated Hg concentration ([Hg <sub>NM</sub> ]) is the                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>82</li> <li>83</li> <li>84</li> <li>85</li> <li>86</li> </ul>                                                             | 2. METHODS<br>In this paper, the concentrations of dissolved and solid-phase species X are designated by [X]<br>and {X}, respectively. We assume that dissolved non-methylated Hg concentration ([Hg <sub>NM</sub> ]) is the<br>difference between dissolved total Hg ([Hg <sub>T</sub> ]) and dissolved monomethylmercury ([MeHg])                                                                                                                                                                                                                                                                            |
| <ul> <li>82</li> <li>83</li> <li>84</li> <li>85</li> <li>86</li> <li>87</li> </ul>                                                 | 2. METHODS<br>In this paper, the concentrations of dissolved and solid-phase species X are designated by [X]<br>and {X}, respectively. We assume that dissolved non-methylated Hg concentration ([Hg <sub>NM</sub> ]) is the<br>difference between dissolved total Hg ([Hg <sub>T</sub> ]) and dissolved monomethylmercury ([MeHg])<br>concentrations.                                                                                                                                                                                                                                                         |
| <ul> <li>82</li> <li>83</li> <li>84</li> <li>85</li> <li>86</li> <li>87</li> <li>88</li> </ul>                                     | $\label{eq:2.2} \begin{array}{l} \textbf{LTHODS} \\ \text{In this paper, the concentrations of dissolved and solid-phase species X are designated by [X] \\ \text{and } \{X\}, \text{ respectively. We assume that dissolved non-methylated Hg concentration ([Hg_NM]) is the \\ \text{difference between dissolved total Hg ([Hg_T]) and dissolved monomethylmercury ([MeHg]) \\ \text{concentrations.} \end{array}$                                                                                                                                                                                          |
| <ul> <li>82</li> <li>83</li> <li>84</li> <li>85</li> <li>86</li> <li>87</li> <li>88</li> <li>89</li> </ul>                         | <b>2. METHODS</b> In this paper, the concentrations of dissolved and solid-phase species X are designated by [X]         and {X}, respectively. We assume that dissolved non-methylated Hg concentration ([Hg <sub>NM</sub> ]) is the         difference between dissolved total Hg ([Hg <sub>T</sub> ]) and dissolved monomethylmercury ([MeHg])         concentrations. <b>2.1. Study areas</b>                                                                                                                                                                                                              |
| <ul> <li>82</li> <li>83</li> <li>84</li> <li>85</li> <li>86</li> <li>87</li> <li>88</li> <li>89</li> <li>90</li> </ul>             | 2. METHODS         In this paper, the concentrations of dissolved and solid-phase species X are designated by [X]         and {X}, respectively. We assume that dissolved non-methylated Hg concentration ([Hg <sub>NM</sub> ]) is the         difference between dissolved total Hg ([Hg <sub>T</sub> ]) and dissolved monomethylmercury ([MeHg])         concentrations.         2.1. Study areas         Three oligotrophic headwater lakes (Tantaré, Bédard and Holland) located in the Province                                                                                                           |
| <ul> <li>82</li> <li>83</li> <li>84</li> <li>85</li> <li>86</li> <li>87</li> <li>88</li> <li>89</li> <li>90</li> <li>91</li> </ul> | 2. METHODS         In this paper, the concentrations of dissolved and solid-phase species X are designated by [X]         and {X}, respectively. We assume that dissolved non-methylated Hg concentration ([Hg <sub>NM</sub> ]) is the         difference between dissolved total Hg ([Hg <sub>T</sub> ]) and dissolved monomethylmercury ([MeHg])         concentrations.         J.1. Study areas         Three oligotrophic headwater lakes (Tantaré, Bédard and Holland) located in the Province         of Québec (Eastern Canada) were investigated (Fig. 1). Their geographical coordinates, geological |

| 93  | and watershed areas are given in Table 1. The only inputs of anthropogenic Hg into these lakes are            |
|-----|---------------------------------------------------------------------------------------------------------------|
| 94  | from atmospheric deposition since their watersheds have never been inhabited; the watersheds                  |
| 95  | have also not been affected by wildfire or lumbering, except that of Lake Bédard where tree                   |
| 96  | cutting occurred several decades ago. Lakes Tantaré and Bédard are situated within 50 km of                   |
| 97  | Québec City (~500,000 inhabitants), in a Provincial ecological reserve and in the protected                   |
| 98  | Montmorency Forest, respectively. In Lake Tantaré, two adjacent basins separated by a shallow                 |
| 99  | sill (~2 m) have been sampled: Basin A is 15 m deep and Basin B, which is upstream from Basin                 |
| 100 | A (see Fig. 1), is 22 m deep. Both Basins A and B develop a thermal stratification which shifts               |
| 101 | from about 4 m depth at the end of May to 10 m depth at the end of October. The hypolimnion of                |
| 102 | Basin B, in contrast to that of Basin A, becomes anoxic ( $[O_2]$ (< 0.01 mg L <sup>-1</sup> ) by mid-summer. |
| 103 | Lake Holland is situated in the Gaspé Peninsula, 8 km from Murdochville, a small city (< 3,000                |
| 104 | inhabitants) where a non-ferrous metal smelter (103,000 T of copper/zinc and 164,600 T of                     |
| 105 | sulfuric acids produced in 1995; Newhook et al., 2003) operated from 1951 to 2002. Maximum                    |
| 106 | depths in Lakes Bédard and Holland are 10 and 11 m, respectively.                                             |
| 107 |                                                                                                               |
| 108 | 2.2. Sampling                                                                                                 |
| 109 |                                                                                                               |
| 110 | Sediment cores were collected by divers with 9.5-cm internal diameter butyrate tubes at the                   |
| 111 | deepest site of each lake or basin between June 2003 and June 2006 (Table 1). The cores were                  |
| 112 | extruded on shore and sectioned at 0.5-cm intervals from the sediment surface to 10 cm or 15 cm               |
|     |                                                                                                               |

sulfide (AVS) measurements were individually sealed in plastic bags that were put into a larger

depth and then at 1-cm intervals to 30 cm depth. The sediment samples for subsequent acid volatile

bag filled with anoxic sediment to prevent their oxidation, whereas those for all othermeasurements were kept in polyethylene containers.

117

118 Sheets of skived Teflon ( $7 \times 15$  cm) that had been inserted by divers across the sediment–water 119 interface at the sampling site of Lake Tantaré Basin A in October 1993 were retrieved in August 120 2006, rinsed with lake water to remove living animals and sediment particles and stored in 121 polyethylene containers. During the 13-yr deployment, authigenic Fe oxyhydroxides (Fe-ox) that 122 are normally deposited onto sediment particles close to oxygenated sediment surface were 123 collected by the Teflon sheets inserted in the sediments (Belzile et al., 1989). Fe-ox particles 124 previously collected in this lake by the same technique were identified as poorly crystalline 125 ferrihydrite and lepidocrocite by Fortin et al. (1993), using electron microscopy and X-ray 126 diffraction. Authigenic Mn oxyhydroxides do not form in the sediments of this lake (see section 127 3.2) and thus, the material collected on Teflon sheets can be qualified as Fe-rich authigenic 128 material.

129

130 Porewater samples were collected by *in situ* dialysis (Carignan et al., 1994) from 5 cm above 131 the sediment–water interface to 10 cm below in the two basins of Lake Tantaré. The peepers used 132 had two columns of 4-mL cells with a 1-cm vertical resolution. They were acid-washed and stored 133 under nitrogen for at least two weeks. The cells were then filled with ultrapure water (> 18 M $\Omega$ 134 cm) and covered with a pre-cleaned 0.2  $\mu$ m nominal pore size polysulfone membrane (HT-200, 135 Gelman). The assembled peepers were kept again under nitrogen for about two weeks, until their deployment. Twelve peepers were deployed by divers within an area of about 25 m<sup>2</sup> around the 136 137 coring site in September 2005 and September 2006 in Basin A, which remains perennially oxic

| 138 | $([O_2] > 4 \text{ mg } L^{-1})$ , and in September 2006 and July 2007 in Basin B, when the bottom water was                       |
|-----|------------------------------------------------------------------------------------------------------------------------------------|
| 139 | anoxic ( $[O_2] < 0.01 \text{ mg } L^{-1}$ ) and oxic ( $[O_2] > 4 \text{ mg } L^{-1}$ ), respectively. Three peepers were sampled |
| 140 | to obtain triplicate measurements of pH and concentrations of dissolved organic carbon ([DOC]),                                    |
| 141 | total sulfide ( $\sum S(-II)$ ), total zero-valent sulfur ( $\sum S(0)$ ) and major anions. Water from the remaining               |
| 142 | nine peepers was collected as follow in order to get three 24-mL samples for each sampling depth                                   |
| 143 | for subsequent measurements of Hg <sub>T</sub> , MeHg and major cations (Al, Ca, Fe, K, Mg, Mn and Na).                            |
| 144 | Water in the cells positioned at a given height above or below the sediment-water interface was                                    |
| 145 | collected from three peepers by piercing the polysulfone membrane with an acid-cleaned plastic tip                                 |
| 146 | fitted to a Gilson pipette and was pooled in previously acid-washed Teflon (PFA) bottles. After                                    |
| 147 | shaking, a 1-mL aliquot was removed and transferred to a pre-acidified (10 $\mu$ L of 2N ultra clean                               |
| 148 | HNO <sub>3</sub> ) vial for the measurements of the cations. The remaining 23-mL sample was acidified by                           |
| 149 | adding 115 $\mu$ L of ultra clean concentrated HCl to the Teflon bottle, which was then sealed in                                  |
| 150 | double plastic bags. To obtain sampling procedural blanks for [Hg <sub>T</sub> ], [MeHg], $\sum S(-II)$ , $\sum S(0)$ and          |
| 151 | DOC, ultrapure water was processed at the sampling site similarly to the porewater samples.                                        |
| 152 |                                                                                                                                    |
| 153 | 2.3. Analyses                                                                                                                      |
| 154 |                                                                                                                                    |
| 155 | The method used to measure $[Hg_T]$ was modified from Bloom and Fitzgerald (1988). It is                                           |
| 156 | similar to standard method No. 1631 from US EPA (USEPA, 2002). Briefly, [Hg <sub>T</sub> ] was                                     |
| 157 | determined by cold vapor atomic fluorescence spectrometry (CVAFS; Tekran® model 2500),                                             |
| 158 | using external calibration after successive addition of BrCl to release Hg(II) from organic ligands,                               |
| 159 | and $SnCl_2$ , to reduce Hg(II) to elemental Hg (Hg(0)), which was concentrated by gold                                            |
| 160 | amalgamation prior to CVAFS detection. Detection limit (DL), which was determined daily as 3.3                                     |

| 161 | times the standard deviation (SD) of analytical procedural blanks, was between 0.5 and 2 pM for a  |
|-----|----------------------------------------------------------------------------------------------------|
| 162 | 10-mL water sample. Precision, determined from replicate measurements ( $n = 6$ ), was better than |
| 163 | 5% at 20 pM and 15% at 1 pM. Analytical accuracy was checked every day with the reference          |
| 164 | material ORMS-3 from the National Research Council of Canada (NRCC). Dissolved MeHg,               |
| 165 | which is not degraded during long-term storage (at least 250 days; Parker and Bloom, 2005), was    |
| 166 | measured within 2-4 weeks after sample collection. It was converted to volatile methylmercury      |
| 167 | hydride, separated by purge and cryo-trapping gas chromatography, and detected as Hg(0) by         |
| 168 | CVAFS (Tekran Model 2500). The hydride generation technique used was that proposed by              |
| 169 | Stoichev et al. (2004) and optimized by Cossa et al. (2009). Daily DL varied between 0.05 pM and   |
| 170 | 0.2 pM. Precision, determined from replicate samples ( $n = 6$ ), was 6% at a [MeHg] of 0.5 pM.    |
| 171 | Accuracy was checked using the certified reference material ERM-AE70 from the Institute for        |
| 172 | Reference Materials and Measurements (IRMM, European Commission).                                  |
| 173 |                                                                                                    |
| 174 | Solid-phase Hg <sub>T</sub> was determined on 50-mg freeze-dried sediment aliquots using a mercury |
| 175 | analyzer (Milestone DMA-80). This method, also known as the US EPA standard method No.             |
|     |                                                                                                    |

176 7473 (USEPA, 2007), includes a pyrolysis step that releases Hg, which is then concentrated by Au

178 (3.3 SD of blanks) was 30 pmol g<sup>-1</sup>. Precision, determined from replicate measurements (n = 10) of

amalgamation and detected by atomic absorption spectrometry (Cossa et al., 2002). Detection limit

a sediment sample was better than 5%. Accuracy, determined with the reference sediment MESS-3

180 from NRCC, was better than 5%. Solid-phase MeHg was only determined for Lake Tantaré

181 sediments and two different analytical methods were used. The method of Leermakers et al. (2001)

adapted by Cossa et al. (2002) was used to analyze Basin A samples. MeHg was released from

about 200-mg aliquots of freeze-dried sediments with HNO<sub>3</sub> (4 N), extracted with CH<sub>2</sub>Cl<sub>2</sub> and

| 184 | transferred into 40 mL of ultrapure water. After evaporation of the organic solvent, MeHg in the               |
|-----|----------------------------------------------------------------------------------------------------------------|
| 185 | water phase was ethylated and purged on a Tenax-packed column. Ethylmethylmercury was then                     |
| 186 | isolated from other volatile compounds by gas chromatography and quantified by CVAFS.                          |
| 187 | Detection limit (3.3 SD of blanks) was 0.1 pmol $g^{-1}$ and analytical precision was better than 15%.         |
| 188 | MeHg analysis of the CRM 405 material from the International Atomic Energy Agency (IAEA)                       |
| 189 | yielded a recovery of 91±8%. The method used to analyze Basin B samples was based on the                       |
| 190 | separation of organomercurials by gas chromatography, followed by ionisation of analytes in argon              |
| 191 | plasma and Hg detection by mass spectrometry (Leermakers et al., 2005). Briefly, a known                       |
| 192 | quantity of an internal standard (Me <sup>202</sup> Hg) was added to an aliquot of freeze-dried sediment which |
| 193 | was then leached with 4 mL of HNO <sub>3</sub> (6N). After centrifugation and decantation, the pH was          |
| 194 | adjusted to 4 by adding ammonia and a sodium acetate-acetic acid buffer. MeHg was then                         |
| 195 | propylated by adding sodium tetrapropylborate and the Hg compound was extracted in isooctane.                  |
| 196 | The analysis of propylated MeHg was performed by gas chromatography coupled to a quadrupole                    |
| 197 | ICP-MS. Detection limit was around 1 pmol g <sup>-1</sup> . Precision, determined from replicate               |
| 198 | measurements ( $n = 6$ ) of the CRM 405 material from IAEA, was better than 10% and the recovery               |
| 199 | was evaluated to 102%.                                                                                         |
| 200 | Porewater Fe, Mn, Ca, K, Mg and Na concentrations were obtained by inductively coupled                         |
| 201 | plasma optical emission spectroscopy (ICP-OES; VISTA AX CCD) using external calibration.                       |
| 202 | Sulfate was measured by ion chromatography, dissolved inorganic C by gas chromatography,                       |
| 203 | dissolved organic C with a Shimadzu carbon analyzer, $\Sigma$ S(-II) by colorimetry within 48 h of             |
|     |                                                                                                                |

sample collection and  $\Sigma S(0)$  by square-wave cathodic stripping voltammetry (Wang et al., 1998). It

should be noted that  $\Sigma S(-II)$  and  $\Sigma S(0)$  are defined as (Wang and Tessier, 2009):  $\Sigma S(-II) = [H_2S] + I_2S(-II) = I_2S(-II)$ 

206  $[HS^-] + \Sigma[H_xS_nS^{x-2}]$  and  $\Sigma S(0) = [S(0)_{(aq)}] + \Sigma n[H_xS_nS^{x-2}]$ , where x (0-2) and n (1-7) are the

numbers of H and zero-valent S atoms in the polysulfide species  $H_x S_n S^{x-2}$ , respectively, and S(0)<sub>(aq)</sub> is the free dissolved zero-valent sulfur.

209 The analytical protocols for the measurements of solid-phase Al, Fe, Mn, organic C ( $C_{org}$ ), total S (S<sub>T</sub>), AVS, <sup>210</sup>Pb, <sup>214</sup>Pb and <sup>137</sup>Cs are described by Chappaz et al. (2008). Briefly, C<sub>org</sub> 210 211 concentration was determined using a NCS Carbo Erba analyzer. Aliquots of sediments were 212 totally digested with HNO<sub>3</sub>, HClO<sub>4</sub> and HF and Fe, Mn, Al and S<sub>T</sub> concentrations were determined 213 by ICP-OES. AVS concentrations were determined by acidification of wet sediments with 6 N 214 HCl, and the sulfide released was trapped in a NaOH solution and measured by colorimetry. For 215 sediment dating, dried sediment aliquots were placed in sealed vials for at least 1 month to achieve secular equilibrium of <sup>222</sup>Rn and <sup>214</sup>Pb with <sup>226</sup>Ra, and the activities of <sup>137</sup>Cs, <sup>210</sup>Pb and <sup>214</sup>Pb were 216 measured by gamma spectrometry (Chappaz et al., 2008). Unsupported <sup>210</sup>Pb activity was obtained 217 by subtracting <sup>214</sup>Pb activity from that of <sup>210</sup>Pb. The <sup>210</sup>Pb models used to determine sediment mass 218 accumulation rates ( $\omega$ ; mg cm<sup>-2</sup> vr<sup>-1</sup>) and sediment ages are given by Couture et al. (2008, 2010a). 219 220

Areas of the Teflon sheets containing the Fe-rich authigenic deposits were cut and dissolved in
50% HCl for 48 h at room temperature. The resulting solutions were filtered through 0.4-μm pore
size Teflon membranes, diluted 10 times and analyzed for Fe by inductively coupled plasma
optical emission spectroscopy (ICP-OES; VISTA AX CCD), for C and N with a Shimadzu C N
analyzer and for Hg<sub>T</sub> and MeHg as described above for dissolved Hg<sub>T</sub> and MeHg.

226

228

227 **2.4. Calculations of chemical speciation** 

| 229 | The speciation of Hg in porewater and overlying water was predicted with the computer code                                             |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|
| 230 | Windermere Humic Aqueous Model (WHAM 6; Tipping, 2002) using as inputs the average                                                     |
| 231 | measured pH values and concentrations of dissolved Hg <sub>NM</sub> , MeHg, Al, Ca, Fe, K, Mg, Mn, Na, Cl,                             |
| 232 | SO <sub>4</sub> , CO <sub>3</sub> , $\Sigma$ S(-II), $\Sigma$ S(0), and humic (HA) and fulvic (FA) acids. The concentrations of HA and |
| 233 | FA were calculated from those of DOC, assuming that dissolved organic matter contains 50% of C                                         |
| 234 | (Buffle, 1988) and that all DOC is humic substances with a ratio [FA]:[HA] of 9:1 (Malcolm,                                            |
| 235 | 1985). We updated the thermodynamic database of WHAM 6 with the thermodynamic constants                                                |
| 236 | for the reactions of Hg and MeHg listed in Table 2, which required adding MeHg and dissolved                                           |
| 237 | zero-valent S $(S(0)_{aq})$ as new components. To be compatible with the code format, all reactions                                    |
| 238 | expressed in terms of solid rhombic sulfur $(S(\alpha)_{8(s)})$ in the literature were rewritten in terms of                           |
| 239 | $S(0)_{aq}$ assuming that $1/8S(\alpha)_{8(s)} = S(0)_{aq}$ ; $K_S = 10^{-6.68}$ (Wang and Tessier, 2009). The constants for           |
| 240 | the formation of Hg-sulfide and Hg-polysulfide complexes were those provided by Jay et al.                                             |
| 241 | (2000), whereas those for the formation of Hg and MeHg complexes with HA and FA were                                                   |
| 242 | recently updated by Tipping (2007). However, some of the constants should be taken with caution,                                       |
| 243 | especially those for the formation of Hg and MeHg complexes with sulfide, polysulfides, and                                            |
| 244 | humic and fulvic acids. For instance, it is noteworthy that the species $HgS_{(aq)}$ has never been                                    |
| 245 | detected experimentally. For the formation of the $HgS_yOH^2$ and $Hg(S_y)_2^{2^2}$ complexes given by Jay                             |
| 246 | et al. (2000), the value of y, which could not be specified by the authors, was arbitrary assumed to                                   |
| 247 | be 5.                                                                                                                                  |
|     |                                                                                                                                        |

# **2.5.** Modeling the porewater profiles of Hg<sub>T</sub> and MeHg in Lake Tantaré

The porewater Hg<sub>T</sub> or MeHg profiles result from transport processes and reactions that release
 Hg<sub>T</sub> or MeHg to or remove them from the aqueous phase. Assuming steady-state and neglecting

advective fluxes due to sediment burial, compaction or groundwater flow (Gallon et al., 2004), the distribution of porewater  $Hg_T$  can be described by the following one-dimensional mass balance equation (Boudreau, 1997):

255 
$$\left(\frac{\partial \phi Hg_T}{\partial t}\right)_x = \frac{\partial}{\partial x} \left(\phi \Phi_s + D_B \frac{\partial}{\partial x} + \phi \alpha \Phi g_T - Hg_T + R_{net}^{Hg} = 0$$
(1)

where x represents depth (cm; positive downward), t is time (s),  $\phi$  is sediment porosity,  $D_s$  is 256 the effective diffusion coefficient of Hg species in sediments (cm<sup>2</sup> s<sup>-1</sup>),  $D_B$  is the biodiffusion 257 coefficient (cm<sup>2</sup> s<sup>-1</sup>),  $\alpha$  is the bioirrigation coefficient (s<sup>-1</sup>),  $Hg_{T,burrow}$  is Hg<sub>T</sub> concentration in the 258 burrows of benthic animals (mol cm<sup>-3</sup> of porewater), which is assumed to be identical to that in the 259 water overlying the sediments, and  $R_{net}^{Hg}$  is the net reaction rate (mol cm<sup>-3</sup> of whole sediment s<sup>-1</sup>) of 260 Hg<sub>T</sub> released to ( $R_{net}^{Hg} > 0$ ) or consumed from ( $R_{net}^{Hg} < 0$ ) the aqueous phase. A similar equation can 261 262 be written for the distribution of dissolved MeHg, where  $Hg_T$  is replaced by MeHg in Eq. (1); the term  $R_{net}^{MeHg}$  then represents the net rate of MeHg production to or removal from porewater. 263

264

We assumed that  $D_s = \phi^2 D_W$  (Berner, 1980) where  $D_W$  is the tracer diffusion coefficient of the major Hg (or MeHg) species present in porewater. Considering that major dissolved Hg<sub>T</sub> species are complexes with sulfide and polysulfides in porewaters of both Basins A and B (see section 3.1), we adopted a  $D_W$  value of  $9.5 \times 10^{-6}$  cm<sup>-2</sup> s<sup>-1</sup> at 25 °C, as proposed by Gill et al. (1999) for inorganic Hg complexes. With regard to MeHg, we used the  $D_W$  value provided by Hammerschmidt and Fitzgerald (2004) for MeHgSH ( $1.2 \times 10^{-5}$  cm<sup>-2</sup> s<sup>-1</sup> at 25 °C), the main species of dissolved MeHg according to our calculations with WHAM 6. The chosen  $D_W$  values for Hg<sub>T</sub> and MeHg were then corrected for *in situ* temperature at our sampling sites (4°C) with the StokesEinstein equation (Boudreau, 1997).

274

For modeling Basin A porewater  $Hg_{T}$  and *MeHg* profiles, the value of biodiffusion 275 coefficient  $(2.2 \times 10^{-9} \text{ cm}^2 \text{ s}^{-1})$  provided by Gallon et al. (2004) was used in Eq. (1). This value was 276 277 determined on the basis of an extensive inventory at the sampling site of the benthic fauna, which 278 comprises mostly chironomids (Hare et al., 1994), and of biodiffusion coefficients for chironomids 279 (Matisoff and Wang, 2000). The bioirrigation coefficient ( $\alpha$ ) for Basin A was assumed to decrease linearly from  $\alpha^0$  at the sediment surface to zero at 10 cm depth, because chironomids are 280 generally not found below this sediment depth (Matisoff and Wang, 1998), and  $\alpha^0$  was derived 281 282 from the following relationship provided by Boudreau (1984):

283 
$$\alpha^{0} = \frac{D_{s}r_{1}}{\zeta_{2}^{2} - r_{1}^{2} \zeta_{a} - r_{1}}$$
(2)

where  $r_1$  is the radius of a chironomid's tube (assumed to be 0.1 cm),  $r_2$  is half the distance between adjacent tubes (1.5 cm), and  $r_a$  is equal to  $r_2/2$ . Given the seasonal development of anoxia in Basin B, we assumed that the biodiffusion ( $D_B$ ) and bioirrigation ( $\alpha$ ) coefficients were negligible for this basin.

288

Equation 1 was solved numerically for  $R_{net}^{Hg}$  or  $R_{net}^{MeHg}$  using the code PROFILE (Berg et al., 1998). PROFILE first determines the minimum number of equally spaced depth intervals (or zones) with uniform values of  $R_{net}^{Hg}$  or  $R_{net}^{MeHg}$  needed to fit a measured  $Hg_T$  or MeHg profile with parabola sections, based on the least-squares criterion. Using statistical F-testing, it then

determines if combining adjacent zones with close values of  $R_{net}^{Hg}$  or  $R_{net}^{MeHg}$  can be done without 293 294 reducing the quality of the fit. This procedure allows an objective selection, among all the possible solutions, of the one that gives the simplest  $R_{net}^{Hg}$  or  $R_{net}^{MeHg}$  depth functions, which show as 295 piecewise constant functions. 296 297 298 **3. RESULTS** 299 3.1. Porewater 300 301 302 The concentrations of dissolved Hg<sub>T</sub> varied between DL and 9 pM in Basin A and between DL 303 and 40 pM in Basin B (Fig. 2a-d). These concentrations are among the lowest values reported for 304 freshwater environments such as Lake St. Pierre (4-20 pM; Goulet et al., 2007), Lakes Philips and 305 St. George (40-100 pM; He et al., 2007) and Lakes Clearwater and McFarlane (10-100 pM with 306 some values up to 200 pM; Belzile et al., 2008). Porewater MeHg concentrations varied between 307 DL and 1.3 pM in Basin A and between DL and 10 pM in Basin B (Fig. 2e-h) and represented 308 <1% to 20% of [Hg<sub>T</sub>] with a few extreme values up to 45%. These concentrations are also among 309 the lowest values reported for porewaters in freshwater environments such as a seepage lake (0.5-8) 310 pM; Hines et al., 2004), Lake St-Pierre (<0.05-9 pM; Goulet et al., 2007) and Lakes Philips and St. 311 George (5-30 pM; He et al., 2007). The fact that the  $[Hg_T]$  and [MeHg] profiles are defined by 312 multiple data points suggests that they are not shaped by sampling and handling artifacts. 313 314 In Basin A, the [Fe] profiles (Fig. 2i, j) displayed sharp concentration gradients close to the 315 sediment-water interface due to the intense recycling of Fe-ox (Chappaz et al., 2008).

Furthermore, consistent with the occurrence of oxygenated bottom water,  $[SO_4^{2-}]$  (Fig. 2u, v) was 316 317 relatively high and  $[\Sigma S(-II)]$  (Fig. 2m-n) was below detection limit in the sediment overlying 318 water. Sulfate concentration decreased with depth below the sediment-water interface whereas 319  $[\Sigma S(-II)]$  progressively increased below 2–6 cm depth in the sediments, depending on the sampling date. The vertical profiles of  $[Hg_T]$  and [MeHg], in contrast to those of [Fe],  $[SO_4^{2-}]$  and 320 321  $[\Sigma S(-II)]$ , which displayed sharp variations, were almost featureless, except for two [MeHg] 322 profiles showing a notable MeHg increase at 5-10 cm depth in September 2005 and at 1-6 cm 323 depth in September 2006. The lack of correlation between the profiles of [Hg<sub>T</sub>] and [MeHg] and 324 those of [Fe] suggests that they are not coupled in a simple manner. The few trend dissimilarities observed among the profiles of [MeHg] as well as those of  $[SO_4^2]$ ,  $[\Sigma S(-II)]$  and  $[\Sigma S(0)]$  (Fig. 2q-325 326 r) indicate some sediment lateral heterogeneity at the scale of our porewater sampling area ( $\sim 25$ 327  $m^2$ ).

328

329 The concentration gradients found for most solutes (Hg<sub>T</sub>, MeHg, Fe, SO<sub>4</sub>,  $\Sigma$ S(–II)) above the 330 sediment–water interface in Basin B suggest that a few cm thick nepheloid layer was present above 331 the sediment surface during both sampling periods and that solutes were transported by diffusion 332 across this layer. Even though some lateral heterogeneity was evident from the profiles of the various solutes, the relatively higher  $[SO_4^{2-}]$  and lower  $\Sigma S(-II)$  in the sediment overlying water in 333 334 July 2007 (Fig. 2x, p) than in October 2006 (Fig. 2w, o) reflected a shift in bottom water redox 335 conditions. However, the profiles of [Fe] displayed only subtle differences in vertical trends, if 336 any, among the sampling dates (Fig. 3k-l). All the [Fe] profiles suggest a weak remobilization of 337 Fe in the sediments and a small upward diffusive Fe flux across the sediment-water interface. 338 Despite these differences in redox conditions, the trends in the [Hg<sub>T</sub>] and [MeHg] profiles

remained quite similar, i.e.,  $[Hg_T]$  and [MeHg] were higher in the overlying water than in porewater and progressively decreased downwards to 2-5 cm depth below the sediment–water interface. As in Basin A, the  $[Hg_T]$  and [MeHg] profiles showed no obvious correlation with those of [Fe]. On the contrary to what was observed in Basin A, where sulfate reduction occurred in porewater, the  $[SO_4^{2-}]$ ,  $\Sigma S(-II)$  and  $\Sigma S(0)$  profiles indicate that sulfate reduction took place above the sediment–water interface in this basin.

345

346 Thermodynamic calculations with the code WHAM 6 predict that dissolved Hg speciation was 347 markedly different in Basins A and B (Fig. 3a-h). Since the measurements of Hg and MeHg and 348 those of other physico-chemical parameters could not all be carried out in samples collected from 349 the same peepers, we used average values of all the physico-chemical parameters in calculating Hg 350 and MeHg speciation. Given the heterogeneity observed among replicate profiles of some key 351 parameters (e.g.,  $\sum S(-II)$ ,  $\sum S(0)$ , Hg<sub>NM</sub>, MeHg; Fig. 2a-h and m-t), there is some uncertainty in the 352 predicted Hg<sub>NM</sub> and MeHg speciation shown in Fig. 3a-h. In the overlying water of Basin A, where sulfide and zero-valent S concentrations were below detection limit, Hg<sub>NM</sub> was predicted to be 353 354 present mostly as complexes with humic substances (>99%), and MeHg as CH<sub>3</sub>HgOH (~90%). At 355 porewater  $\Sigma S(-II)$  above detection limit in this basin, however, calculations predicted that most of 356  $Hg_{NM}$  was rather in the form of  $HgS_{aq}$ , with only 2-3% bound to humic substances, and that MeHg 357 likely existed mainly as CH<sub>3</sub>HgSH. As for Basin B, thermodynamic predictions are that most of 358 the Hg<sub>NM</sub> was in the form of polysulfide complexes when  $\Sigma S(0)$  was above 0.2  $\mu$ M, and as sulfide 359 complexes when  $\Sigma S(0)$  was below 0.2  $\mu$ M. Most of the MeHg was predicted to be in the form of 360 MeHgS<sup>-</sup> (18 $\pm$ 3%) and MeHgSH (80 $\pm$ 3%). Hg<sub>NM</sub> and MeHg complexes with humic substances 361 appear to be negligible (<1% for both) in Basin B even if porewater DOC was about 2-fold higher

in Basin B than in Basin A (data not shown). It is noteworthy that similar conclusions about the speciation of  $Hg_{NM}$  and MeHg in sediment porewater were reached by Goulet et al. (2007) and Merritt and Amirbahman (2007, 2008).

365

**366 3.2. Solid-phase** 

367

368 Solid-phase Fe concentration sharply decreased in the top 2-cm layer of Lake Tantaré Basin 369 A sediments (Fig. 4g) and then remained nearly constant downwards. This near surface Fe 370 enrichment results from the intense redox recycling of Fe in the sediments of this basin (Laforte et 371 al., 2005); it is consistent with the sharp porewater [Fe] gradients close to the sediment-water 372 interface (Fig. 2i, j). If we assume that the concentration of authigenic Fe-ox in the top 0.5-cm 373 sediment layer is the difference between the measured {Fe} concentration in this layer and the constant background {Fe} value below 15 cm depth, then {Fe-ox} =  $1.55 \times 10^{-3}$  mol g<sup>-1</sup> (Table 3). 374 375 Comparable surface sediment Fe enrichment is absent from Basin B and from the other two lakes 376 where the bottom waters become seasonally anoxic (Fig. 4h-j). In Lakes Bédard and Holland 377 sediments, maximum {Fe} were coincidental with AVS peaks that occurred at 3.75-5.25 cm depth 378 (Fig. 4q, r). Sediment and porewater Mn profiles (Figs. 4g-j and 2i-l) did not show any evidence of 379 redox recycling of this element, consistent with the anoxic condition (Lakes Bédard and Holland 380 and Basin B of Lake Tantaré) or with the slightly acidic condition of porewater (Basin A of Lake 381 Tantaré; Laforte et al., 2005).

382

Organic C concentrations in the sediments of the three study lakes ranged from ~16% and
 ~35%; they varied with depth in Lake Holland, but remained nearly monotonic in the other lakes

385 (Fig. 4 k-n). The average ( $\pm$ SD) {C<sub>org</sub>}:{N} molar ratios of the sediments, over the whole cores, 386 were  $16.7 \pm 0.7$ ,  $16.6 \pm 2.2$ ,  $16.3 \pm 2.3$  and  $13.7 \pm 1.2$  for Basins A and B of Lake Tantaré and for Lakes Bédard and Holland, respectively. Such large  $\{C_{org}\}$ :  $\{N\}$  ratios are consistent with organic 387 388 matter being mainly humic substances derived from the watershed rather than autochtonous 389 organic matter (Feyte et al., 2010); indeed, these ratios are much larger than those (6.4 - 6.6)390 reported for phytoplankton or for settling particles in a productive lake (Redfield, 1934; Hamilton-391 Taylor et al., 1984), but close to those of soil humic substances (Buffle, 1988). The  $\{C_{org}\}$ :  $\{N\}$ 392 ratio in the top 0.5-cm sediment layer of Basin A was 15.5, a value very close to that measured 393  $(15.3 \pm 3.4)$  in the Fe-rich diagenetic material collected on Teflon sheets (Table 3). Organic matter 394 in surface sediment and that associated to the diagenetic material can thus be assumed to have the 395 same origin. The slightly lower  $\{C_{org}\}$ :  $\{N\}$  molar ratios in surface sediments and in the diagenetic 396 material than the average ( $\pm$  SD) ratio for the whole core (16.7  $\pm$  0.7) are consistent with the 397 presence of small amounts of autochtonous labile organic matter present at the sediment surface. 398 Notably, the { $C_{org}$ }:{Fe} molar ratio of 2.6 ± 0.3 (Table 3) found in the Fe-rich material indicates 399 that it contains substantial amounts of organic matter. The  $\{C_{org}\}$ : {Fe} molar ratio of the 400 diagenetic material is, however, much smaller than that measured in the top 0.5-cm layer of 401 sediments (13; Table 3), thus indicating that most of humic substances in the sediments was not 402 bound to Fe-ox but was present as organic coating on other solids or as separate particles.

403

404 At each of the sampling sites where AVS was measured, maximum concentrations occurred 405 at depths ranging from 3.25 to 8.75 cm (Fig. 4o, q, r). The  $\{S_T\}$  and  $\{AVS\}$  profiles exhibited 406 subsurface maxima at the same depth in Lakes Bédard and Holland sediments, but not in those of 407 Lake Tantaré Basin A where the  $S_T$  peak was slightly deeper than the AVS peak. An important

| 408 | aspect of these results is that AVS represents only a minor fraction of $\{S_T\}$ in Lakes Tantaré and              |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 409 | Bédard sediments and a small fraction in Lake Holland sediments. For instance, the inventories of                   |
| 410 | AVS over the total length of the cores are equivalent to 0.5%, 3% and 26% of those of $S_T$ for                     |
| 411 | Lakes Tantaré (Basin A), Bédard and Holland, respectively. Using a non-steady state one-                            |
| 412 | dimensional reactive transport modeling approach, Couture et al. (2010b) concluded that the AVS                     |
| 413 | concentrations in Basin A sediments are about one order of magnitude lower than what they should                    |
| 414 | be considering the sulfate reduction rate. If, as their model indicates, pyrite does not form in these              |
| 415 | sediments due to slow kinetics and low porewater $\sum S(-II)$ , the high rate of SO <sub>4</sub> reduction and the |
| 416 | low AVS inventory could then only be reconciled by inferring that most of the sulfide produced                      |
| 417 | became associated to the organic matter. Substantial laboratory and field evidences exist for the                   |
| 418 | incorporation of dissolved sulfide to humic substances (e.g., Canfield et al., 1998; Einsield et al.,               |
| 419 | 2008).                                                                                                              |

The concentrations of Hg<sub>T</sub> measured in the sediments of the three study lakes ranged 421 between 0.6 and 3.0 nmol  $g^{-1}$  (Fig. 4a-d). These values are typical of those reported for other lake 422 423 sediments from North-Eastern United States to Northern Canada and Alaska (e.g. Perry et al., 424 2005; Fitzgerald et al., 2005; Engstrom et al., 2007; Mills et al., 2009; Muir et al., 2009). While the 425 ranges for {Hg<sub>T</sub>} in Lake Tantaré Basins A and B were similar, their profiles exhibited striking 426 differences (Fig. 4a, b). In Basin A, {Hg<sub>T</sub>} increased progressively toward the sediment surface from an average ( $\pm$  SD) background value of 1.07  $\pm$  0.08 nmol g<sup>-1</sup> below 15 cm to an uppermost 427 value of 3.0 nmol  $g^{-1}$  at the sediment surface. The {Hg<sub>T</sub>}:{Fe} molar ratio in the Fe-rich material 428  $(1.3 \pm 0.3 \times 10^{-7})$  was much lower than in the top 0.5-cm sediment layer  $(1.9 \times 10^{-6})$  (Table 3). In 429 Basin B, {Hg<sub>T</sub>} increased from a background value of  $0.91 \pm 0.06$  nmol g<sup>-1</sup> at the bottom of the 430

core to a sub-surface maximum of 2.8 nmol  $g^{-1}$  at a depth of 5.25 cm and then decreased 431 progressively to 2.3 nmol  $g^{-1}$  at the sediment surface. The average (± SD) partition coefficient for 432  $Hg_T (K_D^{Hg} = {Hg_T}/[Hg_T])$  in sediments of Basins A and B (log  $K_D^{Hg} = 5.7 \pm 0.2$ ) is slightly higher 433 than those reported for other freshwater sediments ( $\log K_D^{Hg} = 3.7-4.5$ ; He et al., 2007; Goulet et 434 435 al, 2007; Belzile et al., 2008). It is noteworthy that the profiles of the  $\{Hg_T\}$ :  $\{AI\}$  molar ratio and 436 those of  $\{Hg_T\}$  exhibited very similar trends in the two basins of Lake Tantaré and of Lake Bédard, but not in Lake Holland (Fig. 4a-d). The {Hg<sub>T</sub>}:{Al} ratio varied between  $7.2 \pm 0.7 \times 10^{-7}$ 437 and  $22 \times 10^{-7}$  (Basin A) or  $29 \times 10^{-7}$  (Basin B) in Lake Tantaré sediments and between  $7.1 \pm 0.4 \times 10^{-7}$ 438  $10^{-7}$  and  $11.8 \times 10^{-7}$  in those of Lake Bédard. In Lake Holland, the {Hg<sub>T</sub>}:{Al} ratio varied steeply 439 with depth; it decreased from the sediment-water interface  $(17 \times 10^{-7})$  to 13 cm depth  $(5.6 \times 10^{-7})$ . 440 increased sharply below this horizon to reach a maximum at 21 cm depth ( $34 \times 10^{-7}$ ) and then 441 decreased to  $20 \times 10^{-7}$  at the bottom of the core. Note that all the {Hg<sub>T</sub>}:{Al} values, even the 442 443 preindustrial ones at the bottom of the cores, are higher than the average  $\{Hg_T\}$ ;  $\{A\}$  molar ratio in the Upper Continental Crust  $(0.7 \times 10^{-7}; Wedepohl, 1995)$  suggesting that even the preindustrial 444 445  $\{Hg_T\}$  does not comprise only lithogenic Hg.

446

The concentrations of sediment MeHg in Basins A and B of Lake Tantaré varied from 3 to 75 pmol g<sup>-1</sup>, representing 0.2 to 2.5% of {Hg<sub>T</sub>} and are typical of those reported for other lake sediments of the North American continent (e.g. Ethier et al., 2010; He et al., 2007; Hines et al., 2004). The solid-phase distribution of MeHg in Basin A contrasts with that in Basin B. Surface sediments are enriched in {MeHg} in Basin A, but not in Basin B. Surface sediment enrichments in MeHg were also observed in other lake sediments and were attributed to MeHg production and/or deposition at the sediment surface and subsequent demethylation with sediment burial

| 454 | (Hines et al., 2004; He et al., 2007; Rydberg et al., 2008). In the Fe-rich deposits collected with the     |
|-----|-------------------------------------------------------------------------------------------------------------|
| 455 | Teflon sheets in Basin A, the average (n = 7) {MeHg}:{Fe} molar ratio was $6.5 \pm 1.9 \times 10^{-10}$ , a |
| 456 | much lower value than that found in the top 0.5-cm sediment layer ( $4.9 \times 10^{-8}$ ; Table 3). The    |
| 457 | average ( $\pm$ SD) partition coefficient for MeHg ( $K_D^{MeHg} = \{MeHg\}/[MeHg]$ ) in Basin A and B      |
| 458 | sediments (log $K_D^{MeHg} = 4.7 \pm 0.4$ ) was slightly higher than those reported for other lake          |
| 459 | sediments (log $K_D^{MeHg} = 0.5-4$ ; He et al., 2007; Goulet et al., 2007).                                |
| 460 |                                                                                                             |
| 461 | 4. DISCUSSION                                                                                               |
| 462 |                                                                                                             |

4.1. Modeling the [Hg<sub>T</sub>] profiles

463

464

465 The modeled  $[Hg_T]$  profiles for the average (n = 3) porewater  $Hg_T$  distribution in each basin of Lake Tantaré and sampling date as well as the zones of Hg<sub>T</sub> production or consumption are shown 466 in Fig. 3i-l whereas the values of the net rate  $(R_{net}^{Hg})$  in each zone, numbered downward from the 467 468 sediment-water interface, are given in Table 4. For calculating the average [Hg<sub>T</sub>], we assumed a 469 value of 0.5 DL for all undetected concentrations. In Basin A, the modeled [Hg<sub>T</sub>] profiles were in relatively good agreement ( $r^2 = 0.76-0.82$ ) with the measured profiles. In September 2005, there 470 was a 6-cm thick zone of slow net Hg consumption ( $R_{net}^{Hg} = -0.7 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1}$ ) just below the 471 sediment–water interface, above a zone of slow net Hg<sub>T</sub> production ( $R_{net}^{Hg} = 2.4 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1}$ 472 <sup>1</sup>). In September 2006, PROFILE suggests the occurrence of a single zone of slow net Hg<sub>T</sub> 473 consumption ( $R_{net}^{Hg} = -0.8 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1}$ ) between the sediment–water interface and 10 cm 474 depth. In Basin B, the  $R_{net}^{Hg}$  values provided by PROFILE were larger than those found in Basin A 475

and the modelled and measured [Hg<sub>T</sub>] profiles were in better agreement ( $r^2 = 0.95-0.96$ ). At both 476 477 sampling periods, there was consistently a 4-6-cm thick zone of relatively fast net consumption of dissolved Hg<sub>T</sub> ( $R_{net}^{Hg} = -3.6 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1} \text{ to } -14 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1}$ ) above a zone of 478 relatively fast net Hg<sub>T</sub> production ( $R_{net}^{Hg} = 1.7 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1}$  to  $11 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1}$ ). Note 479 that the  $R_{net}^{Hg}$  values for the release of Hg<sub>T</sub> to Lake Tantaré porewater were 3-15 times lower than 480 481 those reported by Merritt and Amirbahman (2007) for the highly contaminated Penobscot River-Estuary sediments ( $R_{net}^{Hg} = 37 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1}$  to  $52 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1}$ ). As for the net rates of 482 483 Hg<sub>T</sub> removal from porewater, they were of similar magnitude to those of the Penobscot River-Estuary ( $R_{net}^{Hg} = -7.5 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1} \text{ to } -14 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1}$ ) only in Basin B sediments. 484 485

486 Thus, Fig. 3i-l indicates consistently that Hg<sub>T</sub> is removed in zone 1, located just below the 487 sediment-water interface; thickness of the zone (4 - 10 cm) and intensity of net Hg<sub>T</sub> removal vary 488 with sampling site and date, and net removal rate is faster in Basin B than in Basin A. 489 Mechanisms that control porewater Hg<sub>T</sub> concentrations might include precipitation/dissolution of 490 minerals such as cinnabar (HgS<sub>(s)</sub>) and montroydite (HgO<sub>(s)</sub>) (e.g., Winfrey and Rudd, 1990; 491 Ullrich et al., 2001), Hg adsorption to Fe and Mn oxyhydroxides (e.g., Gobeil and Cossa, 1993; 492 Gagnon et al., 1997; Bloom et al., 1999; Hammerschmidt et al., 2004; Heyes et al., 2004; Turner et 493 al., 2004), Hg adsorption to or coprecipitation with Fe sulfide (e.g., Morse and Luther, 1999; 494 Merritt and Amirbahman, 2007; Jeong et al., 2007; Liu et al., 2008) and Hg reaction with organic 495 matter (e.g., Hammerschmidt and Fitzgerald, 2004; Sunderland et al., 2006; Hollweg et al., 2009). 496

| 497 | Precipitation of cinnabar (HgS <sub><math>(s, cinnabar); reaction 23 in Table 2) is not responsible for the</math></sub> |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| 498 | observed net porewater Hg <sub>T</sub> removal in Lake Tantaré sediments. This is supported by comparison                |
| 499 | of the ion activity product (IAP) and the solubility product (K <sub>s</sub> ), which indicates that, in both            |
| 500 | basins and at all sampling periods, the porewater, from the sediment-water interface to 10 cm                            |
| 501 | depth, was always undersaturated by more than two orders of magnitude with respect to cinnabar.                          |
| 502 | A similar conclusion can be made for the precipitation of montroydite ( $HgO_{(s)}$ ; reaction 24 in                     |
| 503 | Table 2) with porewater being undersaturated by more than 25 orders of magnitude with respect to                         |
| 504 | this solid. It should be noted that varying the value of "y" between 2 and 7 for the complexes                           |
| 505 | $HgS_yOH^2$ and $Hg(S_y)_2^{2^2}$ does not alter our conclusion on the saturation state of porewater with                |
| 506 | respect to these solids. Goulet et al. (2007) also reported that the porewater of a riverine wetland                     |
| 507 | was undersaturated with respect to these solids.                                                                         |

509 The presence of Hg in the Fe-rich authigenic material collected on Teflon sheets (Table 3) 510 indicates that some Hg is removed from Basin A porewater by authigenic Fe-ox or its associated 511 organic matter. By multiplying the {Hg<sub>T</sub>}:{Fe} molar ratio measured in the Fe-rich material 512 collected with Teflon sheets by the concentration of authigenic Fe-ox in the top 0.5-cm sediment layer (Table 3), we estimate that, at the most,  $1.9 \times 10^{-10}$  mol g<sup>-1</sup>, i.e., ~6 % of {Hg<sub>T</sub>} (3 × 10<sup>-9</sup> mol 513 g<sup>-1</sup>), would be bound to the Fe-ox or to its associated organic matter in this sediment layer. An 514 515 implicit assumption in that calculation is that the authigenic Fe-ox in the top 0.5-cm layer of the 516 sediment have a similar composition to those collected on the Teflon sheets. In Basin A of Lake 517 Tantaré, strong correlations have been observed between porewater [As] (Couture et al., 2010a) or 518 [Mo] (Chappaz et al., 2008) and [Fe] profiles because these anionic trace elements show a strong 519 coupling with Fe redox recycling and they are not readsorbed quickly when they are released by

| 520 | dissolution of the Fe-ox. The lack of correlation between the porewater [Hg <sub>T</sub> ] and [Fe] profiles |
|-----|--------------------------------------------------------------------------------------------------------------|
| 521 | (Fig. 2 a, b and i, j) could be explained by a weaker involvement of Hg in the Fe redox recycling            |
| 522 | and/or a fast readsorption of the Hg released following the reductive dissolution of the Fe-ox.              |
| 523 | Adsorption of Hg onto Fe-ox in Basin B sediments can be ruled out since authigenic Fe-ox are                 |
| 524 | absent or at low concentrations in the sediments of this Basin, due to the seasonally anoxic                 |
| 525 | condition (see Figs 2k, 1 and 4h). Likewise, removal of porewater Hg <sub>T</sub> by adsorption onto Mn      |
| 526 | oxyhydroxides can be ignored because the slightly acidic condition of the lake prevents the                  |
| 527 | formation of this authigenic phase (Laforte et al., 2005). Thus, adsorption to Fe-ox or its associated       |
| 528 | organic matter likely occurs in Basin A sediments but is of minor importance and does not alone              |
| 529 | explain the differences observed between Basins A and B in the distribution of $\{Hg_T\}$ in the top 5       |
| 530 | cm of the sediments (Fig. 4a-b).                                                                             |

532 Coincidence in space between the zone of Hg<sub>T</sub> removal in Basin B (Fig. 3k, l) and the depth interval where porewater was slightly oversaturated with respect to disordered mackinawite (FeS<sub>(s,</sub> 533 534 <sub>m</sub>; equation 37 in Table 2) (see Fig. 3s, t) suggests that the relatively fast removal of Hg<sub>T</sub> from 535 porewater in this basin could be explained by its adsorption to or coprecipitation with  $FeS_{(s, m)}$ . 536 This interpretation would also be consistent with the net Hg<sub>T</sub> production in July 2007 in Basin B 537 (Fig. 31) which corresponds to a depth interval (6-10 cm) where porewater was undersaturated with 538 respect to  $FeS_{(s, m)}$  (Fig. 3t). However, this mechanism would explain neither the net porewater Hg<sub>T</sub> 539 removal in Basin A (zone 1 in Fig. 3i, j), given that porewater was undersaturated with respect to 540 FeS<sub>(s, m)</sub> (Fig. 3q, r), nor the porewater Hg<sub>T</sub> production in Basin B in October 2006 (zone 2; 4-9 cm depth), given that porewater was slightly supersaturated with respect to FeS<sub>(s, m)</sub>. However, in all 541

these latter cases, where very low [Hg<sub>T</sub>] were modeled, the  $R_{net}^{Hg}$  values were small and, arguably, could be modeling artifacts.

544

545 As a last point, removal of porewater  $Hg_T$  by reduced sulfur functional groups on organic 546 matter cannot be dismissed, especially in Basin B. Indeed, our data indicate that relatively high 547 concentrations of sulfur are present (Fig. 4p) over the depth interval where Hg<sub>T</sub> is removed from 548 porewater, and, as previously stated in section 3.2, most of the S could be organically-bound. 549 Several studies have speculated that sulfur groups in sediment humic substances could bind Hg 550 (Ravichandran, 2004; Skyllberg, 2008), and such binding has been shown by spectroscopic 551 techniques (XANES) to occur at reduced sulfur sites present in soil humic substances (Xia et al., 552 1999). There is growing evidence that humic substances become sulfidized in anoxic sediments 553 (e.g., Canfield et al., 1998; Einsield et al., 2008). Also, several studies in coastal marine sediments 554 (e.g., Bloom et al., 1999; Hammerschmidt and Fitzgerald, 2004 and 2006a; Sunderland et al., 2006; Hollweg et al., 2009) have shown a significant correlation between log  $K_D^{Hg}$  and  $\{C_{org}\}$  or 555 556 between  $\{Hg_T\}$  and  $\{C_{org}\}$ , which were taken as an indication that Hg was bound to organic matter. We did not observe such correlations, perhaps due to the small depth variation in  $\{C_{org}\}$  in 557 558 the two basins.

559

Thus, it can be concluded that pure Hg mineral phases do not form in Lake Tantaré sediments and that  $Hg_T$  adsorption onto Fe-ox occurs to a limited extent. Moreover, our data do not allow us to demonstrate unambiguously whether  $Hg_T$  associations with Fe sulfide phases or sulfidized organic matter are important processes controlling porewater  $Hg_T$  concentrations in the lacustrine

### 567 **4.2. Modeling the [MeHg] profiles**

568

Fitting of the average (n = 3) porewater [MeHg] profiles in each basin and sampling date and the zones of [MeHg] production or consumption are displayed in Fig. 3m-p whilst the values of the net reaction rates ( $R_{net}^{MeHg}$ ) are given in Table 5 for each zone numbered downward from the sediment-water interface. In calculating the average [MeHg], undetectable concentrations were assumed to be half the DL.

574

575 In Basin A, the code PROFILE defined for September 2005 (Fig. 3m) a zone of slow net MeHg consumption (zone 1) in the first 5 cm below the sediment–water interface ( $R_{net}^{MeHg} = -0.2 \times$ 576 10<sup>-21</sup> mol cm<sup>-3</sup> s<sup>-1</sup>) above a zone of about the same thickness where MeHg was slowly produced 577 (zone 2;  $R_{net}^{MeHg} = 0.3 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1}$ ). For September 2006, PROFILE suggests a different 578 579 pattern with two zones of net MeHg consumption and of net production (Fig. 3n). However, fitting 580 of the average [MeHg] profile for September 2006 should be taken with caution, due to the high 581 standard deviation on the average [MeHg] values, especially between the sediment–water interface 582 and 5 cm depth, thus reflecting some local heterogeneity. When they are modeled individually, two of the [MeHg] profiles (Fig. 5a and c) yield a  $R_{net}^{MeHg}$ -depth pattern consistent with that obtained for 583 584 the average [MeHg] profile of September 2005 (Fig. 3m). However, the other [MeHg] profile (Fig. 5b) shows a zone of fast net MeHg production ( $R_{net}^{MeHg} = 5.2 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1}$ ) located between 585

586 two consumption zones extending, one from the sediment-water interface to 1.5 cm depth  $(R_{net}^{MeHg} = -2.0 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1})$ , and another one from 3 to 10 cm depth  $(R_{net}^{MeHg} = -0.4 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1})$ 587 mol cm<sup>-3</sup> s<sup>-1</sup>). It is worth recalling that samples from three peepers were pooled together in order to 588 589 get enough volume for the MeHg analysis. This averaging procedure likely leads to underestimate 590 the actual spatial heterogeneity in net MeHg production and consumption rates. An important 591 heterogeneity among replicate [MeHg] profiles, as we observed in Lake Tantaré Basin A, was also 592 noticed in the Penobscot River Estuary (Merritt and Amirbahman, 2008). We do not have a clear 593 explanation for this heterogeneity, which did not show in the sediments of the anoxic Basin B, but 594 we speculate that it is related to small scale variations in the activity of benthic animals. 595 596 Modeling the average (n = 3) [MeHg] profiles determined in October 2006 and July 2007 in Basin B leads to similar results for the two sampling periods, with an excellent agreement ( $r^2 =$ 597 598 0.96-0.99) between measured and modeled data (Fig. 30, p). It shows a 1.5 to 3-cm thick zone where MeHg is consumed relatively fast (zone 1;  $R_{net}^{MeHg} = -0.9 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1} \text{ to } -3.5 \times 10^{-21}$ 599 mol cm<sup>-3</sup> s<sup>-1</sup>) above a zone of much slower net MeHg consumption (zone 2;  $R_{net}^{MeHg} = -0.01 \times 10^{-21}$ 600 mol cm<sup>-3</sup> s<sup>-1</sup> to  $-0.03 \times 10^{-21}$  mol cm<sup>-3</sup> s<sup>-1</sup>). The  $R_{net}^{MeHg}$  values for net MeHg removal from Lake 601 602 Tantaré porewater are slightly lower than those reported by Goulet et al. (2007) in Lake St. Pierre  $(R_{net}^{MeHg} = -0.1 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1} \text{ to } -12.4 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1})$  and much lower than those reported 603 604 by Merritt and Amirbahman (2008) for the highly contaminated Penobscot River-Estuary sediments ( $R_{net}^{MeHg} = -10 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1} \text{ to } -650 \times 10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1}$ ). 605

| 607 | Processes already hypothesized to remove MeHg from porewater include sorption onto Fe-ox                                                          |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 608 | (Bloom et al., 1999; Heyes et al., 2004; Hammerschmidt et al., 2004) and Fe sulfides (Miller,                                                     |
| 609 | 2006), interaction with organic matter (e.g., Hammerschmidt and Fitzgerald, 2004; Lambertsson                                                     |
| 610 | and Nilsson, 2006), and microbially-mediated demethylation reactions (e.g., Oremland et al. 1991;                                                 |
| 611 | Marvin-Di Pasquale et al., 2000; Benoit et al., 2003). Processes that release MeHg to porewater                                                   |
| 612 | would be desorption from the solid phases and Hg methylation (e.g., Olson and Cooper, 1974;                                                       |
| 613 | Compeau and Bartha, 1985; Gilmour et al., 1992; King et al., 2001).                                                                               |
| 614 |                                                                                                                                                   |
| 615 | The {MeHg}:{Fe-ox} molar ratio measured in the Fe-rich material collected with Teflon                                                             |
| 616 | sheets (Table 3) provides evidence that some MeHg was removed from Basin A porewater by                                                           |
| 617 | authigenic Fe-ox or its associated organic matter. By multiplying this ratio by the {Fe-ox} present                                               |
| 618 | in the top 0.5-cm sediment layer ( $1.55 \times 10^{-3} \text{ mol g}^{-1}$ ; Table 3), we estimate that $1 \times 10^{-12} \text{ mol g}^{-1}$ , |
| 619 | i.e., about 2 % of total {MeHg} ( $8 \times 10^{11}$ mol g <sup>-1</sup> ), would be bound to the Fe-ox or to its associated                      |
| 620 | organic matter in this sediment layer. Such a weak adsorption on the authigenic Fe-ox cannot                                                      |
| 621 | explain the important {MeHg} enrichment (Fig. 4e) grossly coincident with that of Fe (Fig. 4g)                                                    |
| 622 | just below the surface of Basin A sediments . As discussed later (section 4.4), most of the MeHg in                                               |
| 623 | surface sediments must originate from the settling of MeHg-rich particles; MeHg is then                                                           |
| 624 | demethylated upon sediment burial since there is no reason to suspect a recent abrupt increase in                                                 |
| 625 | MeHg production in the water column. If we assume a first-order reaction with respect to {MeHg},                                                  |
| 626 | we estimate, from the sharp decrease in {MeHg} below the sediment-water interface and 3 cm                                                        |
| 627 | depth (Fig 4e), a demethylation rate constant of $7 \times 10^{-5} d^{-1}$ . Hines et al. (2004) reported well-                                   |
| 628 | defined down-core decreases in {MeHg}, starting from the sediment surface, in several cores                                                       |
| 629 | collected from a seepage lake. Using the decrease in MeHg accumulation rate as a function of                                                      |

630 decadal time shown in their Fig. 7 and their average sediment accumulation rate value of 0.013 g cm<sup>-2</sup> yr<sup>-1</sup>, a demethylation rate constant of  $4 \times 10^{-5}$  d<sup>-1</sup> can be calculated. Rydberg et al. (2008) also 631 632 reported a decline in {MeHg} with sediment age in the varved sediments of lake Nylandssjön; using the data shown in their Fig. 3a, we calculate a demethylation rate constant of  $6 \times 10^{-5} d^{-1}$ . It 633 634 is noteworthy that the rate constant values obtained from the data reported for the seepage lake and 635 Lake Nylandssjön are reasonably similar to that obtained for Basin A. Thus, based on the above 636 considerations, adsorption onto authigenic material and/or demethylation should contribute to the 637 net MeHg consumption observed just below the sediment-water interface in Basin A (zone 1 in 638 Fig. 3m and 5a-c).

639

640 In Basin B, the net MeHg removal from porewater (zone 1 in Fig. 30, p) cannot be ascribed to 641 adsorption onto Fe-ox because there is no evidence for the formation of these oxyhydroxides in 642 this anoxic basin. The MeHg removal zone is however located within the depth interval where 643 porewater was slightly supersaturated with respect to  $FeS_{(s, m)}$  (Fig. 3s, t), suggesting that MeHg 644 could be adsorbed onto or coprecipitated with iron sulfide. This mechanism would explain the 645 slow production of MeHg between 5 and 10 cm depth in Basin A sediments (Fig. 3m and 5a, c) 646 where porewater were undersaturated with respect to  $FeS_{(s, m)}$ . However, it would not explain, for 647 example, the slow net MeHg consumption between 3 and 10 cm depth observed in Basins A (Fig. 5b) and B (Fig. 3p) sediments, which, given the small  $R_{net}^{MeHg}$  values, might result from modeling 648 649 artifacts. Lastly, as previously suggested for Hg<sub>T</sub>, and as discussed in other studies (Hintelmann et 650 al., 1997; Karlsson and Skyllberg, 2003), removal of MeHg due to interaction with reduced sulfur 651 functional groups on organic matter cannot be dismissed in Basin B sediments, since a large part of 652 the  $S_T$  could be organically-bound.

30

| 654 | The zones of net MeHg production in Basin A porewater (Figs. 3m and 5a-c) always occur at                   |
|-----|-------------------------------------------------------------------------------------------------------------|
| 655 | depth intervals where SO <sub>4</sub> is consumed (Fig. 2u-v), thus indicating that methylation by sulfate- |
| 656 | reducing bacteria is the likely mechanism of production. Consistent with this mechanism, we do              |
| 657 | not observe any important MeHg production in Basin B porewater where there is no $SO_4$                     |
| 658 | consumption (Fig. 2w-x). In the latter basin, MeHg production occurs in the water column, i.e.,             |
| 659 | where SO <sub>4</sub> reduction occurs (Fig. 2w-x), and then MeHg diffuses across the sediment-water        |
| 660 | interface. Eckley et al. (2005) have shown that MeHg is formed and accumulates in anoxic                    |
| 661 | hypolimnetic lake waters. Laboratory experiments with pure cultures or with Hg-spiked sediments             |
| 662 | have shown repeatedly the involvement of sulfate reducing bacteria in Hg methylation (e.g. Olson            |
| 663 | and Cooper, 1974; Compeau and Bartha, 1985; Gilmour et al., 1992; Benoit et al., 2003). MeHg                |
| 664 | desorption or its release by dissolution of solid phases to which it was bound could also contribute        |
| 665 | to the net MeHg production, but we have no evidence that these mechanisms are important in Lake             |
| 666 | Tantaré sediments.                                                                                          |

- 667
- 668 From the above observations, a general equation for  $R_{net}^{MeHg}$  can be:
- 669

670 
$$R_{net}^{MeHg} = R_{ads}^{MeHg} + R_{demethyl}^{MeHg} + R_{methyl}^{Hg}$$
(3)

671

where  $R_{ads}^{MeHg}$  represents the rate of MeHg removal from porewater by adsorption onto Fe-ox, Fe sulfide or organic matter, whereas  $R_{demethyl}^{MeHg}$  and  $R_{methyl}^{Hg}$  are the rates of MeHg demethylation and Hg methylation, respectively. Estimations of field-derived methylation and demethylation rate constants can be obtained when simplifying assumptions are made.

If we assume, for the net consumption zone of dissolved MeHg just below the sediment–water interface in Basins A and B (Figs. 3m, o-p and 5), that  $R_{ads}^{MeHg}$  and  $R_{methyl}^{MeHg}$  can be neglected in Eq. (3), and that demethylation rate is first order with respect to [MeHg], then:

679

$$680 \qquad R_{net}^{MeHg} = R_{demethyl} = -\phi k_{demethyl} [MeHg]_{av}$$
(4)

681

where  $k_{demethyl}$  (d<sup>-1</sup>) is the apparent first-order rate constant for demethylation and the subscript "av" 682 indicates that the average value over the thickness of the zone is taken into account because  $R_{net}^{MeHg}$ 683 is a piecewise constant function. On this basis, we calculate that  $k_{demethyl}$  varies between 0.04 d<sup>-1</sup> 684 and 0.3 d<sup>-1</sup> in Basin A and between 0.1 d<sup>-1</sup> and 0.8 d<sup>-1</sup> in Basin B. These field-derived rate constant 685 values are slightly lower than that (1.1 d<sup>-1</sup>) reported by Merritt and Amirbahman (2008) for the 686 687 Penobscot River estuary. They can also be compared with those recently obtained in laboratory 688 experiments where sediments or lake water samples were simultaneously spiked with low amounts 689 of Hg(II) and MeHg labelled with different stable Hg isotopes and incubated. These experiments 690 allowed the rate constants to be determined simultaneously for the MeHg demethylation and Hg methylation processes. The laboratory-derived  $k_{demethyl}$  values reported vary between 0.4 d<sup>-1</sup>-0.5 d<sup>-1</sup> 691 for lake sediments (Hintelmann et al., 2000), 0.02 d<sup>-1</sup>-0.2 d<sup>-1</sup> for estuarine sediments (Rodriguez 692 Martin-Doimeadios et al., 2004) and 0.03  $d^{-1}$ -0.05  $d^{-1}$  for lake water (Eckley et al., 2005). Thus, 693 our  $k_{demethyl}$  values fall within the range reported for these various aquatic environments. 694 695 Hintelmann et al. (2000) have shown that the rate constants for MeHg demethylation obtained by 696 this approach do not depend on the chemical form of the MeHg spike, i.e., that the MeHg tracer 697 behaves similarly to the MeHg produced in the natural environment studied. It should be noted that

the MeHg demethylation rate constant (7 x  $10^{-5}$  d<sup>-1</sup>) calculated from the decrease with depth of the 698 699 {MeHg} in Basin A sediments (Fig. 4e) is much lower than the values obtained by modeling the 700 porewater profiles. It indicates that MeHg in the solid phase is not at equilibrium with the 701 dissolved MeHg. We hypothesize that solid-phase MeHg was already incorporated within 702 sediment particles (e.g., phytoplankton, bacteria) when they were deposited and not simply 703 adsorbed onto them; demethylation of MeHg was then controlled by sediment particle degradation. 704 The presence of measurable {MeHg} in Basin A and B sediments (Fig. 4e, f) at depths where  $SO_4$ 705 is exhausted supports the slow demethylation of solid phase MeHg. Indeed, methanogenic bacteria 706 have not been reported to methylate Hg. Also, Hintelmann et al. (2000) have shown that amending 707 sediments with sulfide prevents MeHg demethylation.

708

If we assume, for the zone of net porewater MeHg production below that of consumption in Basin A, that  $R_{ads}^{MeHg}$  and  $R_{demethyl}^{MeHg}$  can be neglected in Eq. (3), we obtain:

711

712 
$$R_{net}^{MeHg} = R_{methyl}^{Hg} = \phi k_{methyl} [Hg_T]_{av}$$
(5)

713

where  $k_{methyl}$  (d<sup>-1</sup>) is the apparent first-order rate constant for Hg methylation. It should be noted that the Hg methylation rate is expressed in term of [Hg<sub>T</sub>] to allow comparison with  $k_{methyl}$  values reported in Hg-spiked laboratory experiments. Our field-derived  $k_{methyl}$  values calculated using Eq. (5) range between 0.006 d<sup>-1</sup> and 0.1 d<sup>-1</sup>. To the best of our knowledge, no other study has reported field-derived  $k_{methyl}$  values. However, laboratory-derived values of this rate constant have been obtained in the double spike experiments described above; they vary from 0.001 d<sup>-1</sup> to 0.02 d<sup>-1</sup> for

lake sediments (Hintelmann et al., 2000), 0.001  $d^{-1}$  to 0.03  $d^{-1}$  for estuarine sediments (Rodriguez 720 Martin-Doimeadios et al., 2004) and 0.01  $d^{-1}$  to 0.09  $d^{-1}$  for lake water (Ecklev et al., 2005). Thus, 721 722 our field-derived values are of similar magnitude to those obtained in laboratory assays. Such 723 comparison should, however, be taken with caution since the chemical form of the Hg(II) spike 724 can affect the Hg methylation rate, i.e., the Hg(II) spiked could be more available to methylation 725 than the ambient Hg (Hintelmann et al., 2000). 726 727 4.3. Effect of diagenesis on the solid-phase Hg<sub>T</sub> concentrations 728 In environments where sediment mixing is negligible, the measured  $\Re g_T$  in a sediment layer 729 730 represents the sum of the Hg<sub>T</sub> concentration in the settling particles at deposition time and of the 731 Hg<sub>T</sub> concentration released from or added to the sediments during burial. The latter fraction of Hg<sub>T</sub> in the sediments, hereafter called diagenetic  $Hg_T$  (  $Hg_{diag}$  ), can be quantified as follows. Equation 732 733 (6) is first used to relate the removal/production rate of  $Hg_T$  to that of  $Hg_T$  ain/loss (Laforte 734 et al., 2005; Chappaz et al., 2010):

735

736 
$$R_{net}^{Hg} = \phi \left( \frac{d Hg_T}{dt} \right)_{reaction} = -m \left( \frac{d Hg_T}{dt} \right)_{reaction}$$
(6)

737

where *m* is the dry bulk density (g cm<sup>-3</sup> of whole sediment) and the subscript "reaction" indicates reaction rates in solid and solution phases. From Eq. (6), we can then obtain:

741 
$$d \mathcal{H}g_T = -\frac{R_{net}^{Hg}}{m} dt = -\frac{R_{net}^{Hg}}{mv_s} dx$$
(7)

- 743 and
- 744

745 
$$Hg_{diag} = \int_{x=0}^{x=x_i} \frac{R_{net}^{Hg}}{mv_s} dx \approx -\sum_{x=0}^{x=x_i} \frac{R_{net}^{Hg}}{mv_s} \Delta x$$
(8)

746

where  $v_s$  is sedimentation rate (cm s<sup>-1</sup>; Table 1) and  $x_i$  is the depth of the sediment layer (maximum depth corresponds to the deepest horizon of collected porewater samples, i.e. 10 cm).

749

Calculations made with Eq. (8) show that  $Hg_{diag}$  represents at the most 0.02 nmol g<sup>-1</sup> (0.9% of  $Hg_T$  and 0.11 nmol g<sup>-1</sup> (3.8% of  $Hg_T$  in Basins A and B, respectively. These concentrations are within our analytical precision (5%). We therefore conclude that postdepositional redistribution of Hg in Lake Tantaré sediments is negligible and that the measured  $Hg_T$  forfiles reflect Hg concentrations in the settling particles at deposition time and not diagenesis. **4.4. Present-day inputs of Hg<sub>T</sub> and MeHg to the sediments** 

758

The present-day total flux responsible for  $Hg_T$  accumulation in the sediments  $(J_{Acc}^{Hg})$  of Lake Tantaré Basin A is the sum of the fluxes of  $Hg_T$  deposited at the sediment surface with settling particles  $(J_{Dep}^{Hg})$  and those of dissolved Hg<sub>T</sub> transported across the sediment–water interface by molecular diffusion  $(J_D^{Hg})$ , bioirrigation  $(J_I^{Hg})$  and bioturbation  $(J_B^{Hg})$ :  $I_{Hg}^{Hg} = I_{Hg}^{Hg} + I_{Hg}^{Hg} + I_{Hg}^{Hg}$  (9)

764 
$$J_{Acc}^{Hg} = J_{Dep}^{Hg} + J_D^{Hg} + J_I^{Hg} + J_B^{Hg}$$
 (9)

- 765
- 766 In the seasonally anoxic Basin B,  $J_{Acc}^{Hg}$  can be reduced to:

$$768 J_{Acc}^{Hg} = J_{Dep}^{Hg} + J_{D}^{Hg} (10)$$

769

The present-day values of  $J_{Dep}^{Hg}$  for the two basins were obtained by multiplying the sediment mass 770 accumulation rate ( $\omega$ ; mg cm<sup>-2</sup> yr<sup>-1</sup>) obtained from the <sup>210</sup>Pb geochronology for the top 0.5 cm 771 sediment layer by the measured  $\Re g_T$  in that layer, which was shown previously (section 4.3) to 772 represent Hg concentration in settling particles. The values of  $J_D^{Hg}$ ,  $J_I^{Hg}$  and  $J_B^{Hg}$  were calculated 773 with the code PROFILE (Table 4). The flux of dissolved Hg<sub>T</sub> is on the order of  $0.8 \times 10^{-21}$  mol cm<sup>-</sup> 774  $^{2}$  s<sup>-1</sup> and 40 × 10<sup>-21</sup> mol cm<sup>-2</sup> s<sup>-1</sup> in Basins A and B, respectively, representing less than 9% of  $J_{Acc}^{Hg}$ 775 776 (Table 4). Thus, most of the Hg<sub>T</sub> is deposited to sediment surface with settling particles, a conclusion that is consistent with the negligible contribution of  $Hg_{diag}$  to the measured  $Hg_T$ 777 778 779 Similarly, present-day fluxes of MeHg can be calculated with Eqs. (9) and (10), where Hg

fluxes were replaced by MeHg fluxes (Table 5). The results indicate that, in Basin A, most (>97%)

781 of the MeHg measured at the sediment surface is at the present time deposited with settling
les. This conclusion is cons

particles. This conclusion is consistent with our previous calculations (see section 4.2) showing that less than 2% of {*MeHg*} in the top sediment layer (0-0.5 cm) is associated with authigenic Feox and its associated organic matter. In contrast, in Basin B, the diffusive flux of MeHg into the sediments ( $J_D^{MeHg}$ ) is of similar magnitude to that of MeHg deposition with settling particles ( $J_{Dep}^{MeHg}$ ). Therefore, sediments of both Basins A and B act as a sink for water column MeHg.

787

### 788 **4.5. Recent history of anthropogenic Hg deposition**

789

790 Interpretation of  $\{Hg_T\}$  profiles in terms of Hg emission chronology is complex because 791 diagenetic reactions, variations in sediment mass accumulation rate ( $\omega$ ), lake internal processes, as 792 well as variations in Hg inputs from the watershed also contribute to shape the  $\{Hg_T\}$  profiles. In 793 Lake Tantaré Basins A and B sediments, as in other lake sediments (Fitzgerald et al., 1998; 794 Lockhart et al., 2000; Rydberg et al., 2008), diagenetic reactions do not appear to affect the {Hg<sub>T</sub>} 795 records significantly. In the following discussion, it is thus assumed that they also have a negligible influence on Lakes Bédard and Holland  $Ag_T$  ecords. In order to take into account 796 variations in  $\omega$ , the results can be expressed as fluxes (pmol cm<sup>-2</sup> yr<sup>-1</sup>). The flux of anthropogenic 797 Hg at the coring sites ( $J^{Hg-Anth}$ ; see insets in Fig. 6a-c) is incidentally given by the following 798 799 equation:

800

$$801 J^{Hg-Anth} = Hg_T - Hg_{T-1850} \omega (11)$$

803 where  $\mathbf{H}g_T$  is the average pre-1850  $\mathbf{H}g_T$  Despite differences in the magnitude of the 804 fluxes, the  $J^{Hg-Anth}$  profiles become quite similar in shape in Basins A and B (see inset in Fig. 6a), 805 in sharp contrast to the  $\mathbf{H}g_T$  rofiles (Fig 4a, b). Lastly, in order to attenuate the effects of lake 806 specific processes, such as sediment focusing and loss of material via the lake outflow,  $J^{Hg-Anth}$ 807 has been corrected as follows (Kada and Heit, 1992):

808

$$809 \qquad J_{Cor}^{Hg-Anth} = J^{Hg-Anth} \times \left(\frac{I_{Atm}^{210Pb}}{I_{Sed}^{210Pb}}\right) \tag{12}$$

810

where  $J_{Cor}^{Hg-Anth}$  is the flux of anthropogenic Hg corrected for the internal lake processes,  $I_{Sed}^{210Pb}$  is 811 the inventory of unsupported <sup>210</sup>Pb in the sediment cores (Table 1) and  $I_{Atm}^{210Pb}$  is the cumulative 812 atmospheric input of <sup>210</sup>Pb, which can be assumed to be identical to the average inventory of <sup>210</sup>Pb 813 unsupported by the radioactive decay of <sup>226</sup>Ra in soils of the Precambrian Shield in Eastern Ontario 814 (0.44 Bg cm<sup>-2</sup>; Cornett et al., 1984). The implicit assumption to this frequently applied correction 815 816 used to interpret the Hg<sub>T</sub> records in lake sediments (e.g. Engstrom and Swain, 1997; Lamborg et 817 al., 2002; Perry et al., 2005; Sunderland et al., 2008; Muir et al., 2009; Yang et al., 2010), is that transport of Hg to the sediment is similar to that of unsupported <sup>210</sup>Pb. Such an assumption is 818 reasonable considering that both Hg and <sup>210</sup>Pb are particle-reactive elements. We infer that the 819  $J_{Cor}^{Hg-Anth}$  chronologies reflect essentially variations in atmospheric Hg emissions and watershed 820 821 contributions of previously deposited atmospheric Hg.

The chronological variations in  $J_{Cor}^{Hg-Anth}$  for the past 125 years are displayed in Fig. 6 for all 823 study lakes. An interesting feature resulting from this data treatment is the good match between the 824  $J_{Cor}^{Hg-Anth}$  chronologies of Lake Tantaré Basins A and B (Fig. 6a). It should be noted that this good 825 826 match is not compromised by the fact that Hg accumulation in Basin B sediments is presently 827 incomplete due to the current diffusion of dissolved Hg<sub>T</sub> into the sediments (Fig. 3k-1) and its 828 fixation over the top 5 cm of sediments. Indeed, calculations reveal that this process would increase the values of  $J_{Cor}^{Hg-Anth}$  by less than 6% if diffusion continues at the same rate until the 829 sediment is buried below 5 cm depth. The good match among the  $J_{Cor}^{Hg-Anth}$  records of the two 830 basins supports our finding regarding the negligible effect of diagenetic reactions on the Hg<sub>T</sub> 831 concentrations in Lake Tantaré sediments. It also suggests that normalization based on the <sup>210</sup>Pb 832 833 inventory is a valuable approach to correct  $Hg_T$  records for lake specific processes.

834

The reconstructed records of  $J_{Cor}^{Hg-Anth}$  for Lake Tantaré Basins A and B reveal that this flux 835 significantly increased since the end of the 19<sup>th</sup> Century, reached a maximum in the early 1970s 836 (~14 pmol cm<sup>-2</sup> yr<sup>-1</sup>), and then slightly decreased by about 15% during the next 30 years. This 837 838 temporal trend is coherent with that observed in other studies using lake sediments as archive of 839 environmental contamination in North America (e.g. Engstrom and Swain, 1997; Kamman and Engstrom, 2002; Perry et al., 2005; Biester et al., 2007; Muir et al., 2009). The increase in  $J_{Cor}^{Hg-Anth}$ 840 from the end of the 19<sup>th</sup> Century to the early 1970s was attributed to the progressive escalation of 841 842 industrial activity during that time period in North America (Engstrom and Swain, 1997; Pirrone et 843 al., 1998). Its decline, after the 1970s, was attributed to implementation of new technologies to 844 reduce contaminant emissions at their source, particularly in coal-fired power plants (Pacyna et al.,

845 2006), but also to the political will to diminish the use of Hg in industrial and commercial products 846 in the U.S., which apparently decreased by more than 75% between 1988 and 1996 (Engstrom and 847 Swain, 1997; USEPA, 1997). It should be noted that a mere interpretation of the  $Ag_T$  jecord in 848 Basin A sediments would have suggested an increase after the 1970s of anthropogenic Hg 849 deposition rather than a decrease.

850

The present-day value of  $J_{Cor}^{Hg-Anth}$  in Basins A and B (~12 pmol cm<sup>-2</sup> yr<sup>-1</sup>) is in the lower 851 852 range of values found in other studies on the distribution of Hg<sub>T</sub> in dated lake sediment cores fromEastern North America (5-30 pmol cm<sup>-2</sup> yr<sup>-1</sup>; Perry et al., 2005; Muir et al., 2009). On the 853 854 other hand, it is higher than the annual mean values of atmospheric Hg deposition rate due to precipitations at two Southern Québec sites between 1996 and 2006 (2-4 pmol cm<sup>-2</sup> yr<sup>-1</sup>; 855 VanArsdale et al., 2005; NADP, 2010). This discrepancy between  $J_{Cor}^{Hg-Anth}$  and the wet 856 857 atmospheric deposition of Hg cannot only be due to the dry atmospheric Hg deposition which 858 should amount to about 30% of wet Hg deposition (Lamborg et al., 1995; Selvendiran et al., 2009). 859 It rather suggests that an important part of anthropogenic Hg<sub>T</sub> accumulating in Lake Tantaré 860 sediments is due to watershed inputs of previously deposited atmospheric Hg (e.g. Swain et al., 861 1992; Grigal, 2002).

862

Fig. 6b shows that  $J_{Cor}^{Hg-Anth}$  has increased in Lake Bédard from the end of the 19<sup>th</sup> century to the early 1970s, as in Lake Tantaré, but at a much lower rate, which could be attributed at least partly to a lower Hg contribution from the watershed. It is noteworthy that the catchment area is about 25 times smaller in Lake Bédard than in Lake Tantaré. Indeed, several authors have found a significant correlation between the Hg deposition flux in lake sediments and the catchment area or

| 868 | the catchment/lake area ratio (e.g. Swain et al., 1992; Kamman and Engstrom, 2002; Mills et al.,                                      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|
| 869 | 2009). Moreover, the type of biomass, the soil composition, and human disturbances in the                                             |
| 870 | watershed might also have a strong influence on Hg export from the watershed to the lake                                              |
| 871 | sediments (e.g. Grigal, 2002; Kainz and Lucotte, 2006; Engstrom et al., 2007; Mills et al., 2009).                                    |
| 872 | The Lake Tantaré catchment has a mixed forest of St. Lawrence Lowlands (maple, yellow birch)                                          |
| 873 | and boreal forest tree species (fir, spruce, white birch; Payette et al., 1990), while vegetation of                                  |
| 874 | Lake Bédard catchment is typical of that of the boreal forest (white birch, balsam fir, white spruce,                                 |
| 875 | http://www.ffgg.ulaval.ca/index.php?id=346). The importance of the watershed contribution in Hg                                       |
| 876 | is further supported by the presence of a $J_{Cor}^{Hg-Anth}$ peak (~7.4 pmol cm <sup>-2</sup> yr <sup>-1</sup> ) in the early 1970s, |
| 877 | which occurred concurrently with a 4-fold increase in $\omega$ values which can likely be associated to                               |
| 878 | the construction of a small forest road in the catchment in the late 1960s. We, however, have no                                      |
| 879 | clear explanation for the $J_{Cor}^{Hg-Anth}$ increase in Lake Bédard after ~1990 which is not correlated with                        |
| 880 | an increase in $\omega$ .                                                                                                             |

In Lake Holland (Fig. 6c),  $J_{Cor}^{Hg-Anth}$  increased slowly from the end of the 19<sup>th</sup> century to the 882 early 1950s and more sharply after this time horizon reaching a maximum value of ~10.3 pmol cm<sup>-</sup> 883  $^{2}$  yr<sup>-1</sup> in the early 1990s, and then progressively decreased by about 50 %. This trend clearly shows 884 885 the imprint of the nearby Murdochville non-ferrous metal smelter. Production at the smelter began 886 in 1950, steadily increased until its temporary shut down during the 1980s. After the 887 implementation of new technologies to reduce contaminant emissions into the atmosphere, it 888 restarted again in 1989 until the smelter was definitely closed in April 2002. However, the fact that the maximum value of  $J_{Cor}^{Hg-Anth}$  is observed few years after the smelter was temporary shutdown 889 890 indicates that part of the anthropogenic Hg accumulating in Lake Holland sediments was initially

891 deposited on the watershed and retained for some time in the watershed soils and biomass. Thus, 892 the response of atmospheric deposition of Hg into Lake Holland was delayed by about 10 years; 893 such a delay is consistent with what has been suggested in other studies (Meili et al., 2003; Perry et 894 al., 2005; Harris et al., 2007; Mills et al., 2009), 895 896 897 **5. CONCLUSIONS** 898 899 We have shown that applying thermodynamic and kinetic modeling to field measurements of 900  $Hg_T$ , MeHg and ancillary parameters in sediments and porewaters helps understanding  $Hg_T$  and 901 MeHg dynamics in sediments. Hence, we provide evidence that pure Hg mineral phases do not 902 form in the sediments and that  $Hg_T$  and MeHg adsorption onto authigenic Fe-ox is of minor 903 importance; however, the assessment of Hg<sub>T</sub> and MeHg association with Fe sulfide phases or 904 sulfidized organic matter would require additional field and laboratory measurements. Application 905 of the reaction-transport model to the porewater  $Hg_T$  profiles indicates that post-depositional  $Hg_T$ 906 redistribution negligibly affects the measured  $Hg_T$  profiles in Lake Tantaré sediments, a lake that is 907 representative of many other Canadian Shield lakes. Thus, the measured sediment  $Hg_T$  profiles 908 reflect the chronology of Hg<sub>T</sub> deposition at the sampling site. Comparison of the results from the two Lake Tantaré basins indicates that normalisation with <sup>210</sup>Pb inventories is both appropriate and 909 910 necessary to correct the sediment Hg<sub>T</sub> data for internal lake processes. We also provide field 911 evidence that Hg methylation occurs only when SO<sub>4</sub> is consumed. Use of the inverse modeling 912 approach to interpret the porewater MeHg profiles yields estimates of rate constants for the 913 formation and degradation of MeHg in the sediments; these field-derived rate constants are of

| 914 | similar magnitude as the recent laboratory-derived rate constants obtained by incubating sediments    |
|-----|-------------------------------------------------------------------------------------------------------|
| 915 | with Hg spikes labelled with stable Hg isotopes. Our results also reveal that sediments act as a sink |
| 916 | for MeHg, that most of the MeHg accumulates in sediments deposited under oxic conditions in           |
| 917 | association with settling particles and that solid-phase MeHg is slowly degraded subsequent to        |
| 918 | deposition.                                                                                           |
| 919 |                                                                                                       |
| 920 | ACKNOWLEDGMENTS                                                                                       |
| 921 |                                                                                                       |
| 922 | Financial support from the Natural Sciences and Engineering Research Council of Canada and            |
| 923 | the Fonds de Recherche sur la Nature et les Technologies du Québec are acknowledged. We thank         |
| 924 | L. Rancourt, R. Rodrigue, P. Fournier and B. Averty for their technical assistance and two            |
| 925 | anonymous reviewers for critical comments. Permission from the Québec Ministère de                    |
| 926 | l'Environnement to work in the Tantaré Ecological Reserve and from Faune et Parcs Québec to           |
| 927 | work in the Aiguebelle Provincial Park are gratefully acknowledged.                                   |
| 928 |                                                                                                       |

929 930 931 Alfaro-De La Torre M. C. and Tessier A. (2002) Cadmium deposition and mobility in the 932 sediments of an acidic oligotrophic lake. Geochim. Cosmochim. Acta 66, 3549-3562. 933 Belzile N., De Vitre R. R. and Tessier A. (1989) In situ collection of diagenetic iron and 934 manganese oxhydroxides from natural sediments. Nature 340, 376-377. 935 Belzile N., Lang C.-Y., Chen Y.-W. and Wang M. (2008) The competitive role of organic carbon

936 and dissolved sulfide in controlling the distribution of mercury in freshwater lake 937 sediments. Sci. Total Environ. 405, 226-238.

938 Benoit J. M., Gilmour C. C., Heyes A., Mason R. P. and Miller C. L. (2003) Geochemical and

939 biological controls over methylmercury production and degradation in aquatic ecosystems.

940 In: Cai Y. and Braids O. C., (Eds.) Biogeochemistry of Environmentally Important Trace

941 Elements, ACS Symp. Ser. 835, 262-297. American Chemical Society, Washington D.C.

942 Berg P., Risgaard-Petersen N. and Rysgaard S. (1998) Interpretation of measured concentration 943 profiles in sediment porewater. *Limnol. Oceanogr.* **43**, 1500-1510.

944 Berner R. A. (1980) Early Diagenesis: a Theoretical Approach. Princeton University Press.

- 945 Biester H., Bindler R., Martinez-Cortinas A. and Engstrom D. R. (2007) Modeling the past 946 atmospheric deposition of mercury using natural archives. Environ. Sci. Technol. 41, 4851-
- 947 4860.
- 948 Bloom N. S. and Fitzgerald W. F. (1988) Determination of volatile mercury species at picogram 949 level by low temperature gas chromatography with cold-vapour atomic fluorescence 950 detection. Anal. Chim. Acta 28, 151-161.

#### REFERENCES

| 951 | Bloom N. S., Gill G. A., Capellino S., Dobbs C., McShea L., Driscoll C., Mason R. and Rudd J.   |
|-----|-------------------------------------------------------------------------------------------------|
| 952 | (1999) Speciation and cycling of mercury in Lavaca Bay. Environ. Sci. Technol. 33, 7-13.        |
| 953 | Boudreau B. P. (1984) On the equivalence of nonlocal and radial-diffusion models for porewater  |
| 954 | irrigation. J. Mar. Res. 42, 731-735.                                                           |
| 955 | Boudreau B. P. (1997) Diagenetic Models and their Implementation. Springer-Verlag.              |
| 956 | Buffle J. (1988) Complexation Reactions in Aquatic Systems. Ellis Horwood Ltd.                  |
| 957 | Canfield D., Boudreau B. P., Mucci A. and Gundersen J. K. (1998) The early diagenetic formation |
| 958 | of organic sulfur in the sediments of Mangrove Lake, Bermuda. Geochim. Cosmochim.               |
| 959 | <i>Acta</i> <b>62</b> , 767-781.                                                                |
| 960 | Carignan R., St-Pierre S. and Gächter R. (1994) Use of diffusion samplers in oligotrophic lake  |
| 961 | sediments: effects of free oxygen in sampler material. Limnol. Oceanogr. 39, 468-474.           |
| 962 | Chappaz A., Gobeil C. and Tessier A. (2008) Geochemical and anthropogenic enrichments of Mo     |
| 963 | in sediments from perennially oxic and seasonally anoxic lakes in Eastern Canada.               |
| 964 | Geochim. Cosmochim. Acta 72, 170-184.                                                           |
| 965 | Chappaz A., Gobeil C. and Tessier A. (2010) Controls on uranium distribution in lake sediments. |
| 966 | Geochim Cosmochim. Acta 74, 203-214.                                                            |
| 967 | Compeau G. C. and Bartha R. (1985) Sulfate-reducing bacteria: principal methylators of mercury  |
| 968 | in anoxic estuarine sediment. Appl. Environ. Microbiol. 50, 498-502.                            |
| 969 | Cornett R. J., Chant L. and Link D. (1984) Sedimentation of Pb-210 in Laurentian Shield lakes.  |
| 970 | Water Poll. Res. J. Canada 19, 97-109.                                                          |
| 971 | Cossa D., Coquery M., Nakhlé K. and Claisse D. (2002) Dosage du mercure total et du             |
| 972 | monométhylmercure dans les organismes et les sédiments marins. Editions Ifremer2-               |
| 973 | 84433-105-X; 27pp.                                                                              |
|     |                                                                                                 |

- 976 Couture R.-M., Gobeil C. and Tessier A. (2008) Chronology of atmospheric deposition of arsenic
  977 inferred from reconstructed sedimentary records. *Environ. Sci. Technol.* 42, 6508-6513.
- 978 Couture R.-M., Gobeil C. and Tessier A. (2010a) Arsenic, iron and sulfure co-diagenesis in lake
  979 sediments. *Geochim. Cosmochim. Acta* 74, 1238-1255.
- Couture R.-M., Shafei B., Van Cappellen P., Tessier A. and Gobeil C. (2010b) Non-steady state
  modeling of arsenic diagenesis in lake sediments. *Environ. Sci. Technol.* 44, 197-203.
- De Robertis A., Foti C., Patane G. and Sammartano S. (1998) Hydrolysis of (CH<sub>3</sub>)Hg<sup>+</sup> in different
  ionic media: salt effects and complex formation. *J. Chem. Eng. Data* 43, 957-960.
- Eckley C. S., Watras C. J., Hintelmann H., Morrison K., Kent A. D. and Regnell O. (2005)
- 985 Mercury methylation in the hypolimnetic waters of lakes with and without connection to 986 wetlands in northern Wisconsin. *Can. J. Fish. Aquat. Sci.* **62**, 400-411.
- Einsield F., Mayer B. and Schäfer T. (2008) Evidence for incorporation of H<sub>2</sub>S in groundwater
  fulvic acids from stable isotope ratios and sulfur K-edge X-ray absorption near edge
  structure spectroscopy. *Environ. Sci. Technol.* 42, 2439-2444.
- 990 Engstrom D. R., Balogh S. J. and Swain E. B. (2007) History of mercury inputs to Minnesota
- 991 lakes: influences of watershed disturbance and localized atmospheric deposition. *Limnol.*992 *Oceanogr.* 52, 2467-2683.
- Engstrom D. R. and Swain E. B. (1997) Recent declines in atmospheric mercury deposition in the
  Upper Midwest. *Environ. Sci. Technol.* 31, 960-967.

| 995  | Ethier A. L. M., Scheuhammer A. M., Blais J. M., Paterson A. M., Mierle G., Ingram R. and Lean   |
|------|--------------------------------------------------------------------------------------------------|
| 996  | D. R. S. (2010) Mercury empirical relationships in sediments from three Ontario lakes. Sci.      |
| 997  | <i>Total Environ</i> . <b>408</b> , 2087-2095.                                                   |
| 998  | Evers D. C., Kaplan J. D., Meyer M. W., Reaman P. S., Braselton W. E., Major A., Burgess N. and  |
| 999  | Scheuhammer A. M. (1998) Geographic trend in mercury measured in common loon                     |
| 1000 | feathers and blood. Environ. Toxicol. Chem. 17, 173-183.                                         |
| 1001 | Feyte S., Tessier A., Gobeil C. and Cossa D. (2010) In situ adsorption of mercury, methylmercury |
| 1002 | and other elements by iron oxyhydroxides and organic matter in lake sediments. Appl.             |
| 1003 | Geochem. <b>25</b> , 984-995.                                                                    |
| 1004 | Fitzgerald W. F., Engstrom D. R., Lamborg C. H., Tseng CM., Balcom P. H. and                     |
| 1005 | Hammerschmidt C. R. (2005) Modern and historic atmospheric mercury in Northern                   |
| 1006 | Alaska: global sources and Arctic depletion. Environ. Sci. Technol. 39, 557-568.                 |
| 1007 | Fitzgerald W. F., Engstrom D. R., Mason R. P. and Nater E. A. (1998) The case for atmospheric    |
| 1008 | mercury contamination in remote areas. Environ. Sci. Technol. 32, 1-7.                           |
| 1009 | Fitzgerald W. F., Lamborg C. H. and Hammerschmidt C. R. (2007) Marine biogeochemical             |
| 1010 | cycling of mercury. Chem. Rev. 107, 641-662.                                                     |
| 1011 | Fortin D., Leppard G. G. and Tessier A. (1993) Characteristics of lacustrine diagenetic iron     |
| 1012 | oxyhydroxides. Geochim. Cosmochim. Acta 57, 4391-4404.                                           |
| 1013 | Gagnon C., Pelletier É. and Mucci A. (1997) Behavior of anthropogenic mercury in coastal marine  |
| 1014 | sediments. Mar. Chem. 59, 159-176.                                                               |
| 1015 | Gallon C., Tessier A., Gobeil C. and Alfaro-De La Torre M. C. (2004) Modeling diagenesis of lead |
| 1016 | in sediments of a Canadian Shield lake. Geochim. Cosmochim. Acta 68, 3531-3545.                  |
|      |                                                                                                  |
|      |                                                                                                  |

| 1017 | Gill G. A., Bloom N. S., Cappellino S., Driscoll C. T., Dobbs C., McShea L., Mason R. and Rudd      |
|------|-----------------------------------------------------------------------------------------------------|
| 1018 | J. W. M. (1999) Sediment-water fluxes of mercury in Lavaca Bay, Texas. Environ. Sci.                |
| 1019 | <i>Technol.</i> <b>33</b> , 663-669.                                                                |
| 1020 | Gilmour C. C., Henry E. A. and Mitchell R. (1992) Sulfate stimulation of mercury methylation in     |
| 1021 | freshwater sediments. Environ. Sci. Technol. 26, 2281-2287.                                         |
| 1022 | Gobeil C. and Cossa D. (1993) Mercury in sediments and sediment porewater in the Laurentian         |
| 1023 | Through. Can. J. Fish. Aquat. Sci. 50, 1794-1800.                                                   |
| 1024 | Goulet R., Holmes J., Page B., Poissant L., Siciliano S. D., Lean D. R. S., Wang F., Amyot M. and   |
| 1025 | Tessier A. (2007) Mercury transformations and fluxes in sediments of a riverine wetland.            |
| 1026 | Geochim. Cosmochim. Acta 71, 3393-3406.                                                             |
| 1027 | Grigal D. F. (2002) Inputs and outputs of mercury from terrestrial watersheds: a review. Environ.   |
| 1028 | <i>Rev.</i> <b>10</b> , 1-39.                                                                       |
| 1029 | Gunneriusson L. D., Baxter D. and Emteborg H. (1995) Complexation at low concentrations of          |
| 1030 | methyl and inorganic mercury(II) to a hydrous goethite ( $\alpha$ -FeOOH) surface. J. Coll. Interf. |
| 1031 | <i>Sci.</i> <b>169</b> , 262-266.                                                                   |
| 1032 | Hamilton-Taylor J., Willis M., Reynold C. S. (1984) Depositional fluxes of metals and               |
| 1033 | phytoplankton in Windermere as measured by sediment traps. Limnol. Oceanogr. 29, 695-               |
| 1034 | 710.                                                                                                |
| 1035 | Hammerschmidt C. R. and Fitzgerald W. F. (2004) Geochemical controls on the production and          |
| 1036 | distribution of methylmercury in near-shore marine sediments. Environ. Sci. Technol. 38,            |
| 1037 | 1487-1495.                                                                                          |
| 1038 | Hammerschmidt C. R. and Fitzgerald W. F. (2006a) Methylmercury cycling in sediments on the          |
| 1039 | continental shelf of southern New England. Geochim. Cosmochim. Acta 70, 918-930.                    |
|      |                                                                                                     |
|      |                                                                                                     |

| 1040 | Hammerschmidt C. R. and Fitzgerald W. F. (2006b) Methylmercury in freshwater fish linked to        |
|------|----------------------------------------------------------------------------------------------------|
| 1041 | atmospheric mercury deposition. Environ. Sci. Technol. 40, 7764-7770.                              |
| 1042 | Hammerschmidt C. R., Fitzgerald W. F., Lamborg C. H., Balcom P. H. and Tseng C. M. (2006)          |
| 1043 | Biogeochemical cycling of methylmercury in lakes and tundra watersheds of Arctic                   |
| 1044 | Alaska. Environ. Sci. Technol. 40, 1204-1211.                                                      |
| 1045 | Hammerschmidt C. R., Fitzgerald W. F., Lamborg C. H., Balcom P. H. and Visscher P. T. (2004)       |
| 1046 | Biogeochemistry of methylmercury in sediments of Long Island Sound. Mar. Chem. 90,                 |
| 1047 | 31-52.                                                                                             |
| 1048 | Hare L., Carignan R. and Huerta-Diaz M. A. (1994) A field study of metal toxicity and              |
| 1049 | accumulation by benthic invertebrates; implications for the acid-volatile sulfide (AVS)            |
| 1050 | model. Limnol. Oceanogr. 39, 1653-1668.                                                            |
| 1051 | Harris R. C., Rudd J. W. M., Amyot M., Babiarz C. L., Beaty K. G., Blanchfield P. J., Bodaly R.    |
| 1052 | A., Branfireun B. A., Gilmour C. C., Graydon J. A., Heyes A. H. H., Hurley J. P., Kelly C.         |
| 1053 | A., Krabbenhoft D. P., Lindberg S. E., Mason R. P., Paterson M. J., Podemski C. L.,                |
| 1054 | Robinson A., Sandilands K. A., Southworth G. R. and St Louis V. L. (2007) Whole-                   |
| 1055 | ecosystem study shows rapid fish-mercury response to changes in mercury deposition. P.             |
| 1056 | Nat. Acad. Sci. 104, 16586-16591.                                                                  |
| 1057 | He T., Lu J., Yang F. and Feng X. (2007) Horizontal and vertical variability of mercury species in |
| 1058 | pore water and sediments in small lakes in Ontario. Sci. Total Environ. 386, 53-64.                |
| 1059 | Heyes A., Miller C. and Mason R. P. (2004) Mercury and methylmercury in Hudson River               |
| 1060 | sediment: impact of tidal resuspension on partitioning and methylation. Mar. Chem. 90, 75-         |
| 1061 | 89.                                                                                                |

| 1062 | Hines N. A., Brezonik P. L. and Engstrom D. R. (2004) Sediment and porewater profiles and                     |
|------|---------------------------------------------------------------------------------------------------------------|
| 1063 | fluxes of mercury and methylmercury in a small seepage lake in northern Minnesota.                            |
| 1064 | Environ. Sci. Technol. 38, 6610-6617.                                                                         |
| 1065 | Hintelmann H., Keppel-Jones K. and Evans R. D. (2000) Constants of mercury methylation and                    |
| 1066 | demethylation rates in sediments and comparison of tracer and ambient mercury                                 |
| 1067 | availability. Environ. Toxicol. Chem. 19, 2204-2211.                                                          |
| 1068 | Hintelmann H., Welbourn P. M. and Evans R. D. (1997) Measurement of complexation of                           |
| 1069 | methylmercury(II) compounds by freshwater humic substances using equilibrium dialysis.                        |
| 1070 | Environ. Sci. Technol. <b>31</b> , 489-495.                                                                   |
| 1071 | Hollweg T. A., Gilmour C. C. and Mason R. P. (2009) Methylmercury production in sediments of                  |
| 1072 | Chesapeake Bay and the mid-Atlantic continental margin. Mar. Chem. 114, 86-101.                               |
| 1073 | Jay J. A., Morel F. M. M. and Hemond H. F. (2000) Mercury speciation in the presence of                       |
| 1074 | polysulfides. Environ. Sci. Technol. 34, 2196-2200.                                                           |
| 1075 | Jeong H. Y., Klaue B., Blum J. D. and Hayes K. F. (2007) Sorption of mercuric ion by synthetic                |
| 1076 | nanocrystalline mackinawite (FeS). Environ. Sci. Technol. 41, 7699-7705.                                      |
| 1077 | Kada J. and Heit M. (1992) The inventories of anthropogenic Pb, Zn, As, Cd, and the                           |
| 1078 | radionuclides <sup>137</sup> Cs and excess <sup>210</sup> Pb in lake sediments of the Adirondack region, USA. |
| 1079 | <i>Hydrobiologia</i> <b>246</b> , 231-241.                                                                    |
| 1080 | Kainz and Lucotte (2006) Mercury concentrations in lake sediments - revisiting the predictive                 |
| 1081 | power of catchment morphometry and organic matter composition. Water Air Soil Poll.                           |

**170**, 173-189.

| 1083 | Kainz M., Lucotte M. and Parrish C. C. (2003) Relationships between organic matter composition |
|------|------------------------------------------------------------------------------------------------|
| 1084 | and methylmercury content of offshore and carbon-rich littoral sediments in an oligotrophic    |
| 1085 | lake. Can J. Fish. Aquat. Sci. 60, 888-896.                                                    |

- Kamman N. C. and Engstrom D. R. (2002) Historical and present fluxes of mercury to Vermont
   and New Hampshire lakes inferred from <sup>210</sup>Pb dated sediment cores. *Atmos. Environ.* 36,
   1599-1609.
- Karlsson T. and Skyllberg U. (2003) Bonding of ppb levels of methyl mercury to reduced sulfur
  groups in soil organic matter. *Environ. Sci. Technol.* 37, 4912-4918.

1091 King J. K., Kostka J. E., Frischer M. E., Saunders F. M. and Jahnke R. A. (2001) A quantitative

- 1092 relationship that demonstrates mercury methylation rates in marine sediments are based on
- 1093 the community composition and activity of sulfate-reducing bacteria. *Environ. Sci.*
- *Technol.* **35**, 2491-2496.
- 1095 Krabbenhoft D. P., Gilmour C. C., Benoit J. M., Babiarz C. L., Andren A. W. and Hurley J. P.
- 1096 (1998) Methylmercury dynamics in littoral sediments of a temperate seepage lake. *Can. J.*1097 *Fish. Aquat. Sci.* 55, 835-844.
- Laforte L., Tessier A., Gobeil C. and Carignan R. (2005) Thallium diagenesis in lake sediments.
   *Geochim. Cosmochim. Acta* 69, 5295-5306.
- Lambertsson L. and Nilsson M. (2006) Organic material: the primary control on mercury
  methylation and ambient methylmercury concentrations in estuarine sediments. *Environ. Sci. Technol.* 40, 1822-1829.
- 1103 Lamborg C. H., Fitzgerald W. F., Damman A. W. H., Benoit J. M., Balcom P. H. and Engstrom D.
- 1104 R. (2002) Modern and historic atmospheric mercury fluxes in both hemispheres: global and
- regional mercury cycling implications. *Global Biogeochem. Cycles* **16**, 51, 1-11.

| 1106 | Lamborg C. H., Fitzgerald W. F., Vandal G. M. and Rolfhus K. R. (1995) Atmospheric mercury in |
|------|-----------------------------------------------------------------------------------------------|
| 1107 | Northern Wisconsin: source and speciation. Water Air Soil Poll. 80, 189-198.                  |
| 1108 | Leermakers M., Galletti S., De Galan S., Brion N. and Baeyens W. (2001) Mercury in the        |
| 1109 | Southern North Sea and Scheldt estuary. Mar. Chem. 75, 229-248.                               |
| 1110 | Leermakers M., Baeyens W., Quevauviller P. and Horvat M. (2005) Mercury in environmental      |
| 1111 | samples: speciation, artifacts and validation. Trends Anal. Chem. 24, 383-393.                |
| 1112 | Liu J., Valsaraj K. T., Devai I. and DeLaune R. D. (2008) Immobilization of aqueous Hg(II) by |
| 1113 | mackinawite (FeS). J. Hazard. Mater. 157, 432-440.                                            |
| 1114 | Lockhart W. L., Macdonald R. W., Outridge P. M., Wilkinson P., DeLaronde J. B. and Rudd J. W. |
| 1115 | M. (2000) Tests of the fidelity of lake sediment core records of mercury deposition to        |
| 1116 | known histories of mercury contamination. Sci. Total Environ. 260, 171-180.                   |
| 1117 | Loux N. T. (2007) An assessment of thermodynamic reaction constants for simulating aqueous    |
| 1118 | environmental monomethylmercury speciation. Chem. Spec. Bioavailab. 19, 183-196.              |
| 1119 | Malcolm R. L. (1985) Geochemistry of stream fulvic and humic substances. In Humic Substances  |
| 1120 | in Soil, Sediment and Water. Geochemistry, Isolation and Characterization (ed. G. R.          |
| 1121 | Aiken et al.), pp. 181-209. Wiley-Interscience.                                               |
| 1122 | Martell A. E. and Smith R. M. (2001) NIST Critically Selected Stability Constants of Metal    |
| 1123 | Complexes, version 6 Gaithersburg, Maryland: National Institute of Standards and              |
| 1124 | Technology.                                                                                   |
| 1125 | Martell A. E., Smith R. M. and Motekaitis R. J. (2003) NIST critical constants for metal      |
| 1126 | complexes. NIST Standard Reference Database 46, U.S. Department of Commerce,                  |
| 1127 | National Institute of Standards and Technology, Gaithersburgh, MD.                            |
|      |                                                                                               |

| 1128 | Marvin-Di Pasquale M. C., Agee J., McGowan C., Oremland R. S., Thomas M., Krabbenhoft D.           |
|------|----------------------------------------------------------------------------------------------------|
| 1129 | and Gilmour C. C. (2000) Methylmercury degradation pathways: a comparison among                    |
| 1130 | three mercury-impacted ecosystems. Environ. Sci. Technol. 34, 4908-4916.                           |
| 1131 | Matisoff G. and Wang X. (1998) Solute transport in sediments by freshwater infaunal bioirrigators. |
| 1132 | Limnol. Oceanogr. <b>43,</b> 1487-1499.                                                            |
| 1133 | Matisoff G. and Wang X. (2000) Particle mixing by freshwater infaunal bioirrigators: midges        |
| 1134 | (chironomidae: diptera) and mayflies (ephemeridae: ephemeroptera). J. Great Lakes Res.             |
| 1135 | <b>26</b> , 174-182.                                                                               |
| 1136 | Meili M., Bishop K., Bringmark L., Johansson K., Munthe J., Sverdrup H. and De Vries W. (2003)     |
| 1137 | Critical levels of atmospheric pollution: criteria and concepts for operational modelling of       |
| 1138 | mercury in forest and lake ecosystems. Sci. Total Environ. 304, 83-106.                            |
| 1139 | Merritt K. A. and Amirbahman A. (2007) Mercury dynamics in sulfide-rich sediments:                 |
| 1140 | geochemical influence on contaminants mobilization within the Penobscot River estuary,             |
| 1141 | Maine, USA. Geochim. Cosmochim. Acta 71, 929-941.                                                  |
| 1142 | Merritt K. A. and Amirbahman, A. (2008) Methylmercury cycling in estuarine sediment pore           |
| 1143 | waters (Penobscot River estuary, Maine, USA). Limnol. Oceanogr. 53, 1064-1075.                     |
| 1144 | Miller C. L. (2006) The role of organic matter in the dissolved phase speciation and solid phase   |
| 1145 | partitioning of mercury. PhD thesis. University of Maryland, College Park.                         |
| 1146 | Mills R. B., Paterson A. M., Blais J. M., Lean D. R. S., Smol J. P. and Mierle G. (2009) Factors   |
| 1147 | influencing the achievement of steady state in mercury contamination among lakes and               |
| 1148 | catchments of south-central Ontario. Can. J. Fish. Aquat. Sci. 66, 187-200.                        |
| 1149 | Morse J. W. and Luther G. W. (1999) Chemical influences on trace metal-sulfide interactions in     |
| 1150 | anoxic sediments. Geochim. Cosmochim. Acta 63, 3373-3378.                                          |
|      |                                                                                                    |

| 1151 | Muir D. C. G., Wang X., Yang F., Nguyen N., Jackson T. A., Evans M. S. D. M., Köck G.,          |
|------|-------------------------------------------------------------------------------------------------|
| 1152 | Lamoureux S., Pienitz R., Smol J. P., Vincent W. F. and Dastoor A. (2009) Spatial trends        |
| 1153 | and historical deposition of mercury in Eastern and Northern Canada inferred from lake          |
| 1154 | sediment cores. Environ. Sci. Technol. 43, 4802-4809.                                           |
| 1155 | Munthe J., Bodaly R. A., Branfireun B. A., Driscoll C. T., Gilmour C. C., Harris, R, Horvat M., |
| 1156 | Lucotte M. and Malm O. (2007) recovery of mercury-contaminated fisheries. Ambio 36,             |
| 1157 | 33-44.                                                                                          |
| 1158 | NADP (2010) Mercury Deposition Network Public Database. <u>http://nadp.sws.uiuc.edu/mdn</u> .   |
| 1159 | National Atmospheric Deposition Program Office, Illinois State Water Survey, Champaign,         |
| 1160 | IL.                                                                                             |
| 1161 | Newhook R., Hirtle H., Byrne K. and Meek M. E. (2003) Release from copper smelters and          |
| 1162 | refineries and zinc plants in Canada: Human health exposure and risk characterization. Sci.     |
| 1163 | <i>Total Environ.</i> <b>301</b> , 23–41.                                                       |
| 1164 | Olson B. H. and Cooper R. C. (1974) In situ methylation of mercury in estuarine sediments.      |
| 1165 | <i>Nature</i> <b>252</b> , 682-683.                                                             |
| 1166 | Oremland R. S., Culberton C. W. and Winfrey M. R. (1991) Methylmercury decomposition in         |
| 1167 | sediments and bacterial cultures: involvement of methanogens and sulphate reducers in           |
| 1168 | oxidative demethylation. Appl. Environ. Microbiol. 57, 130-137.                                 |
| 1169 | Pacyna E. G., Pacyna J. M., Steenhuisen F. and Wilson S. (2006) Global anthropogenic mercury    |
| 1170 | emission inventory for 2000. Atmos. Environ. 40, 4048-4063.                                     |
| 1171 | Parker J.L. and Bloom N.S. (2005) Preservation and storage techniques for low-level aqueous     |
| 1172 | mercury speciation. Sci. Tot. Environ. 337, 253-263.                                            |

| 1173 | Payette, D. E., Filion L. and Delwaide A. (1990) Disturbance regime of a cold temperate forest as                                                                                                                  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1174 | deduced from tree-rings patterns: the Tantaré Ecological Reserve, Quebec. Can. J. For.                                                                                                                             |
| 1175 | <i>Res.</i> <b>20</b> , 1228-1241.                                                                                                                                                                                 |
| 1176 | Perry E., Norton S. A., Kamman N. C., Lorey P. M. and Driscoll C. T. (2005) Deconstruction of                                                                                                                      |
| 1177 | historic mercury accumulation in lake sediments, Northeastern United States.                                                                                                                                       |
| 1178 | Ecotoxicology 14, 85-99.                                                                                                                                                                                           |
| 1179 | Pirrone N., Allegrini I., Keeler G. J., Nriagu J. O., Rossmann R. and Robbins J. A. (1998)                                                                                                                         |
| 1180 | Historical atmospheric mercury emissions and depositions in North America compared to                                                                                                                              |
| 1181 | mercury accumulations in sedimentary records. Atmos. Environ. 32, 929-940.                                                                                                                                         |
| 1182 | Powell K. J., Brown P. L., Byrne R. H., Gajda T., Hefter G., Sjöberg S. and Wanner H. (2005)                                                                                                                       |
| 1183 | Chemical speciation of environmentally significant heavy metals with inorganic ligands.                                                                                                                            |
| 1184 | Part 1: The $Hg^{2+}$ - Cl <sup>-</sup> , OH <sup>-</sup> , CO <sub>3</sub> <sup>2-</sup> , SO <sub>4</sub> <sup>2-</sup> , and PO <sub>4</sub> <sup>2-</sup> aqueous systems. <i>Pure Appl. Chem.</i> <b>77</b> , |
| 1185 | 739-800.                                                                                                                                                                                                           |
| 1186 | Rabenstein D. L., Touranqueau M. C. and Evans C. A. (1976) Proton magnetic resonance and                                                                                                                           |
| 1187 | Raman spectroscopic studies of methylmercury(II) complexes of inorganic anions. Can. J.                                                                                                                            |
| 1188 | <i>Chem.</i> <b>54</b> , 2517-2525.                                                                                                                                                                                |
| 1189 | Ramlal P. S., Rudd J. W. M. and Hecky R. E. (1986) Methods for measuring specific rates of                                                                                                                         |
| 1190 | mercury methylation and degradation and their use in determining factors controlling net                                                                                                                           |
| 1191 | rates of mercury methylation. Appl. Environ. Microbiol. 51, 110-114.                                                                                                                                               |
| 1192 | Ravichandran M. (2004) Interactions between mercury and dissolved organic matter - a review.                                                                                                                       |
| 1193 | <i>Chemosphere</i> <b>55</b> , 319-331.                                                                                                                                                                            |
|      |                                                                                                                                                                                                                    |

| 1194 | Redfield A. C. (1934) On the proportions of organic derivatives in seawater and their relation to |
|------|---------------------------------------------------------------------------------------------------|
| 1195 | the composition of plankton. In: Daniel, R.J. (Ed.), James Johnson Memorial Volume.               |
| 1196 | Liverpool University Press, Liverpool.                                                            |
| 1197 | Rickard D. (2006) The solubility of FeS. Geochim. Cosmochim. Acta 70, 5779-5789.                  |
| 1198 | Rodriguez Martin-Doimeadios R. C., Tessier E., Amouroux D., Guyauneaud R., Duran R.,              |
| 1199 | Caumette P. and Donard O. F. X. (2004) Mercury methylation/demethylation and                      |
| 1200 | volatilization pathways in estuarine sediment slurries using species-specific enriched stable     |
| 1201 | isotopes. Mar. Chem. 90, 107-123.                                                                 |
| 1202 | Rydberg J., Gälman V., Renberg I. and Bindler R. (2008) Assessing the stability of mercury and    |
| 1203 | methylmercury in a varved lake sediment deposit. Environ. Sci. Technol. 42, 4391-4396.            |
| 1204 | Selvendiran P., Driscoll C. T., Montesdeoca M. R., Choi HD. and Holsen T. M. (2009) Mercury       |
| 1205 | dynamics and transport in two Adirondack lakes. Limnol. Oceanogr. 54, 413-427.                    |
| 1206 | Skyllberg U. (2008) Competition among thiols and inorganic sulfides and polysulfides for Hg and   |
| 1207 | MeHg in wetland soils and sediments under suboxic conditions: illumination of                     |
| 1208 | controversies and implications for MeHg net production. J. Geophys. Res. 113, G00C03,             |
| 1209 | doi: 10.1029/2008JG000745.                                                                        |
| 1210 | Stoichev T., Rodriguez Martin-Doimeadios R. C., Tessier E., Amouroux D. and Donard O. F. X.,      |
| 1211 | (2004) Improvement of analytical performances for mercury speciation by on-line                   |
| 1212 | derivatization, cryofocussing and atomic fluorescence spectrometry. Talanta 62, 433-438.          |
| 1213 | Sunderland E. M., Gobas F. A. P. C., Branfireun B. A. and Heyes, A. (2006) Environmental          |
| 1214 | controls on the speciation and distribution of mercury in coastal sediments. Mar. Chem.           |
| 1215 | <b>102</b> , 111-123.                                                                             |

| 1216 | Sunderland E. M., Cohen M. D., Selin N. E. and Chmura G. L. (2008) Reconciling models and       |
|------|-------------------------------------------------------------------------------------------------|
| 1217 | measurements to assess trends in atmospheric mercury deposition. Environ. Poll. 156, 526-       |
| 1218 | 535.                                                                                            |
| 1219 | Swain E. B., Engstrom D. R., Brigham M. E., Henning T. A. and Brezonik P. L. (1992) Increasing  |
| 1220 | rates of atmospheric mercury deposition in midcontinental North America. Science 257,           |
| 1221 | 784-787.                                                                                        |
| 1222 | Tiffreau C., Lützenkirchen J. and Behra P. (1995) Modeling the adsorption of mercury(II) on     |
| 1223 | (Hydr)oxides. 1. Amorphous iron oxide and α-quartz. J. Coll. Interf. Sci. 172, 82-93.           |
| 1224 | Tipping E. (2002) Cation Binding by Humic Substances. Cambridge University Press.               |
| 1225 | Tipping E. (2007) Modelling the interactions of Hg(II) and methylmercury with humic substances  |
| 1226 | using WHAM/Model VI. Appl. Geochem. 22, 1624-1635.                                              |
| 1227 | Turner A., Millward G. E. and Le Roux S. M. (2004) Significance of oxides and particulate       |
| 1228 | organic matter in controlling trace metal partitioning in a contaminated estuary. Mar.          |
| 1229 | Chem. 88, 179-192.                                                                              |
| 1230 | Ullrich S. M., Tanton T. W. and Abdrashitova S. A. (2001) Mercury in the aquatic environment: a |
| 1231 | review of factors affecting methylation. Crit. Rev. Environ. Sci. Technol. 31, 241-293.         |
| 1232 | USEPA (1997) Mercury Study Report to Congress. Volume II: An Inventory of Anthropogenic         |
| 1233 | Emissions in the United States. EPA-452/R-97-004. U.S. Environmental Protection                 |
| 1234 | Agency. Office of Air Quality & Standards and Office of Research and Development.               |
| 1235 | USEPA (2002) Method 1631, Revision E: Mercury in water by oxidation, purge and trap, and cold   |
| 1236 | vapor atomic fluorescence spectrometry. EPA-821-R-02-019. U.S. Environmental                    |
| 1237 | Protection Agency, Office of Water.                                                             |
|      |                                                                                                 |

- 1238 USEPA (2007) Method 7473: Mercury in solids and solutions by thermal decomposition,
- amalgamation, and atomic absorption spectrophotometry,
- 1240 <u>http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/7473.pdf</u>
- 1241 VanArsdale A., Weiss J., Keeler G., Miller E., Boulet G., Brulotte R. and Poissant L. (2005)
- 1242 Patterns of mercury deposition and concentration in Northeastern North America (1996-
- 1243 2002). *Ecotoxicology* **14**, 37-52.
- Wang F., Tessier A. and Buffle J. (1998) Voltammetric determination of elemental sulfur in pore
  waters. *Limnol. Oceanogr.* 43, 1353-1361.
- 1246 Wang F. and Tessier A. (2009) Zero-valent sulfur and metal speciation in sediment porewaters of
- 1247 freshwater lakes. *Environ. Sci. Technol.* **43**, 7252-7257.
- Wedepohl K. H. (1995) The composition of the continental crust. *Geochim. Cosmochim. Acta* 59, 1249
  1217-1232.
- Winfrey M. R. and Rudd J. W. M. (1990) Environmental factors affecting the formation of
  methylmercury in low pH lakes. *Environ. Toxicol. Chem.* 9, 853-869.
- 1252 Xia K., Skyllberg U. L., Bleam W. F., Bloom P. R., Nater E. A. and Helmke P. A. (1999) X-ray
- absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil
  humic substances. *Environ. Sci. Technol.* 33, 257-261.
- 1255 Yang H., Battarbee R. W., Turner S. D., Rose N. L., Derwent R. G., Wu G. and Yang R. (2010)
- Historical reconstruction of mercury pollution across the Tibetan Plateau using lake
  sediments. *Environ. Sci. Technol.* 44, 2918-2924.
- 1258
- 1259
- 1260

| Lake                                                  | Tar         | ntaré      | Bédard      | Holland     |
|-------------------------------------------------------|-------------|------------|-------------|-------------|
|                                                       | Basin A     | Basin B    |             |             |
| Geographical coordinates                              | 47°0        | 04'N       | 47°16'N     | 48°56'N     |
|                                                       | 71°3        | 32'W       | 71°07'W     | 65°23'W     |
| Geological region                                     | Can.        | Shield     | Can. Shield | Appalachian |
| Altitude (m)                                          | 4.          | 50         | 680         | 475         |
| Lake area (km <sup>2</sup> )                          | 1           | .1         | 0.045       | 0.008       |
| Watershed area (km <sup>2</sup> )                     | 10          | ).5        | 0.27        | 1.3         |
| Sampling depth (m)                                    | 15          | 22         | 10          | 11          |
| Redox state of bottom water                           | Perennially | Seasonally | Seasonally  | Seasonally  |
|                                                       | oxic        | anoxic     | anoxic      | anoxic      |
| Sampling dates                                        |             |            |             |             |
| Coring                                                | June 03     | June 06    | Sept. 04    | August 05   |
| Porewater                                             | Sept. 05    | Sept. 06   | None        | None        |
|                                                       | Sept. 06    | July 07    | None        | None        |
| pH of bottom water                                    | 5.5-5.8     | 6.6-7.0    | 6.9-7.0     | 7.5-7.6     |
| $\omega (\text{mg cm}^{-2} \text{yr}^{-1})^{a}$       | 4.0-7.3     | 10.8       | 2.4-46.8    | 4.5-15.7    |
| $v_s (\text{mm yr}^{-1})^a$                           | 0.9-1.3     | 1.1-1.5    | 0.5-2.6     | 0.5-4.4     |
| $I_{Sed}^{210Pb}$ (Bq cm <sup>-2</sup> ) <sup>a</sup> | 0.37        | 0.58       | 0.62        | 0.61        |

# 1261 Table 1. Location and characteristics of the study lakes.

# 

<sup>a</sup>:  $\omega$  represents the sediment mass accumulation rate,  $v_s$  the sedimentation rate and  $I_{Sed}^{210Pb}$  the inventory of unsupported <sup>210</sup>Pb in the sediment cores; the data were originally reported in Couture et al. (2008, 2010a).

| 1265 | Table 2. Reactions and their correspondences                          | ponding equilibrium constants (a  | at $25^{\circ}$ C and ionic strength = |
|------|-----------------------------------------------------------------------|-----------------------------------|----------------------------------------|
| 1266 | 0) used to update the WHAM 6 data                                     | abase. For the formation of polys | sulfides complexes, the                |
| 1267 | equilibrium constants have been exp                                   | pressed in terms of dissolved zer | o-valent S using the                   |
| 1268 | reaction 1/8 $S(\alpha)_{8(s)} = S(0)_{a\alpha}$ ; log K <sub>s</sub> | = -6.68 (Wang and Tessier, 200    | )9) <sup>a</sup> .                     |
| 1269 |                                                                       |                                   | ,                                      |
|      | No. Reaction                                                          | LogK                              | Peferences                             |

| No.                               | Reaction                                                                                                           | Log K  | References                |  |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------|--------|---------------------------|--|--|
| 1                                 | $Hg^{2+} + OH^{-} = HgOH^{+}$                                                                                      | 10.6   | Powell et al. (2005)      |  |  |
| 2                                 | $Hg^{2+} + 2OH^{-} = Hg(OH)_{2}$                                                                                   | 22.02  | Powell et al. (2005)      |  |  |
| 3                                 | $Hg^{2+} + 3OH^{-} = Hg(OH)_{3}^{-}$                                                                               | 20.9   | Powell et al. (2005)      |  |  |
| 4                                 | $Hg^{2+} + OH^{-} + CI^{-} = HgOHCl$                                                                               | 18.27  | Powell et al. (2005)      |  |  |
| 5                                 | $Hg^{2+} + Cl^{-} = HgCl^{+}$                                                                                      | 7.3    | Powell et al. (2005)      |  |  |
| 6                                 | $Hg^{2+} + 2Cl^{-} = HgCl_2$                                                                                       | 14.0   | Powell et al. (2005)      |  |  |
| 7                                 | $Hg^{2+} + 3Cl^{-} = HgCl_{3}^{-}$                                                                                 | 14.93  | Powell et al. (2005)      |  |  |
| 8                                 | $Hg^{2+} + 4Cl^{2} = HgCl_{4}^{2-}$                                                                                | 15.5   | Powell et al. (2005)      |  |  |
| 9                                 | $Hg^{2+} + SO_4^{2-} = HgSO_4$                                                                                     | 2.6    | Powell et al. (2005)      |  |  |
| 10                                | $Hg^{2+} + CO_3^{2-} = HgCO_3$                                                                                     | 11.51  | Powell et al. (2005)      |  |  |
| 11                                | $Hg^{2+} + 2CO_3^{2-} = Hg(CO_3)_2^{2-}$                                                                           | 15.58  | Martell et al. (2001)     |  |  |
| 12                                | $Hg^{2+} + OH^{-} + CO_{3}^{2-} = Hg(OH)CO_{3}^{-}$                                                                | 19.34  | Powell et al. (2005)      |  |  |
| 13                                | $Hg^{2+} + H^{+} + CO_{3}^{2-} = HgHCO_{3}^{+}$                                                                    | 15.84  | Powell et al. (2005)      |  |  |
| 14                                | $Hg^{2+} + HS^{-} = HgSH^{+}$                                                                                      | 22.3   | Jay et al. (2000)         |  |  |
| 15                                | $Hg^{2+} + 2HS^{-} = Hg(SH)_2$                                                                                     | 40.37  | Jay et al. (2000)         |  |  |
| 16                                | $Hg^{2+} + 2HS^{-} + OH^{-} = HgS_{2}H^{-} + H_{2}O$                                                               | 48.6   | Jay et al. (2000)         |  |  |
| 17                                | $Hg^{2+} + 2HS^{-} + 2OH^{-} = HgS_{2}^{2-} + 2H_{2}O$                                                             | 53.56  | Jay et al. (2000)         |  |  |
| 18                                | $Hg^{2+} + HS^{-} + OH^{-} = HgS_{aq} + H_2O$                                                                      | 43.8   | Jay et al. (2000)         |  |  |
| 19                                | $Hg^{2+} + HS^{-} + 2OH^{-} + 4S(0) = HgS_5OH^{-} + H_2O$                                                          | 77.85  | Jay et al. (2000)         |  |  |
| 20                                | $Hg^{2+} + 2HS^{-} + 2OH^{-} + 8S(0) = Hg(S_5)_2^{2-} + 2H_2O$                                                     | 108.3  | Jay et al. (2000)         |  |  |
| 21                                | $Hg^{2+} + R_{HA}^{z} = R_{HA}Hg^{z+2}$                                                                            | 3.6    | Tipping (2007)            |  |  |
| 22                                | $Hg^{2+} + R_{FA}^{z} = R_{FA}Hg^{z+2}$                                                                            | 3.1    | Tipping (2007)            |  |  |
| 23                                | HgS $_{(s, \text{ cinnabar})}$ + H <sup>+</sup> = HS <sup>-</sup> + Hg <sup>2+</sup>                               | -39.1  | Martell et al. (2003)     |  |  |
| 24                                | $HgO_{(s)} + H_2O = Hg^{2+} + 2OH^{-1}$                                                                            | -25.45 | Martell et al. (2003)     |  |  |
| 25                                | $MeHg^+ + OH^- = MeHgOH$                                                                                           | 9.47   | De Robertis et al. (1998) |  |  |
| 26                                | $2\text{MeHg}^+ + \text{OH}^- = (\text{MeHg})_2\text{OH}^+$                                                        | 11.85  | De Robertis et al. (1998) |  |  |
| 27                                | $MeHg^+ + CO_3^{2-} = MeHgCO_3^{}$                                                                                 | 6.1    | Rabenstein et al. (1976)  |  |  |
| 28                                | $MeHg^{+} + H^{+} + CO_{3}^{2-} = MeHgHCO_{3}$                                                                     | 12.95  | Loux (2007)               |  |  |
| 29                                | $MeHg^+ + Cl^- = MeHgCl$                                                                                           | 5.45   | De Robertis et al. (1998) |  |  |
| 30                                | $MeHg^+ + SO_4^{2-} = MeHgSO_4^{-}$                                                                                | 2.64   | De Robertis et al. (1998) |  |  |
| 31                                | $MeHg^{+} + HS^{-} = MeHgSH$                                                                                       | 14.5   | Loux (2007)               |  |  |
| 32                                | $MeHg^{+} + HS^{-} + OH^{-} = MeHgS^{-} + H_2O$                                                                    | 21.0   | Martell et al. (2001)     |  |  |
| 33                                | $2\text{MeHg}^+ + \text{HS}^- + \text{OH}^- = (\text{MeHg})_2\text{S} + \text{H}_2\text{O}$                        | 37.3   | Martell et al. (2001)     |  |  |
| 34                                | $3\text{MeHg}^+ + \text{HS}^- + \text{OH}^- = (\text{MeHg})_3\text{S}^+ + \text{H}_2\text{O}$                      | 44.3   | Martell et al. (2001)     |  |  |
| 35                                | $MeHg^+ + R_{HA}^z = R_{HA}MeHg^{z+1}$                                                                             | 0.3    | Tipping (2007)            |  |  |
| 36                                | $MeHg^+ + R_{FA}^z = R_{FA}MeHg^{z+1}$                                                                             | 0.3    | Tipping (2007)            |  |  |
| 37                                | $\operatorname{FeS}_{(s, \operatorname{mackinawite})} + \mathrm{H}^{+} = \operatorname{Fe}^{2+} + \mathrm{HS}^{-}$ | -3.5   | Rickard (2006)            |  |  |
| <sup>a</sup> : $R_{HA}^{T}$ and R | $R_{HA}^{z}$ and $R_{FA}^{z}$ represent humic and fulvic acid molecules, respectively.                             |        |                           |  |  |

| Table 3. Concentrations of $C_{org}$ , Fe-ox, Hg <sub>T</sub> and MeHg in the top 0.5-cm layer of I | Lake Tantaré |
|-----------------------------------------------------------------------------------------------------|--------------|
|-----------------------------------------------------------------------------------------------------|--------------|

1273 Basin A sediments as well as molar ratios in this sediment layer and in the Fe-rich material 1274 collected with the Teflon sheets.

|                                | Lake Tantaré Basin A          |                                 |  |  |
|--------------------------------|-------------------------------|---------------------------------|--|--|
|                                | Top sediment layer            | Teflon sheets                   |  |  |
|                                |                               |                                 |  |  |
| Concentration                  |                               |                                 |  |  |
| $\{C_{org}\} \mod C g^{-1}$    | $2.02 \pm 0.08 	imes 10^{-2}$ |                                 |  |  |
| {Fe-ox} mol $g^{-1}$           | $1.55 \pm 0.05 	imes 10^{-3}$ |                                 |  |  |
| $\{Hg_T\} \text{ mol } g^{-1}$ | $3.0 \pm 0.1 	imes 10^{-9}$   |                                 |  |  |
| {MeHg} mol $g^{-1}$            | $7.6 \pm 1.1 	imes 10^{-11}$  |                                 |  |  |
|                                |                               |                                 |  |  |
| Molar ratio                    |                               |                                 |  |  |
| $\{C_{org}\}$ : $\{Fe-ox\}$    | 13                            | $2.6\pm0.3$                     |  |  |
| $\{C_{org}\}$ : $\{N\}$        | 15.5                          | $15.3 \pm 3.4$                  |  |  |
| $\{Hg_T\}:\{Fe-ox\}$           | $1.9	imes10^{-6}$             | $1.3 \pm 0.3 	imes 10^{-7}$     |  |  |
| {MeHg}:{Fe-ox}                 | $4.9 	imes 10^{-8}$           | $6.5 \pm 1.9 	imes 10^{-10}$    |  |  |
| $\{Hg_T\}: \{C_{org}\}$        | $1.5 	imes 10^{-7}$           | $4.9\pm0.7\times10^{\text{-8}}$ |  |  |
| ${MeHg}:{\tilde{C}_{org}}$     | $3.8 	imes 10^{-9}$           | $2.5 \pm 0.6 \times 10^{10}$    |  |  |

1278Table 4.  $R_{net}^{Hg}$  as a function of depth calculated with the computer code PROFILE for each of the1279two study basins of Lake Tantaré and sampling date along with estimated present-day fluxes of Hg1280due to particle settling  $(J_{Dep}^{Hg})$  and to the transport of dissolved Hg across the sediment–water1281interface by molecular diffusion  $(J_D^{Hg})$ , bioirrigation  $(J_I^{Hg})$ , and biodiffusion  $(J_B^{Hg})$ , and net Hg1282accumulation fluxes  $(J_{Acc}^{Hg})$ .1283

| Sampling | Zone | Depth<br>interval | $R_{net}^{Hg}$                                | $J_{\scriptscriptstyle Dep}^{\scriptscriptstyle Hg}$ | $J_{\scriptscriptstyle D}^{\scriptscriptstyle Hg}$ | $J_{\scriptscriptstyle I}^{\scriptscriptstyle Hg}$ | $J^{{}_B{}_B{}}$             | $J^{\scriptscriptstyle Hg}_{\scriptscriptstyle Acc}$ |
|----------|------|-------------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------|------------------------------------------------------|
| Date     | No.  | cm                | $10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1}$ |                                                      | 10                                                 | $-21 \text{ mol cm}^{-22}$                         | <sup>2</sup> s <sup>-1</sup> |                                                      |
| Basin A  |      |                   |                                               |                                                      |                                                    |                                                    |                              |                                                      |
| Sept. 05 | 1    | 0-6.3             | -0.7                                          | 544                                                  | 0.95                                               | 0.27                                               | $4.3 \times 10^{-4}$         | 545                                                  |
|          | 2    | 6.33-9.5          | 2.4                                           |                                                      |                                                    |                                                    |                              |                                                      |
| Sept. 06 | 1    | 0-9.5             | -0.8                                          | 544                                                  | 0.24                                               | 0.058                                              | $1.1 	imes 10^{-4}$          | 544                                                  |
| Basin B  |      |                   |                                               |                                                      |                                                    |                                                    |                              |                                                      |
| Oct. 06  | 1    | 0-4.1             | -14                                           | 765                                                  | 65.8                                               | 0                                                  | 0                            | 821                                                  |
|          | 2    | 4.1-9.5           | 1.7                                           |                                                      |                                                    |                                                    |                              |                                                      |
| July 07  | 1    | 0-5.7             | -3.6                                          | 765                                                  | 18.6                                               | 0                                                  | 0                            | 784                                                  |
|          | 2    | 5.7-8.5           | 11                                            |                                                      |                                                    |                                                    |                              |                                                      |

| 1286 |                                                                                                                  |
|------|------------------------------------------------------------------------------------------------------------------|
| 1287 | Table 5. $R_{net}^{MeHg}$ as a function of depth calculated with the computer code PROFILE for each of the       |
| 1288 | two study basins of Lake Tantaré and sampling date along with estimated present-day fluxes of                    |
| 1289 | MeHg due to particle settling $(J_{Dep}^{MeHg})$ and to the transport of dissolved MeHg across the               |
| 1290 | sediment–water interface by molecular diffusion $(J_D^{MeHg})$ , bioirrigation $(J_I^{MeHg})$ , and biodiffusion |
| 1291 | $(I^{MeHg})$ and net MeHg accumulation fluxes $(I^{MeHg})$ To estimate $I^{MeHg}$ we assumed that the            |

- $(J_B^{MeHg})$ , and net MeHg accumulation fluxes  $(J_{Acc}^{MeHg})$ . To estimate  $J_{Dep}^{MeHg}$ , we assumed that the production or degradation of MeHg in surface sediments is negligible.
- 1293

| Sampling | Zone | Depth<br>interval | $R_{net}^{MeHg}$                              | $J_{\scriptscriptstyle Dep}^{\scriptscriptstyle MeHg}$ | $J_{\scriptscriptstyle D}^{\scriptscriptstyle MeHg}$ | $J_{\scriptscriptstyle I}^{\scriptscriptstyle MeHg}$ | $J^{\it MeHg}_{\it B}$ | $J_{\scriptscriptstyle Acc}^{\scriptscriptstyle MeHg}$ |
|----------|------|-------------------|-----------------------------------------------|--------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------|--------------------------------------------------------|
| Date     | No.  | cm                | $10^{-21} \text{ mol cm}^{-3} \text{ s}^{-1}$ |                                                        | 10                                                   | $0^{-21} \text{ mol cm}^{-2}$                        | s <sup>-1</sup>        |                                                        |
| Basin A  |      |                   |                                               |                                                        |                                                      |                                                      |                        |                                                        |
| Sept. 05 | 1    | 0-4.7             | -0.2                                          | 14.1                                                   | 0.20                                                 | 0.020                                                | $0.7	imes10^{-4}$      | 14.3                                                   |
|          | 2    | 4.7-9.5           | 0.3                                           |                                                        |                                                      |                                                      |                        |                                                        |
| Sept.06  | 1    | 0-1.2             | -1.1                                          | 14.1                                                   | -0.39                                                | -0.099                                               | $-1.4 	imes 10^{-4}$   | 13.6                                                   |
|          | 2    | 1.2-2.4           | 2.1                                           |                                                        |                                                      |                                                      |                        |                                                        |
|          | 3    | 2.4-5.9           | -0.3                                          |                                                        |                                                      |                                                      |                        |                                                        |
|          | 4    | 5.9-9.5           | 0.1                                           |                                                        |                                                      |                                                      |                        |                                                        |
| Basin B  |      |                   |                                               |                                                        |                                                      |                                                      |                        |                                                        |
| Oct. 06  | 1    | 0-1.6             | -3.5                                          | 4.65                                                   | 5.70                                                 | 0                                                    | 0                      | 10.3                                                   |
|          | 2    | 1.6-9.5           | -0.01                                         |                                                        |                                                      |                                                      |                        |                                                        |
| July 07  | 1    | 0-3.2             | -0.9                                          | 4.65                                                   | 4.05                                                 | 0                                                    | 0                      | 8.7                                                    |
|          | 2    | 3.2-9.5           | -0.03                                         |                                                        |                                                      |                                                      |                        |                                                        |

| 1297 |
|------|
| 1298 |
| 1299 |
| 1300 |
| 1301 |
| 1302 |

1007

#### **CAPTIONS FOR FIGURES**

Figure 1. Location map of Lakes Tantaré, Bédard and Holland. Inset: Lake Tantaré and its

1300 watershed, including the sampling location in Basins A and B.

**Figure 2.** Triplicate porewater profiles of  $Hg_T$  (a-d), MeHg (e-h), Fe and Mn (i-l),  $\Sigma$ S(-II) (m-p),  $\Sigma$ S(0) (q-t), and SO<sub>4</sub> (u-x) concentrations for Basin A of Lake Tantaré in September 2005 and in September 2006 and for Basin B of Lake Tantaré in October 2006 (anoxic period) and in July 2007 (oxic period). The circle, triangle and square symbols are for triplicate water samples for either the measurements of Hg<sub>T</sub>, MeHg, Fe and Mn or those of  $\Sigma$ S(-II),  $\Sigma$ S(0), and SO<sub>4</sub>. Empty symbols in panels a-h and m-t represent concentrations below detection limit. The horizontal dotted lines indicate the sediment–water interface.

1309

1310 **Figure 3.** Depth profiles of the main species of dissolved  $Hg_{NM}$  (a-d) and of dissolved MeHg (e-h) 1311 for Lake Tantaré Basins A and B. The percentages of the dissolved species of inorganic Hg and 1312 MeHg were calculated with the speciation model WHAM 6. Comparison of modeled and 1313 measured average (n=3) concentration of dissolved Hg<sub>T</sub> (i-l) and MeHg (m-p) with the horizontal 1314 dotted lines indicating the sediment-water interface, the piecewise constant functions (thick solid lines) representing the net Hg<sub>T</sub> and MeHg production (+) /consumption (-) rate ( $R_{net}^{Hg}$  and  $R_{net}^{MeHg}$ ) 1315 1316 and the thin solid lines following the measured values showing the PROFILE model fitting. 1317 Saturation index (SI = log (IAP/K<sub>s</sub>) profiles for FeS<sub>(s, m)</sub> (disordered mackinawite; K<sub>s</sub> = -3.5) is also 1318 given (q-t).

1320 **Figure 4.** Depth profiles of  $\{Hg_T\}$  and  $\{Hg_T\}$ :  $\{Al\}$  molar ratio (a-d),  $\{MeHg\}$  (e-f),  $\{Fe\}$  and {Mn} (g-j), {C\_{\text{org}}} (k-n), and {S\_T} and {AVS} (o-r) in Lake Tantaré Basins A and B and in Lakes 1321 1322 Bédard and Holland. 1323 1324 Figure 5. Comparison of modeled and measured concentration of dissolved MeHg (a-c) for Basin 1325 A in September 2006 with the horizontal dotted lines indicating the sediment-water interface, the 1326 piecewise constant functions (thick solid lines) representing the net MeHg production (+) /consumption (-) rate ( $R_{net}^{MeHg}$ ) and the thin solid lines following the measured values showing the 1327 1328 PROFILE model fitting. 1329 1330 Figure 6. Reconstructed historical records of anthropogenic Hg deposition fluxes to the sediments 1331 of Lake Tantaré (a) Basins A (filled circles) and B (open circles), of Lake Bédard (b) and of Lake Holland (c) corrected for lake specific processes  $(J_{Corr}^{Hg-Anth})$ ; the insets show the records 1332 uncorrected for such processes  $(J^{Hg-Anth})$ . 1333 1334 1335

| 1<br>2 | FIGURES – Feyte et al.             |
|--------|------------------------------------|
| 3      |                                    |
| 4<br>5 | Mercury dynamics in lake sediments |



Fig. 1



Fig. 2









Fig. 4



Fig. 5





Fig. 6