INSTITUT SCIENTIFIQUE ET TECHNIQUE
DES PÊCHES MARITIMES

LABORATOIRE CULTURES MARINES
ET
AMENAGEMENT DU LITTORAL
LA TREMBLADE
+++++++}

RAPPORT ANNUEL L'ACTIVITÉ

1981
xxxxxxx
Au 1er janvier 1981, le personnel du laboratoire est constitué de :

M. HERAL chargé de recherche contractuel, chef de laboratoire
J.P. BERTHOME chargé de recherche contractuel
J.M. DESLOUS-PAOLI chercheur sous convention EPR Poitou-Charentes
à partir du 1er septembre 1981.
M.P. GRAS assistante à l'Université de Nantes, en détachement à
l'I.S.T.P.M.
J. MOREAU chargé de recherche contractuel
Y. ZANETTE chercheur sous convention Section régionale du C.I.C.
et Conseil général jusqu'au 12 septembre 1981
D. RAZET technicien
J. GARNIER technicien
S. TAILLADE secrétaire vacataire horaire
G. CAILLETEAU agent d'entretien vacataire horaire

En outre, de nombreux stagiaires ont été reçus et ont participé
aux travaux programmés.
Sommaire

1) **Résultats scientifiques**

<table>
<thead>
<tr>
<th>Programme 1 - Evaluation de la production</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Sous programme 1 - Gestion des gisements naturels</td>
<td>5</td>
</tr>
<tr>
<td>1.1.1 gisements d’huîtres</td>
<td>5</td>
</tr>
<tr>
<td>1.1.2 gisements autres mollusques</td>
<td>7</td>
</tr>
<tr>
<td>*Sous programme 2 - Estimation des stocks en élevage</td>
<td>8</td>
</tr>
<tr>
<td>1.2.1 prévisions de captage</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2 estimation du recrutement</td>
<td>13</td>
</tr>
<tr>
<td>1.2.3 stocks d’huîtres creuses</td>
<td>14</td>
</tr>
</tbody>
</table>

2) **Programme 2 - Études des facteurs influençant la production**

2.1 - Facteurs limitants pour la reproduction	17
2.2 - Croissance et facteurs environnants	18
2.2.1 Caractéristiques du milieu	18
2.2.2 évolution biochimique des huîtres	24
2.2.3 relations milieu - huîtres	25
2.2.4 physiologie des mollusques	26
2.3 - Anomalies de croissance et calcification	28
2.4 - Compétiteurs	31

3) **Programme 3 - Recherche des possibilités de développement**

3.1 - Valorisation des claires	32
3.1.1 culture huîtres creuses	32
3.1.2 culture huîtres plates affinage	33
3.1.3 culture huîtres plates de Méditerranée	34
3.2 - culture des palourdes	35
3.2.1 technologie	35
3.2.2 prégrossissement	36
3.2.3 élevage	39
3.3 nouveaux procédés	41
3.4 rejets d’aquaculture de poisson	42

4) **Programme 4 - Sélection génétique** | 43
<table>
<thead>
<tr>
<th>Hors programme</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2) Difficultés rencontrées</td>
<td>46</td>
</tr>
<tr>
<td>3) Aspects financiers</td>
<td>47</td>
</tr>
<tr>
<td>4) Chronologie</td>
<td>47</td>
</tr>
<tr>
<td>6) Embarquements</td>
<td>48</td>
</tr>
<tr>
<td>7) Missions et déplacements</td>
<td>51</td>
</tr>
<tr>
<td>8) Stagiaires et visiteurs</td>
<td>58</td>
</tr>
<tr>
<td>9) Articles, communications, rapports</td>
<td>60</td>
</tr>
<tr>
<td>10) Collaboration aux travaux d'organismes extérieurs</td>
<td>62</td>
</tr>
<tr>
<td>11) Temps passé par programme</td>
<td>63</td>
</tr>
<tr>
<td>12) Tableaux récapitulatifs</td>
<td>64</td>
</tr>
</tbody>
</table>
1) Résultats scientifiques

Programme 1 : évaluation de la production

Sous-programme 1 : Gestion des gisements naturels

1.1.1 Gisements huîtriers

Les améliorations des gisements de Mouillelande et des Flamands ont été renouvelées pour une durée de dix ans au profit de la Section Régionale du C.I.C.. Leur état est très satisfaisant pour ce qui concerne le tonnage d’huîtres. Cependant la qualité des produits génitaux émis par les huîtres du gisement de Seudre (Mouillelande) est loin d’être optimale (voir programme 2.) Pour cette raison nous avons conseillé à la Section Régionale de transférer 15 tonnes d’huîtres du gisement des Flamands sur le gisement de Mouillelande pour tenter de remédier à la déficience de ces géniteurs du haut de Seudre.

Par ailleurs, suite à de nombreuses constatations sur les gisements reconstitués, il y a 10 ans pour l’importation de C. gigas, nous avons conseillé à l’organisation professionnelle d’effectuer un entretien régulier de ces gisements comme éclatement, dévasage etc... En effet l’envasement progressif de ceux-ci conduit à un réhaussement général des bancs d’huîtres néfaste à une bonne croissance et à une bonne condition.

- gisements naturels exploités

Quelques remarques concernant l’exploitation des gisements peuvent être effectuées :

- Malgré un excellent captage en 1980 et le maintien de la fermeture en 1981, les gisements de St Palais à Royan ne présentent pas une grande abondance d’huîtres de 1 an. Ceci montre que la pêche illicite a vraisemblablement augmenté (en liaison avec un manque de production globale en huîtres).

Les gisements pêchables à la drague, ont été ouverts par moitié en 1981. Il s'en est suivi un effort de pêche important. Il a été jugé préférable de les laisser fermé en 1982 afin qu'une ouverture d'une journée soit possible en 1983 sur l'ensemble des quatre secteurs pour mieux répartir l'effort.

Les résultats sont consignés dans le tableau 1.

<table>
<thead>
<tr>
<th>Gisements</th>
<th>Salub.</th>
<th>Type</th>
<th>Ouvert</th>
<th>Pêche</th>
<th>Saissain</th>
<th>1 an</th>
<th>2 ans</th>
<th>Ouvert</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Gironde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St Palais</td>
<td>non</td>
<td>pied</td>
<td>fermé</td>
<td>-</td>
<td>0</td>
<td>++</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Vaux</td>
<td>non</td>
<td>pied</td>
<td>fermé</td>
<td>-</td>
<td>0</td>
<td>++</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Royan</td>
<td>non</td>
<td>pied</td>
<td>fermé</td>
<td>-</td>
<td>0</td>
<td>++</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Vallières</td>
<td>non</td>
<td>pied</td>
<td>31 j</td>
<td>20 j</td>
<td>0</td>
<td>++</td>
<td>+</td>
<td>0, +</td>
</tr>
<tr>
<td>St Georges</td>
<td>non</td>
<td>pied</td>
<td>31 j</td>
<td>20 j</td>
<td>0</td>
<td>++</td>
<td>+</td>
<td>0, +</td>
</tr>
<tr>
<td>Suzac</td>
<td>non</td>
<td>pied</td>
<td>31 j</td>
<td>20 j</td>
<td>0</td>
<td>++</td>
<td>+</td>
<td>0, +</td>
</tr>
<tr>
<td>Talmont</td>
<td>non</td>
<td>pied</td>
<td>31 j</td>
<td>20 j</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Deau</td>
<td>oui</td>
<td>pied*</td>
<td>fermé</td>
<td>-</td>
<td>0</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Roche plate</td>
<td>non</td>
<td>pied*</td>
<td>fermé</td>
<td>-</td>
<td>0, +</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Boeuf</td>
<td>non</td>
<td>drag.</td>
<td>1 j</td>
<td>1 j</td>
<td>0, +</td>
<td>++</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Cabone</td>
<td>non</td>
<td>drag.</td>
<td>fermé</td>
<td>-</td>
<td>0, +</td>
<td>++</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Deau</td>
<td>oui</td>
<td>drag.</td>
<td>1 j</td>
<td>1 j</td>
<td>0, +</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>RG Charente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estrée</td>
<td>oui</td>
<td>pied</td>
<td>10 j</td>
<td>10 j</td>
<td>0</td>
<td>++</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Longées</td>
<td>oui</td>
<td>pied</td>
<td>fermé</td>
<td>-</td>
<td>0</td>
<td>++</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Falles</td>
<td>oui</td>
<td>pied</td>
<td>10 j</td>
<td>10 j</td>
<td>0</td>
<td>+++</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Verger</td>
<td>oui</td>
<td>pied</td>
<td>fermé</td>
<td>-</td>
<td>0</td>
<td>+++</td>
<td>+</td>
<td>0</td>
</tr>
</tbody>
</table>

Abondance : 0 nulle
0, + très faible
+ faible
++ moyenne
+++ fort

* Accessible uniquement en bateau
NB : L'existence des deux colonnes "ouverture" et "pêche" tient au fait que la pêche ne peut effectivement être pratiquée qu'à des coefficients supérieures à 70.

Tableau 1 : Résultats de l'exploitation des gisements naturels.

La fermeture de tous les gisements a été décidée compte-tenu de la faiblesse (voire de l'absence) du captage 1981. Enfin une ouverture des gisements en 1983 pourrait permettre de pallier partiellement à un déficit de production déjà envisageable.

1.1.2 Autres mollusques

- Moules: Le printemps 1981, après un hiver sec, a été très favorable au captage de moule (forte précipitation en mai + 71 mm / à la normale sur 31 ans et températures fraîches - 0,4 / à la normale) jusque fin juin.

Il s'en est suivi un emmoulement très important des parcs qui a été jugulé avec peine par les ostréiculteurs en développant différentes techniques de brûlages ou de filets. Mais les moulières naturelles ont connu un développement très important, leur importance a été déterminée par une campagne de dragage (6 jours) à l'aide d'une petite benne chariot, 106 stations ont été étudiées quantitativement par bonne. Ainsi il apparaît que les zones d'infestation par les moules chevauchent celles infestées par les crépidules dans le centre du bassin (courant d'Oléron entre Méringac et le Chapus et "Courant" d'Oléron) mais s'étendent sur tout le sud du bassin. Des observations par photos aériennes confirment l'importance des surfaces colonisées. Ces populations de jeunes moules sont suivies tous les deux mois, en ce qui concerne leur croissance, leur mortalité et leur biochimie. Par ailleurs, des mesures d'envasement sont effectuées aux mêmes périodes.
gisements de Coquilles St Jacques du Pertuis d'Antioche

Ainsi, dans le Pertuis d'Antioche, dans le secteur Nord-Est 41 % des coquilles sont porteuses de crépidules avec en moyenne 3,3 crépidules (s = 5,3) par coquille. Le nombre maximum de crépidules par coquille est de 47. Par contre, dans le secteur Sud-Ouest, plus au large, seulement 12 % de coquilles St Jacques ont des crépidules avec en moyenne 2,4 crépidules (s = 1,2) par coquille.

Sous-programme 2 : Estimation des stocks en élevage
1.2.1 Prévision de captage de naissain

- La gamétogenèse

Elle a débuté vers la fin avril lorsque les températures d'eau ont atteint 14°C. Ce retard est lié à un printemps froid, durant lequel les températures d'air ont été inférieures à la normale. Si la formation des produits génitaux a été régulière en mai, l'abaissement sensible des températures en juin et juillet a entraîné un blocage physiologique stoppant l'évolution des gonades.

Malgré un mois d'août chaud et un mois de septembre supérieur à la normale de 1,5°C, la maturation des gonades n'a pas été satisfaisante.

Par ailleurs, les expériences de reproduction artificielle des géniteurs de Nouillelande menées par l'INS ont mis en évidence que ces huîtres n'étaient pas physiologiquement mûres en juillet. La pleine maturité n'a été atteinte qu'après un conditionnement de 3 semaines à 22°C. Or cette température n'a été qu'exceptionnellement atteinte en haut de Seudre, ce qui explique
en partie la mauvaise émission de produits génitaux. Les températures estivales de l'eau des hauts de Seudre sont cependant les plus chaudes de l'ensemble des secteurs de captage du bassin, ceci peut donc expliquer que les températures en mois d'aôut et septembre quoique supérieures à la normale n'ont pas permis de rattraper le retard pris lors des mois de juin et juillet.

Les émissions partielles et successives ont ainsi conduit à une très médiocre fécondation et à un faible taux de survie larvaire.

- Les émissions larvaires

En Seudre

La première émission, de faible amplitude (11,00 "petites" à Coux), a été détectée le 3 août. Elle correspondait à la ponte d'une partie des géniteurs du gisement de Houillelande. Bien que son évolution ait été lente au début, les premières larves "grosses" ont été observées le 17 août. Les premiers naissains fixés ont été détectés le 25 août en Seudre moyenne.

Une seconde émission (77 000 "petites" à Coux le 20 août), correspondant à la fin de ponte des géniteurs de Houillelande, et à une ponte partielle des huitres du bas de Seudre. Elle s'est mal développée en raison de la présence de matière organique en voie de dégradation. Quelques rares fixations ont été observées à partir du 11 septembre.

Enfin la ponte totale des huitres provenant des Flamands transférées en Seudre fin juin a entraîné la présence de larves "petites" le 11 septembre (1 500 à Coux) puis d'une série de micro émissions tardives. Aucune fixation liée à ces émissions n'a pu être observée. Le rafraîchissement des températures nocturnes a été sensible au cours de cette période.

- Dans le bassin

Une très faible émission (150 "petites" aux Doux) a été détectée le 3 août. Son évolution fut très lente (21 jours) malgré des températures d'eau correcte (19°6 à 20°7). Les premières larves "grosses"
apparurent le 24 août mais il en subsista jusqu'à la mi-septembre à la suite d'une période de baisse d'oxygène dissous.

Deux petites émissions (70 "petites" le 24 août et 300 "petites" le 11 septembre) avortèrent rapidement, la première par manque d'oxygène dissous, la seconde en raison de basses températures d'eau (moins de 10°50).

Il faut remarquer que sur le gisement des Flamands, toutes les huîtres n'avaient pas pondu le 11 septembre. Les lots élevés sur le parc expérimental de Da, nas (centre du bassin) n'ont, par exemple, pondu que fin octobre. Certaines huîtres en élevage possédaient encore leurs produits génitaux en fin décembre.

en Charente

La première émission, d'importance négligeable (300 "petites" aux Falles) a été observée le 3 août. Les premières larves "groses" ont été détectées dès le 19 mai; ensuite l'évolution fut contrariée par les faibles concentrations en oxygène dissous. Quelques "groses" subsistaient encore le 26 août.

Deux émissions tardives (150 "petites" le 16 septembre et 1 500 "petites" le 24 à la Moulière) ne conduisirent à aucune fixation en raison des températures d'eau inférieures à 18°5. Les résultats de ce secteur ont été régulièrement échangés entre les laboratoires " Cultures marines" de La Rochelle et de La Tremblade. Dans ces trois secteurs, il semble que les produits génitaux émis n'étaient pas totalement mûrs et plus sensibles aux conditions de milieu.

en Gironde

Quelques pêches de plancton et plusieurs observations sur les gisements naturels ont été effectuées par la DDE en collaboration avec l'I.S.T.P.M. pour une étude d'impact du port de St Georges.

Les premières pontes partielles ont été observées dans la première semaine d'août et les premières fixations eurent lieu à partir du 20 août.

.../...
À la mi-septembre certaines huîtres n'avaient pas encore pondu. Cependant les dernières fixations se sont effectuées vers le 10 septembre.

- **le captage**

Il est très faible et en dessous du seuil utilisable (environ 4 naissains/dm²) dans 80 % des secteurs.

- **En Soudre**

La moitié amont de Chaillevette à La Grève à Duret, a bénéficié d'un captage à peine rentable pour un élevage local. En moyenne, la densité est de l'ordre de 5 naissains/dm² de collecteurs. Le captage y est toutefois très hétérogène et dans quelques petits secteurs la densité dépasse 10 naissains/dm².

En aval la densité moyenne est de l'ordre de 2 naissains/dm² mais de nombreuses installations en sont totalement dépourvues.

- **Dans le bassin et en Charente**

La totalité des collecteurs posés ne présente qu'exceptionnellement une densité de 1 naissain/dm². Le plus souvent le captage est nul. Cependant dans quelques cas ponctuels, certains tubes plastique comportaient une trentaine de naissains.

- **A Bonne Anse**

Trois secteurs peuvent être distingués
- entrée de la baie :

 - 20/dm² de coquille St Jacques
 - 300 naissains par tube

 C'est le seul secteur dans lequel les collecteurs peuvent être vendus dans les autres bassins ostréicoles.
Centre de la baie : "La claire"

- 8 à 10 naissains/dm² de coquille St Jacques
- 100 à 150 naissains par tube

Le plus grand nombre de collecteurs ne pourra vraisemblablement être utilisé que localement.

- fond de la baie

- 4 à 5 naissains/dm² de coquille St Jacques
- moins de 80 naissains par tube

Certains collecteurs sont à la limite inférieure de l'utilisation locale.

En conclusion :

Le captage très faible réalisé cette année sur Marennes-Oléron ne peut correspondre au total qu'aux besoins locaux de la production. Sachant que 80 % de la production nationale est captée dans le bassin, il va de soi que le tonnage commercialisable en 1984 risque d'en être sensiblement affecté.

Le souhait exprimé l'année dernière par les professionnels : du haut de Seudre concernant une possibilité de pose temporaire de collecteurs dans le sud du bassin s'est réalisé en 1981 mais sans résultat cette année.

Le secteur de Bonne Anse ayant été le seul à produire un captage convenable, il devient urgent de protéger d'une manière efficace les gisements naturels de ce secteur.

L'embouchure de la Gironde est de plus en plus convoitée par le tourisme et les installations industrielles, si la pression exercée par ceux-ci s'accroit, ce ne pourra être qu'au détriment des gisements huîtriers.

Il est donc souhaitable d'engager dès à présent des études permettant un développement le plus harmonieux possible des différentes activités dans cette zone. Deux actions réglementaires pourraient être menées :

- révision partielle du SDAMU
- création d'un SAUM de la Gironde

Sur le plan scientifique, il semble nécessaire de rechercher des technologies adaptées au site pour développer le captage en Gironde.
1.2.2 Estimation du recrutement

- En Seudre

L'évaluation préliminaire sur la production potentielle de la Seudre, réalisée en 1978 et 1980 a été publiée en 1981. Certaines données nouvelles ont été précisées par rapport aux données préliminaires exposées en fin 1980 : mortalité au cours de la première année, comparaison des pouvoirs captants, collecteurs standards etc...

Nous retiendrons que la surface à capter est de l'ordre de 924 000 m², le nombre d'individus captés (en 1980) de plus de 1,4 milliard pour une production théorique de l'ordre de 30 000 tonnes en 1983.

En raison du captage négligeable de 1981, aucune donnée nouvelle n'a pu être apportée. De ce fait la technique mise au point pour la Seudre a été appliquée à la baie de Bonne Anse.

- A Bonne Anse

Le captage y est surabondant en année normale et reste exploitable même lorsque la saison est catastrophique. Ce secteur est donc très convoité et l'application de la réglementation du domaine public maritime est d'autant plus difficile que le déplacement des terrains sableux est important.

Ce secteur, qui a tendance à devenir de plus en plus l'ultime recours des mauvaises années de captage mérite une estimation de production. Une couverture photographique aérienne a été réalisée et est en cours d'exploitation.

Sur les premières données obtenues dans le secteur de l'entrée de la baie (le mieux garni en naissain), une évaluation rapide donne, à partir du captage 1981 une production théorique en 1984 de l'ordre de 11 000 tonnes d'huîtres M₃ norme AFNOR pour une longueur d'installations mises à capter de 12 500 m.

.../...
1.2.3 Stocks d'huîtres creuses

Liée aux études du recrutement déjà citées, les travaux sur la croissance et le suivi de la mortalité vont pouvoir permettre de mieux préciser les estimations prévisionnelles de production.

L'échantillonnage mensuel des lots en élevage sur le parc expérimental de Dagnas a été poursuivi cette année encore.

Le tableau 2 montre une partie des résultats obtenus cette année.

<table>
<thead>
<tr>
<th>Lot</th>
<th>Année de capture</th>
<th>Janvier</th>
<th>Juin</th>
<th>Décembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1977</td>
<td>108</td>
<td>103</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>(surélévé)</td>
<td>55</td>
<td>57</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>(surélévé)</td>
<td>31</td>
<td>35</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>(surélévé)</td>
<td>102</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>(surélévé)</td>
<td>0,59</td>
<td>0,52</td>
<td>0,52</td>
</tr>
<tr>
<td></td>
<td>(surélévé)</td>
<td>40,4</td>
<td>45,8</td>
<td>45,8</td>
</tr>
<tr>
<td>2</td>
<td>1978</td>
<td>90</td>
<td>95</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>(surélévé)</td>
<td>48</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>(surélévé)</td>
<td>29</td>
<td>28</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>(surélévé)</td>
<td>62</td>
<td>66</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>(surélévé)</td>
<td>0,88</td>
<td>0,81</td>
<td>0,66</td>
</tr>
<tr>
<td></td>
<td>(surélévé)</td>
<td>19,5</td>
<td>103,3</td>
<td>39,4</td>
</tr>
<tr>
<td>3</td>
<td>1978</td>
<td>89</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(plat)</td>
<td>48</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>(plat)</td>
<td>28</td>
<td>28</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>(plat)</td>
<td>63</td>
<td>66</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>(plat)</td>
<td>0,81</td>
<td>0,66</td>
<td>0,66</td>
</tr>
<tr>
<td></td>
<td>(plat)</td>
<td>45,6</td>
<td>28,7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1979</td>
<td>79</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>(surélévé)</td>
<td>42</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>(surélévé)</td>
<td>20</td>
<td>25</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>(surélévé)</td>
<td>28</td>
<td>51</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>(surélévé)</td>
<td>1,37</td>
<td>125,4</td>
<td>34,0</td>
</tr>
<tr>
<td>5</td>
<td>1979</td>
<td>70</td>
<td>73</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>(plat)</td>
<td>31</td>
<td>36</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>(plat)</td>
<td>20</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>(plat)</td>
<td>23</td>
<td>25</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>(plat)</td>
<td>1,97</td>
<td>1,58</td>
<td>1,03</td>
</tr>
<tr>
<td></td>
<td>(plat)</td>
<td>37,7</td>
<td>86,8</td>
<td>30,2</td>
</tr>
</tbody>
</table>

Tableau 2 : Résultats des études de croissance en 1981
Comme le montre le tableau 2, le lot 1, capté en 1977, a eu une croissance annuelle assez importante : + 8 mm et + 34 g. La qualité de ces huîtres âgées est correcte : Q = 0,52 et IC = 45,8.

Si l'on compare la croissance annuelle des différents autres lots à celle obtenue pour des lots de même âge en 1980, on enregistre une baisse sensible :

lot 2, capté en 1978 : + 8 mm et + 16 g. contre + 25 mm et + 32 g. en 1980.
lot 4, capté en 1979 et élevé en surélevé : + 19 mm et + 28 g. contre + 22 mm et + 39 g. en 1980.
lot 5, capté en 1979 et élevé à plat : + 17 mm et + 25 g. contre + 16 mm et + 39 g. en 1980.

Si l'on effectue la comparaison de ces lots au niveau de l'amélioration annuelle de la qualité, seul le lot 2 a une qualité supérieure cette année :

lot 2 : Q = -0,22 et IC = + 10,1 contre Q = - 0,33 et IC = - 0,3 en 1980
lot 4 : Q = -0,98 et IC = - 3,7 contre Q = -1,11 et IC = + 2,8 en 1980
lot 5 : Q = - 0,94 et IC = - 7,5 contre Q = - 0,75 et IC = + 8,0 en 1980

Dans le tableau 2 les deux semestres ont été séparés au mois de juin afin de pouvoir établir une comparaison avec les résultats de 1980. Cette comparaison laisserait présager que si la croissance du 1er semestre 1981 a été inférieure à celle de 1980, la poussée d'automne a été assez bonne.

En fait la croissance de printemps a été assez tardive et au total, supérieure à celle de 1980 et comparable à celle de 1979. C'est au mois de juillet qu'elle a été la plus forte (tableau 3).

Par contre, à la suite des perturbations engendrées par la mauvaise reproduction, la poussée d'automne a été extrêmement réduite, voire nulle. Il en a été de même pour l'amélioration de la qualité qui reste très moyenne au moment de la commercialisation des fêtes de Noël.
captés en 1979
Long. 72 88
poids 23 47,5

captés en 1978
Long. 92 94
poids 60 72

captés en 1977
Long. 105 102
poids 87 108

Tableau 3 : croissance linéaire et pondérale de trois lots
d’avril à juillet 1981.

L’influence du mode d’élevage varie en fonction de l’âge des individus.

En effet, dans le cas des lots captés en 1978 la croissance est supérieure pour le lot élevé à plat : + 11 mm et + 34 g. contre + 8 mm et + 26 g. en surélevé. Par contre la qualité finale est moindre : IC = 28,7 contre IC = 39,4.

À l’opposé, pour les lots captés en 1979, l’élevage à plat a une croissance inférieure : + 17 mm et + 25 g. contre + 19 mm et + 28 g. en surélevé, et une qualité finale moindre : IC = 30,2 contre IC = 34,0.

En 1980, les huîtres du même âge avaient eu une meilleure croissance et une meilleure qualité à plat. Cette différence est vraisemblablement liée à une tempête hivernale qui a déplacée et envahie une partie des huîtres à plat entraînant une mortalité de près de 30 % malgré une intervention rapide.

Une estimation de la production de 1981 a été faite à partir de deux séries de données :

- la vente des étiquettes sanitaires ; elle est en baisse moyenne de 13 %.
- la croissance comparée à celle de l’année précédente : elle est inférieure de 10 % mais il est vraisemblable que le stock en élevage en début 1981 était légèrement inférieur à 1980.

Les chiffres de production de 1980 étaient calculé à 41 000 t ; la baisse enregistrée cette année correspondrait à un tonnage compris entre 35 700 t et 37 000 t suivant nos estimations. La profession annonce une production de l’ordre de 36 000 t.

.../...
Programme 2 : Étude des facteurs influençant la production

2.1 Facteurs limitants, susceptibles de perturber le déroulement du cycle sexuel et le comportement des larves d'huîtres.

- Émission du 21août dans le bassin : L'émission de 70 000 petites larves a été contrariée par une forte diminution du taux d'oxygène dissois (60% dans le bassin et 50% en haut de Seudre le 1er septembre). Cette forte baisse d'oxygène dissois, exceptionnelle pour le centre du bassin est indicatrice de matière organique en voie de dégradation, ainsi les teneurs en nitrites varient entre 2 et 4 µatg Ni⁻¹, celles d'ammoniaque restent proches de 5 µatg Ni⁻¹ et celles de sulfures sont très élevées 2 à 3 mg/litre, voisines des valeurs accumulées dans les fèces des huîtres sous les tables ostréicoles. Par des analyses de bactériologie menées par l'inspection, il a pu être exclu un apport de matières organiques dues à une pollution tellurique. Par contre l'excès de matière organique pourrait provenir de la remise en suspension, lors de très nombreux hersages, de la vase des parcs conchylicoles induisant une mortalité importante de jeunes moules. Il a pu se superposer des mortalités de crépidules recouvertes, elles aussi, par les moules. De plus au début septembre, une très grande quantité d'entérozoaires et d'ulves fixées sur les installations ostréicoles se sont décomposées. L'ensemble de ces facteurs s'est conjugué pour entraîner une déplétion d'oxygène et un développement de sulfures, or l'on connaît la faible résistance des larves d'huîtres à des variations même faibles de ces paramètres (Caldwell, 1975).

- Étude de la déficience du captage en haut de Seudre :

Outre les caractéristiques dystrophiques de ce secteur, plus accentuées que dans le bassin, qui entraînent chaque année de baisses d'oxygène dissois et des augmentations de nitrites et de sulfures, la qualité des géniteurs de Houillerlande a été de nouveau testée. Ainsi à Arcachon, HIS a mis en évidence que ces géniteurs donnent naissance à des larves C qui évoluent mal, la prise en charge de la nourriture ne semblant pas satisfaisante. Ainsi après deux années d'expérimentation il semble que la qualité des géniteurs de ce secteur peut être mise en doute. Des analyses bioclimiques de ces huîtres menées par la Station marine d'Endoume ne mettent guère en évidence de différences entre la composition en acides gras et acides aminés de ces huîtres et de celles du
gisement des Flamands, seules les teneurs en glycogène sont plus faibles. La mauvaise qualité de ces géniteurs nous a conduit à proposer à la Section Régionale un transfert de géniteurs des Flamands sur Mouillelande. Cette opération a été effectuée début juillet. Ainsi il nous a été possible de suivre l'évolution de la teneur en métaux des gonades des huîtres transférées en haut de Seudre en collaboration avec THIBAULT et ALZILU. Le fait marquant de ces analyses est que, en un mois, les huîtres transférées ont accumulé dans leurs gonades de l'étain, quadruplant leur teneur (0,5 à 2,5 mg/kg de chair sèche); l'ensemble des autres métaux, plomb, cadmium, zinc, cuivre ne variant que peu significativement. De même des analyses d'huîtres poussant en formes de "boulets" sur ce gisement montrent des teneurs en étain de 3,4 mg/kg de chair sèche. Enfin dans le cadre du RN.O. matières vivantes, on constate que les huîtres de Mouillelande contiennent des teneurs assez élevées en PCE. Le suivi de ces huîtres transférées se poursuit, mais leur contamination rapide est inquiétante pour le maintien du captage en haut de Seudre. Il est nécessaire de préciser si ces apports en étain sont d'origine agricole (fungicides...) ou d'origine marine (antifouling...).

2.2 Croissance et facteurs environnants

2.2.1 Caractéristiques du milieu

Le suivi des principaux paramètres biotiques et abiotiques s'effectue dans deux directions principales :

a) connaissance et contrôle des différentes pollutions dans le cadre du RN.O (thème 3 du département environnement et écosystème).

b) relation entre les facteurs du milieu qui agissent sur l'activité physiologique des mollusques dans la croissance, l'engraissement et la reproduction.

a) outre les prélèvements bimensuels et les analyses qui nous incombent dans le cadre du RN.O sur 8 stations, 2 stations ayant été rajoutées en 1981, l'une en amont de Charente, l'autre en amont de Seudre pour mieux cerner les apports telluriques de ces deux estuaires, un travail de synthèse des résultats a été effectué.
Ainsi il a été effectué une compilation bibliographique sur la toxicité des éléments métalliques dissous pour des larves d'organismes marins, et plus particulièrement pour des larves de bivalves d'intérêt commercial. Par ordre de toxicité ce sont les sels organiques d'étain, le mercure, l'argent, le cuivre, le zinc, le nickel, le plomb, le cadmium, le chrome et le manganèse qui sont les plus nocifs. Les problèmes de synergie entre métaux, et, entre métaux température et salinité ont été abordés, ainsi que l'action des argiles en suspension dans l'eau.

De plus les résultats RMO acquis depuis 1978 ont été traités dans une thèse sur l'étude de la pollution par les métaux lourds des eaux maritimes et des peuplements marins dans le bassin de Marennes-Oléron. Ainsi pour le mercure il semble avoir une origine endogène au bassin et exogène par la Charente. Ses teneurs ainsi que celles du plomb sont élevées mais stables. Le cadmium, par son caractère toxicque, par ses teneurs élevées dans les mollusques est à surveiller particulièrement. Le cuivre est le seul métal dont la concentration continue d'augmenter, tandis que le zinc reste à un niveau préoccupant. L'interprétation géographique des teneurs en plomb, cuivre et zinc permet de noter un apport important provenant de la Seudre et éventuellement dans le sud du bassin, d'eaux de Gironde fortement chargées en éléments métalliques. En conséquence le problème de la dynamique des métaux dans le bassin de Marennes-Oléron reste un sujet à développer.

b) En 1981 l'étude des facteurs physico-chimiques, des facteurs biotiques entrant dans l'alimentation de l'huître a été stoppée en cycle de marée au Chapus mais s'est poursuivi sur toutes les stations RMO tous les 15 jours. Les paramètres supplémentaires retenus sont les protides, lipides, glucides et carbone particulier ainsi que substances dissoutes azotées et carbonées.

Température air et eau

- **air** : l'année 1981 a été caractérisée par un printemps et un début d'été froid (-1 à -2° en dessous de la normale sur 31 an, selon le mois). Par contre l'automne et le début de l'hiver ont été particulièrement clément avec des températures parfois supérieures de 4° à la normale (en novembre).

.../...
- eau : dans le bassin les températures moyennes de l'eau sont inférieures de 1° par rapport à celles de 1979 et 1980. Au printemps les eaux en moyenne sont plus froides de 2° par rapport à 1979 avec une moyenne à 13°C. L'été les températures en Seudre sont cependant voisines de 20° mais ne dépassent guère 18° dans le bassin. Par contre les températures automnales restent élevées 14° dans le sud du bassin et 12° au nord.

Pluviométrie et salinité

En 1981, la pluviométrie relevée à notre station est nettement déficitaire de janvier à avril avec un déficit cumulé de 147 mm par rapport à la normale sur 31 ans. Le mois de mai est très pluvieux (+71 mm). En été, juillet a été pluvieux contrairement au mois d'août. L'automne est humide, excédentaire de 225 mm par rapport à la normale. Cette année atypique induit des salinités moyennes non inférieures à 30 % dans le bassin, en hiver. La salinité ne s'élève pas, au printemps à cause des pluies du mois de mai et reste faible en été, 32 à 33 %, à cause des pluies de juillet. Par contre en automne les fortes pluies induisent dans le bassin des salinités moyennes de 30 %, soit 3 % de moins que les années précédentes. En haut de Seudre et en Charente l'excès de pluviométrie automnale a entraîné d'importants problèmes de douçain avec des salinités de 1 % à marée basse, en surface, en décembre et des salinités de 4 %, à marée montante en Charente et de 15 % en Seudre.

Oxygène dissous

La saturation en oxygène dissous est presque constamment supérieure à 90 % dans le centre du bassin. Par contre, au printemps et en été, en Charente et en Seudre les teneurs varient entre 65 % et 80 %. Exceptionnellement le pourcentage de saturation en oxygène dissous peut descendre l'été à des valeurs inférieures à 50 % comme nous l'avons déjà indiqué.

Hydrogène sulfuré

Ce paramètre n'est plus suivi, en routine, il n'est analysé que lorsque l'on rencontre des indices de mauvaises dégradations de matière organique, par exemple lors des émissions larvaires ou, au mois d'août, des teneurs supérieures à 3 mg/litre ont pu être détectées.
Turbidité et seston

Les teneurs des matières en suspension sont toujours très élevées en hiver en particulier en Charente, avec des valeurs supérieures à 700 mg l\(^{-1}\). Cet apport de matières en suspension d'origine continentale permet ainsi une dilution importante de tous les substances qui peuvent s'associer aux particules. Dans le bassin en automne et en hiver, elles sont voisines de 100 mg l\(^{-1}\). En effet aux apports telluriques s'ajoutent les tempêtes qui peuvent dévaser les parcs ostréicoles sur une épaisseur de 50 cm selon les secteurs. Les teneurs estivales restent dans le bassin proches de 50 mg l\(^{-1}\).

Matières organiques

Par cession du seston, on constate que celui-ci est composé en moyenne de 80 % d'éléments minéraux. La matière organique représentant au mieux, au printemps et en automne, périodes des poussées phytoplanctoniques 40 % du seston.

Sels minéraux

Sels azotés :
- Les valeurs d'ammoniaque entre 0,5 et 3,1 µatg Nl\(^{-1}\). Nous avons mis en évidence que ce composé constitue généralement moins de 10 % du stock total d'azote, sauf en été où il peut représenter 40 % de l'azote total et être à cette époque la forme quasi unique d'azote minéral présent dans le milieu. Les apports telluriques hivernaux sont faibles ce qui permet de penser à une production endogène du bassin, en partie par minéralisation de matière organique et par excrétion de l'ensemble de la chaîne alimentaire : zooplancton, poissons et surtout mollusques. Par ailleurs de nombreux auteurs confirment que l'azote ammoniacal est utilisé préférentiellement à l'azote nitrique par le phytoplancton et le phytobenthos.
- Les teneurs en nitrites oscillent entre 0,2 et 1,3 µatg Nl\(^{-1}\), elles sont les plus élevées dans le haut des estuaires de Sèvre et de Charente indiquant que l'oxygénation est insuffisante pour une minéralisation correcte de la matière organique. Les nitrites ne représentent jamais plus de 4 % de l'azote total et ne peuvent contribuer que d'une manière mineure à la production primaire quoiqu'ils soient directement assimilables par le phytoplancton.
Les apports en nitrates restent élevés en hiver, ils proviennent principalement de la Charente avec une moyenne de 140 μatg Nl⁻¹ pour cette saison et 75,1 μatg Nl⁻¹ en Seudre. Le déficit pluviométrique hivernal a entraîné des apports moins importants que les années antérieures avec 30 μatg Nl⁻¹ dans le bassin contre 40 μatg Nl⁻¹ en 1980 à la même période. Ces nitrates sont consommés tardivement en 1981 puisque fin juin il reste encore 10 μatg Nl⁻¹. Ainsi cette année on ne constate pas un quasi épuisement estival de ces composés. Comme il est peu probable que les nitrates aient une origine autochtone régiéné-rée, il semble que les pluies estivales du mois de juillet aient augmenté la zone d'influence des estuaires.

Azote organique : ces substances dissoutes présentent un cycle saisonnier marqué inverse de celui des nitrates. En période hivernale, les teneurs ne dépassent pas 6 μatg Nl⁻¹ représentant une contribution moyenne de 5 % seulement de l'azote total. Par contre, dès l'élévation de la température de l'eau, au printemps, on note une importante production de substances organiques qui se maintient tout l'été. Ainsi l'azote organique dissous représente 60 à 90 % de l'azote total dépassant 25 μatg Nl⁻¹. On peut avancer l'idée que cette production azotée est due à l'excrétion azotée des mollusques et en particulier de l'huître. De nombreux travaux ont mis en évidence que divers composés organiques azotés simples sont utilisés directement par les algues.

Urine : Les variations des teneurs en urée montrent un cycle saisonnier moins marqué que celui de l'azote organique total, cependant les teneurs maximales (5 μatg Nl⁻¹) correspondent aux périodes d'excrétion active des mollusques. Au printemps, en été et en automne l'urée représente plus de 20 % de l'azote total, or l'urée peut jouer un rôle non négligeable dans la production de phytoplancton.

Ainsi, il semble délicat, en zone néritique, de déduire des hypothèses en ce qui concerne les facteurs limitants de la croissance du phytoplancton à la seule vue des résultats de l'azote minéral sans prendre en compte les teneurs en azote organique.

/
Phosphates : Les teneurs en phosphates restent faibles, apportées principalement par la Charente : 1,0 µatg Pl\(^{-1}\) en hiver, ils sont consommés dès le mois de mai et restent à l'état de trace dans le bassin pendant la période estivale 0,2 µatg Pl\(^{-1}\). Le déséquilibre du rapport N/P reste important toute l'année. Comme pour l'azote, nous cherchons à déterminer si le phosphore organique joue un rôle important dans l'équilibre phosphoré du bassin.

Silicates : Les apports de Charente 70 µatg Si \(\text{l}^{-1}\) sont élevés comme ceux de Seudre 43 µatg Si \(\text{l}^{-1}\). Comme pour les nitrates, leur consommation est tardive en 1981. Même l'été les silicates ne sont jamais épuisés avec des valeurs minimales dans le bassin de 6 µatg Si \(\text{l}^{-1}\). Les premières pluies automnales font rapidement doubler les teneurs en silicates.

Substances dissoutes : Les teneurs en carbone dissous sont nettement moins élevées qu'en 1980. Alors qu'elles atteignaient 50 mg Cl\(^{-1}\) en mai et juin 80, elles ne dépassent guère 2 mg Cl\(^{-1}\) au centre du bassin à la même époque pour atteindre 3 mg Cl\(^{-1}\) en juillet. Par ailleurs les apports de les Charente et de Seudre, ou acides humiques sont faibles, de l'ordre de 0,3 mg Cl\(^{-1}\), atteignent dans les estuaires, lors des poussées phytoplanctoniques des teneurs en acides fulviques dépassent 5 mg Cl\(^{-1}\).

Biomasse phytoplanctonique : Les analyses de carbone organique confirment la prépondérance des apports d'origine détritique avec des teneurs hivernales très élevées en particulier en Charente (3,925 g C \(\text{l}^{-1}\)). L'hiver l'abondance en phytoplancton est très faible 0,6 µg \(\text{l}^{-1}\) de chlorophylle active. Au mois de mars, dans le centre du bassin, on note un début de pousse printanière mais très localisée, il faut attendre fin mai, début juin pour avoir un nouveau bloom qui ne dépasse pas 7 µg \(\text{l}^{-1}\) de chlorophylle contre 17 µg \(\text{l}^{-1}\) en 1980 à cette époque. Les Nitzschi a sont les espèces majoritaires, comme en 1979, on retrouve une poussée estivale importante fin juillet début août, elle atteint 50 µg \(\text{l}^{-1}\) de chlorophylle active et est composée de Coscinodiscus et de Biddulphia. En automne l'apport continu de sels minéraux permet un nouveau développement phytoplanctonique en particulier dans le sud du bassin.
Il est à noter l'apparition d'eaux rouges exclusivement dues à des Noctiluques à Bonne Anse le 24 juillet, à Hérimonac le 6 juillet et à Bonne Anse, à nouveau, le 22 juillet.

La nourriture potentielle définie par la somme des protides, lipides et glucides particulières est en cours d'analyse.

2.2.2 Evolution biochimique des huîtres du bassin

Les analyses sont effectuées jusqu'au début août 1981.

protéines : En 1981, les teneurs en protéines de la chair sèche varient entre 32 et 57 % chez des huîtres de 3 ans, les teneurs maximales sont obtenues en mars puis décroissent régulièrement jusqu'au stade de répétition maximal des gonades, les mâles en contiennent 39,2 % et les femelles 42,1 % de la chair sèche.

Lipides : les teneurs en lipides varient entre 15 et 28 % de la chair sèche. Elles augmentent dès le début de la gamétogenèse fin avril début mai. Les femelles de trois ans sont composées de 28 % de lipides tandis que les mâles n'en contiennent que 15 %.

Glucides totaux et glycogène : les glucides évoluent entre 2 et 4 %. Ils atteignent leur valeur maximale en avril puis rechutent rapidement dès l'augmentation des lipides au début de la gamétogenèse. À partir de juillet la teneur en sucres totaux réaugmente. Le glycogène suit les mêmes variations que les sucres totaux variant de 0,6 à 2,6 % de chair sèche.

Valeur énergétique de la chair : Un coefficient moyen de conversion pour les lipides a été déterminé. Il est de 8,63 cal.mg$^{-1}$ et est sensiblement différent de celui de BROJY (9,45 cal.mg$^{-1}$). Ce coefficient varie selon les saisons de 7,85 à 9,38 cal.mg$^{-1}$. Lors de la répletion maximale des gonades, les huîtres femelles semblent plus énergétiques que les huîtres mâles, du moins à partir des estimations biochimiques. Par contre les estimations directes ne mettent pas en évidence de différence significative entre les sexes. Ces résultats divergents peuvent être dus aux différences de composition spécifique en acides gras.

2.2.3 Relation milieu-mollusque

Le milieu intervient directement sur la vie des mollusques à plusieurs niveaux.

- mortalités : la pluviométrie très forte (+ 170 mm) de l'automne et du début d'hiver 1981 a provoqué des salinités basses en haut de Seudre et en Charente, induisant des mortalités significatives d'huîtres de claires dans des bassins à 7 % et de palourdes à des salinités inférieures à 17 %. Par ailleurs, à cause du retard de la gamétogenèse, provoqué principalement par les basses températures, de nombreuses huîtres ont pondu en claire en octobre novembre. L'huître alors fatiguée n'a pu résister aux apports d'eau douce.

Les poussées phytoplanctoniques estivales et automnales quoique importantes quantitativement n'ont pu être utilisées par l'huître pour la croissance mais ont servi préférentiellement à la gamétogenèse. Ainsi on peut expliquer qu'il n'y a pas eu de poussée automnale cette année. Pendant l'hiver les températures clémentes (+ 3,7) ont favorisé la croissance et l'engraissement en claire alors que dans le bassin les fortes turbidités (150 mg l$^{-1}$) entraînant un colmatage branchial ont accentué la maigreur des huîtres.
2.2.4 Physiologie des mollusques

Excrétion azotée dissoute de C. gigas

L'excrétion azotée estivale du métabolisme de base de l'huitre japonaise a été précisée. Ainsi nous confirmons que l'ammoniaque joue un rôle secondaire dans l'excrétion dissoute des mollusques, en représentant 28% des rejets azotés. L'azote organique représente 72% des rejets tandis que l'urée seule représente 48% des éléments dissous azotés. On peut en déduire que 24% des rejets doivent se trouver sous forme d'acides aminés. En collaboration avec ROBERT et MAESTRINI, le travail sur l'absorption de ces différents acides aminés par les phytoplanctonistes claires, en particulier Navicula ostræaria, se poursuit.

Excrétion particulière de Crassostrea gigas.

En piégeant, in situ, les biodeposits recueillis directement sous les tables ostréicoles on obtient la quantité de rejets de féces et pseudo-féces des huitres. Ainsi on récolte un rejet journalier compris, selon la saison entre 22 et 32 gr de carbone par m². Ce rejet représente, par huitre, 33 gr de biodepôt sec au maximum de février, et 2,4 g de poids sec au minimum de juin. Il existé une corrélation positive (n = 0,81) entre les quantités de biodeposits et la turbidité.

\[(\text{biodepots en mg/huitre/24 h}) = 3,55 + 0,11 \times \text{(turbidité globale en mg/24 h)}\]

L'importante teneur en matière organique et en phytoplancton non assimilé par l'huitre, et estimé par les chlorophylles, protides, lipides et glucides dans les biodeposits, montre des similitudes de variations entre leurs teneurs en matières organiques et l'abondance du phytoplancton. La baisse de matière organique au printemps (mai) correspond à une accumulation synchrone de phéopigments dans les biodeposits. En effet, cette saison de croissance intense pour les huitres, beaucoup de phytoplancton est utilisé. Par contre, en automne on ne constate que peu de consommation phytoplanctonique dans les biodeposits de l'huitre. Par ailleurs le recyclage des quantités importantes de matières organiques, fixées dans les sédiments grâce aux biodeposits, augmente la consommation d'oxygène. Le milieu plus réducteur favorise notablement l'ammonification et la réduction des sulfates en sulfures. Ainsi on peut considérer qu'il y a jusqu'à 8 fois plus d'hydrogène sulfureux dans les zones de cultures intensives...
d'huîtres que dans les régions vierges. Or ce dégagement de sulfure semble être néfaste pour la filtration de l'huître et pour la survie des larves.

Bilan énergétique de l'huître C. gigas

Si l'on retient d'après KIOHOKI (1981) la formule simplifiée qui permet de déterminer le taux d'ingestion \(I \) d'un mollusque.

\[I = G + R + F \]

\(G \) étant l'énergie nécessaire pour la croissance et la reproduction.
\(R \) étant l'énergie nécessaire à la respiration.
\(F \) étant l'énergie perdue par les fèces.

Pour une huître de 2 à 3 ans, par jour en 1981

- la respiration consommerait :

 - en mai à 16°C : 27 cal
 - en juin à 19°C : 93 cal

- la croissance et la reproduction estimée d'après la biochimie :

 - en mai : 3,3 cal
 - en juin : 132 cal

Les fèces, convertis en énergie, d'après leur teneur en carbone ou en chlorophylle représenteraient

 - en mai : 1,3 cal
 - en juin : 2,8 cal

Ainsi l'ingestion théorique devrait donc être

 - au mois de mai : \(27 + 3,3 + 1,3 \) 32 cal par jour
 - au mois de juin : 228 cal par jour

Ainsi on voit que l'augmentation de la température induit un métabolisme de base plus élevé et la gonadogenèse provoque une demande énergétique de 100 cal par jour. Entre le mois de mai et le mois de juin en 1981, une huître a besoin de 7 fois plus de calories par jour.

Il faut donc que l'huître puisse avoir 7 fois plus de nourriture à sa disposition ou qu'elle augmente significativement son taux de filtration.
Par ailleurs nous connaissons la quantité d'énergie présente sous forme particulière dans l'eau, elle représente 5 à 8 cal par litre. Par contre nous ignorons les taux de filtration effectifs, donnée qu'il reste à déterminer pour approcher le rendement effectif d'assimilation de la nourriture d'une population d'huître à Marennes-Oléron.

2.3 Anomalies de croissance et de calcification chez l'huître creuse

Cinétique d'apparition des poches gélatineuses

Dans le bassin

Le phénomène est rapide, y a l'chrono entre des populations d'huîtres de plusieurs âges et de modes de cultures différents. En 1979, 1980, 1981, l'apparition de poches gélatineuses débute, dans le centre du bassin, en juillet pour atteindre 55 % des individus en 1981. Le dépôt d'une fine couche calcique qui englobe le gel dans une poche est secrété très rapidement. Il ne produit qu'une seule poche par été.

À proximité d'un port de plaisance

Alors que le gel n'apparaît qu'une fois par été dans le centre du bassin, il apparaît au plus 4 fois pendant la même période à proximité du port de Boyardville. Ceci provoque une poussée en épaisseur caractéristique. Ainsi une étude biométrique du rapport longueur totale sur épaisseur totale d'huîtres du même âge, ou mieux du rapport longueur de la valve supérieure (Lvs) sur épaisseur de la valve supérieure (evs) permet de mettre en évidence une zonation caractéristique.

- une zone proche du port qui s'étend sur 1 km présentant de forts gaufrages et des rapports

\[
\frac{\text{Lvs}}{\text{evs}} \approx \frac{4}{3}
\]

- une zone intermédiaire de 1 à 1,5 km avec des rapports

\[
\frac{\text{Lvs}}{\text{evs}} \approx \frac{6}{8}
\]
une zone subnormale avec des rapports supérieurs à 9 située à 2 km du port.

Il semble pouvoir être avancé au vu de ce zonage l'hypothèse que les eaux de rejet du chenal portuaire de Boyardville peuvent être la cause de cette accentuation de cette malformation de la coquille.

C'est pour cette raison que nous avons vérifié si les composants les plus nocifs des peintures antifouling utilisées, en particulier dans le port de Boyardville, pouvaient avoir une action sur le métabolisme calcique de l'huitre.

L'effet de sels organiques de tributylétain a été testé sur l'huitre Crassostrea gigas adulte selon le protocole expérimental suivant :

2 bacs témoins
1 bac avec 50 cm² peint avec un enduit à base de fluorure de TBT
1 bac avec 500 cm² peint avec le même enduit
2 lots immergés dans le port de Boyardville

Les bacs de 150 litres ont un débit de 180 litres/heure. Entre 1 000 et 2 000 litres d'eau transitent dans les bacs quotidiennement, 50 huitres sont testées dans chaque lot.

Les résultats mettent en évidence une CL50 qui varie de 12 jours à 40 jours pour le bac avec 500 cm² de TBT et une CL50 de 180 jours pour le bac avec 50 cm² de TBT. Dans le port les CL50 sont obtenus 90 jours après le début des expériences. Par ailleurs, outre ces mortalités, on constate une profonde perturbation de la calcification de la coquille. Une hypcrsecrétion de gel apparaît après 100 jours d'expériences dans le port et 110 jours dans le bac à 50 cm² de TBT. Ce gel entraîne une calcification de fines couches de calcaire qui sont à nouveau recouvertes de gel, ensuite recouvertes de fines couches calcaires etc.... Ainsi l'huitre diminue d'autant son volume intervallaire qui après 170 jours d'expérience peut être réduit d'environ 25 %. Cette calcification en "feuille de papier à cigarette" devient complètement anarchique poussant en lamelles à la bordure de la valve supérieure, et perpendiculairement au plan de cette dernière.
Il semble donc que l'eau d'un port de plaisance puisse induire une malformation de la coquille de l'huître *Crassostrea gigas* du même type que celle provoquée expérimentalement par l'adjonction de peinture à base de fluorure de tributylétain.

Ainsi comme il a été démontré par Krampitz, le métabolisme des acides aminés nécessaires pour établir les liaisons calciques est perturbé, il faut chercher à quels niveaux les trialkylétain peuvent perturber les mécanismes qui sont en jeu lors de l'élaboation des peptides.

Alzieu et al. (1981) rapportent que les sels de trialkylétain peuvent avoir une action hémolytique sur le sang humain et que le triphenylétain provoque l'hémolyse du sang du chien, du lapin et du rat, mais est sans effet sur le sang humain (Byington et al., 1977 a et b). Par ailleurs les vitamines K étant les principaux facteurs régissant le taux de coagulation et l'hémolyse chez les vertébrés, il est intéressant de mettre en parallèle les variations des teneurs en vitamine K chez les huîtres présentant des poches gélatinues par rapport à des huîtres saines. Les vitamines K interviennent aussi à plusieurs niveaux, en particulier en agissant comme catalyseurs pour établir les liaisons calciques avec l'acide glutamique. De même la nature quinonique de la vitamine K lui permet de jouer un rôle actif dans le transport d'électrons dans la phosphorylation participant au déroulement du cycle de Krebs qui intervient dans la formation de la coquille en apportant le CO₂ nécessaire pour former le CaCO₃. Ces vitamines peuvent ainsi jouer un rôle dans la régulation de nombreuses activités enzymatiques en agissant dans la synthèse des protéines des enzymes. Il est aussi supposé que cette vitamine pourrait intervenir au niveau génétique en stimulant la formation d'un ARN messager nécessaire pour synthétiser la protéine de calcification.

Il apparaît que les huîtres présentant des poches gélatinues ont significativement 45 % à 50 % de naphtoquinone de moins que chez les huîtres saines, pour tous les échantillons analysés. Par ailleurs, il semble que toutes les naphtoquinones jouent un rôle identique à celui des vitamines K.
Il est à ce stade de la recherche nécessaire de vérifier l’hypothèse selon laquelle les sels organiques d’étain peuvent être des inhibiteurs des vitamines K.

De même les trialkylétains sont connus comme étant des inhibiteurs de la phosphorylation oxydative. ALDRIDGE et STREET (1964) ont montré que cette inhibition s’accompagne d’une stimulation de l’activité de l’adenosine triphosphatase provoquant une interaction sur le système de conservation de l’énergie dans la synthèse de l’ATP. Cette inhibition des transferts d’énergie entre l’ATP, ADP et AMP peut bloquer tout transport, comme nous l’avons déjà signalé, dans la biosynthèse des acides aminés et dans la formation de la coquille par la voie du CO₂. Cette voie de recherche reste à exploiter chez l’huître Crassostrea gigas.

2.4 compétiteurs

Depuis le début du contrat avec l’EPR Poitou-Charentes (septembre 1981) une répartition géographique des crépidules a pu être dressée grâce à une campagne de 8 jours pendant laquelle 106 stations ont été échantillonnées qualitativement et 43 stations quantitativement à raison de 5 prélèvements par station. Ainsi on trouve les crépidules en grande partie sur les bords du courant d’Oléron entre la pointe du Chapus et le banc de Mérignac et dans le "courant" d’Oléron. C’est à dire dans tout le centre du bassin. L’infestation par les crépidules s’étend d’une manière plus diffuse le long de la côte de l’Ile d’Oléron en direction de la pointe des Saumonards et en Charente au pied du gisement huîtrier de l’Estrée.

Les autres espèces de bivalves, autres que les moules (déjà signalées) ont été déterminées. Les prélèvements quantitatifs en cours de dépouillement concernant les bancs de Charet et de Mérignac ont permis de fixer la limite supérieure de l’infestation des crépidules dans ce secteur et de proposer à la section régionale une action de dragage par des pêcheurs avec des chalutiers équipés de drages à pétoncles. Il serait ainsi possible de pêcher 480 tonnes de crépidules pour une somme de 140 000 fr. Une enquête menée chez les ostréiculteurs responsables des comités de banc permet d’avoir une vision
approximative d'infestation des parcs ostréicoles. Les parcs touchés par les crépidules correspondent aux zones du coureau où les densités de crépidules sont les plus abondantes dans les chenaux, à l'exception du banc de Barat et à proximité de la coursière de Manson où les crépidules ont été transférées avec des huîtres.

Le suivi bimensuel des populations de crépidules (biométrie, biochimie, mortalité) n'est pas encore traité, cependant on peut constater une croissance très rapide des moules, issues du captage de mai 1981. Leur développement rapide, et l'importance des surfaces colonisées entraînent l'étouffement d'une grande partie des crépidules sous une vase très fluide rejetée par les moules.

Le résultat de la compétition territoriale moules crépidules est intéressant à suivre de même que la prédation par les étoiles de mer. Enfin des tests seront mis en place pour quantifier et comparer la fixation de la vase par les crépidules et les moules ainsi que le cycle de reproduction de ce mollusque.

Programme 3 Recherche des possibilités de développement

3.1 Valorisation des claires

3.1.1 Culture de l'huître creuse Crassostrea gigas

Dans les claires de la Section régionale du C.I.C. de Kersenne-Cléron un ensemble d'expérimentation a été mené :

- étude de l'écosystème naturel.

Pendant l'automne et l'hiver 1981, les différents facteurs du milieu, températures, salinités, oxygène dissous, turbidité, pH, azote minéral et organique, phosphate, silicates, chlorophylle ainsi que les nombres cellulaires et le comptage des cellules phytoplanctoniques ont été effectués. Ce travail est en cours d'exploitation avec la collaboration de ROBERT et RINCÉ de l'Université de Nantes. Le départ de ZANETTE du laboratoire induit un retard important dans le traitement et l'interprétation des résultats.
Ils montrent principalement que le développement de *Navicula ostrearia* se produit dans les claires chargées en huîtres ce qui semble confirmer l'hypothèse que les rejets d'azote organique de *Crassostrea gigas* peuvent être assimilés directement par la navicule. Par ailleurs, un nouveau mode de gestion du marais, en favorisant le renouvellement des sels nutritifs, en supprimant le ruisseau d'alimentation permet de multiplier par dix la production phytoplanctonique, et donc d'augmenter la densité d'huîtres en élevage.

Quatre claires ont été garnies début octobre à deux densités : 4 et 10 individus par m² pour confirmer les résultats précédents qui mettaient en évidence que la densité optimale d'huîtres en élevage pouvait être le double de celle utilisée traditionnellement. Les huîtres mises en claires seront étudiées dans le cadre des mises au point d'appellation d'huîtres spéciales de claires, en collaboration avec le C.I.C.

- amendements

Trois claires garnies d'huîtres (4 au m²) ont été utilisées pour ces essais pour tester l'affinage automnal et hivernal. Les amendements effectués le 21 octobre et le 30 novembre en mortes eaux sont constitués d'une part de spirulines micronisées, d'autre part d'un broyat de porphyra riche en auxines. L'évolution de la flore microphytobenthique a été suivie et confirme que l'ensemble des claires chargées en huîtres a verdi avec une constance relative des *Navicula ostrearia* pigmentés (environ 30 %). Il semblerait que certaines espèces de diatomées (*Nitzschia* et certaines *navicula cées*) en présence de phyto-hormone ont une certaine tendance au gigantisme déjà remarqué à La Rochelle. À priori, un tel résultat ne serait pas nécessairement souhaitable pour les huîtres en raison de la taille des diatomées. L'évolution des index de condition des huîtres des différentes claires est en cours de traitement.

3. 1.2 Huîtres plates provenant de Bretagne-Binic

En 1980, un nouvel essai de culture d'huîtres plates à partir de sujets de 2 ans originaires de Bretagne a été réalisé en claires de la Section régionale.
Au mois de février 1981, à l'examen d'échantillons d'huîtres restantes prélevées au hasard, il apparaît que

- la qualité de chair des huîtres est très variable : index de condition moyen 50-60 atteignant rarement 100 (14 %).
- la coquille est très belle, dure, nacrée, sans chambrage.

Fin avril ces huîtres sont pêchées, afin de libérer la claire pour les travaux annuels d'entretien. On constate alors que :

- la qualité de chair est toujours variable,
 index de condition moyen 50,10 % entre 70-100.
- la qualité de coquille est très belle, sans chambrage.
- la mortalité est élevée (23 %)

Les résultats de cette culture sont très inférieurs à ceux obtenus en 1979 et surtout en 1978.

En effet, l'épidémie due à Marteilia refringens et à Bonamia ostreae qui frappe les huîtres plates, causant d'importantes pertes dans les stocks en Bretagne, s'étend aux autres centres de culture de cette même huître, bassin de Marennes-Oléron et d'Arcachon, à l'exception de la Méditerranée.

Aussi a-t-il été décidé d'interrompre cet affinage d'huîtres plates de Bretagne en claires et d'entreprendre un essai expérimental de culture à partir d'huîtres plates de Méditerranée, indemnes de parasitose.

3.1.3. Huîtres plates provenant de Méditerranée

Ces huîtres viennent de l'étang de Thau. Elles sont semées à raison de 4/m², en claires expérimentales le 16 novembre 1981. 2 lots sont à distinguer :

- Un lot dit "grosses huîtres" d'un poids unitaire moyen, établi sur des échantillons pris au hasard, de 85 g, d'une hauteur moyenne de 10 cm, d'une longueur de 8 cm et d'une épaisseur de 3 cm.

.../...
Ce lot destiné à la consommation dès la fin de l'année restant très peu de temps en claire n'a pas fait l'objet d'études particulières. Cependant la mortalité fut nulle et leur engraissement de bon aloi.

- Un lot d'huitres plus petites, poids unitaire moyen 58 g, hauteur 7 cm, longueur 6 cm, épaisseur 2,3 cm. Celui-ci est réparti dans deux claires.

Il est cultivé en vue du suivi mensuel de son adaptation et de son développement en claire avec notamment l'étude des paramètres suivants : croissance, engraissement (index de condition à leur arrivée 80-100), qualité de la coquille, en novembre charfrage dans la valve inférieure), mortalité, examens pathologiques en vue de la détection de l'apparition éventuelle d'agents pathogènes (*Martelia refringens* et *Bonaia ostrea*) et de leur évolution et étude par électrophorèse des variations génétiques de cette population d'huitres par rapport à des huitres saines (type normal) et parasitées.

3.2 Culture des palourdes

3.2.1 Technologie

La méthode d'élevage mise au point en 1980 en collaboration avec la chambre commerce qui consiste à mettre en culture entre filets des palourdes prégressées de taille supérieure à 0,8 mm, a été affinée et développée. Ainsi avec un filet de 4 mm il est possible de faire un prégrossissement avec des palourdes de 0,6 mm. De même, il s'est avéré que l'utilisation du filet du dessous est souvent impossible à cause de la nature du fond trop dur. La protection contre la prédation est toujours aussi efficace. Par contre le développement des élevages avec un seul filet de protection oblige à chercher un moyen pour mécaniser la pêche. Avec Mr PETRE, une turbine aspiratrice portable est actuellement en cours d'essai. Après de légères modifications elle doit être la solution sur laquelle on doit s'orienter, surtout à cause de l'efficacité, de la maniabilité et du faible coût (7 000 Fr) de l'engin.
3.2.2 Présentation

De nombreuses nurseries nous ont demandé une assistance technique pour tenter de résoudre les problèmes de croissance et de circuit d'eau qui se présentent à eux. En effet deux périodes sont critiques, l'été et l'hiver. L'été car la croissance des mollusques est stoppée à cause principale-ment d'une baisse de la production phytoplanctonique engendrée par un épuisement de sels minéraux, l'hiver car l'absence de la température entraîne un arrêt de la filtration et de la croissance. Nous n'avons travaillé que sur l'aspect estival de la question.

- nurserie par upwelling de Boisard (Artouan Soudre)

Les interventions du mois de juillet et du mois d'août ont été causées par des problèmes de qualité d'eau utilisée pour le pompage (eau provenant d'une claire en friche). Pour cette raison nous avons conseillé un fonctionnement en circuit fermé. Il s'est avéré que le circuit d'eau proposé a permis en juillet et en août un excellent recyclage puisque l'ammoniac rejeté par les palourdes est rapidement consommé induisant à la sortie du 5ème bassin une teneur en chlorophylle active identique à celle de l'eau initiale (13 à 15 μg/l de chlorophylle). Dans cette nurserie mixte (huîtres et palourdes) le taux d'ingestion de plantes en juillet et en août varie de 10 à 22 % pour les huîtres et 56 à 90 % pour les palourdes. Malgré ces taux d'ingestion élevés les croissances des huîtres et des palourdes sont restées à un bon niveau.

- nurserie par upwelling du GPHM Rabeau (Ile de Ré)

Les baisses de croissance d'huîtres et de palourdes estivales sont importantes malgré des débits élevés. La nurserie fonctionne en milieu semi-ouvert mais les eaux sont pauvres l'été en phytoplancton. Un suivi annuel des principaux sels minéraux met en évidence que sur l'Ile de Ré la période estivale est caractérisée par une carence marquée en nitrates, les teneurs en silicates et phosphates ne semblant pas limitantes. En une deuxième
étape des amendements à base de nitrates vont être effectuées l'été prochain, pour essayer d'augmenter la production phytoplanctonique. Des essais déjà tentés empiriquement cette année, mais avec un engrais trop riche en phosphate ont donné des résultats très variables.

- **nurserie de Aquaculture Marine Française (Marennes) et de Septier (La Tremblade)**

Différentes interventions ont été effectuées pour intervenir sur le circuit d'eau chez Septier et mesurer les taux d'assimilation tandis que à Aquaculture Marine Française les études préliminaires ont porté sur les possibilités de prégrossissement hivernal à partir des eaux de forages.

- **nurserie de Joli (Chaillevettes) (Seudre)**

Cette nurserie n'est alimentée en eau nouvelle qu'à marée haute, les réserves d'eau des claires étant insuffisantes, le circuit d'eau mis au point lui a permis de fonctionner en upwelling, en semi fermé.

Chez Joli, avec 85 000 palourdes I.S.T.P.H. de tamis de 4 mm, nous avons testé simultanément sur un même site les différentes méthodes de prégrossissement.

- par upwelling avec un tamis de 10 000 palourdes
- par la méthode guérandaise (casiers suspendus en pleine eau) avec 3 500 et 10 000 palourdes au m²
- par la méthode des poches à armatures déposées sur le fond de la claire avec 3 500 et 10 000 palourdes au m²
- par la méthode du filet de prégrossissement dessus-dessous à des densités de 500, 1 000, 3 000 individus au m².

L'expérience a débuté le 1er juillet et s'est achevée le 1er octobre.

***/ ***
Les résultats de la croissance en 3 mois sont exprimés dans le tableau suivant :

<table>
<thead>
<tr>
<th>:départ : upwelling</th>
<th>guérandaïse : guérandaïse</th>
<th>poche : poche</th>
<th>filets</th>
<th>filets</th>
<th>filets</th>
</tr>
</thead>
<tbody>
<tr>
<td>:de l'expérience : 10 000</td>
<td>: 3 500 : : 10 000 : : 3 500 : : 10 000 : : 500 : : 1 000 : : 3 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ainsi on peut constater :
- que le débit (0,25 m³ par tamis et par heure) utilisé dans l'upwelling est insuffisant pour assurer une bonne croissance pour la charge en élevage.

- que la méthode "guérandaïse" assure la meilleure croissance et que l'effet de la charge n'améne que peu les performances de cette méthode.

- dans les poches déposées sur la vase, la croissance pondérale et linéaire est légèrement inférieure pour une densité de 3 500 mais le triplement de la densité induit une baisse sensible de la croissance.

- sous filets, dans le sol, la croissance est moyenne, la densité optimale pour cette méthode d'élevage dans la claire étudiée est de 1 000 individus par m².

Ces résultats amènent quelques commentaires. Ainsi dans la claire étudiée, la technique entre deux eaux qui favorise les échanges est meilleure que celle des poches ou des filets déposés sur la vase. Il semble donc que les palourdes profitent de toute augmentation d'apport de nourriture phytoplanctonique contenue dans l'eau. Par contre, elles ne semblent pas profiter à cette taille du substrat vaseux et du phytobenthos associé. Les résultats...
des dosages de biomasse phytobenthique sur les élevages en filet confirment cette hypothèse.

Quant à la méthode par upwelling, le débit de 0,25 m³/h par tamis est insuffisant mais cette méthode d'élevage permet d'apprécier la consommation de la nourriture partielle effectuée par les palourdes. Ces mesures ont été effectuées toutes les semaines pendant la durée de l'expérience. Ainsi le taux moyen de chlorophylle consommé est assez stable variant de 75 % à 87,5 % avec une moyenne de 82 %. Les lipides sont très inégalement consommés de 0 à 83 % avec une moyenne de 30 %, les glucides de 15 à 73 % avec une moyenne de 32 % et les protéines de 10 à 62 % avec une moyenne de 22 %. Cette expérience met en évidence que les palourdes sont capables de très forts taux d'ingestion de phytoplancton composé principalement à cette époque de petit flagelles, par ailleurs, les lipides et les glucides sont généralement plus utilisés que les protéines qui sont les plus représentatives d'une nourriture détritique qui ne semble que peut intervenir dans ces expériences.

3.2.3 Elevages de palourdes en claires

Des opérations de soutien sont apportées à différents éleveurs, mais le travail de suivi régulier des exploitations nouvelles est assuré par la Chambre de Commerce et le Conseiller départemental à l'Aquaculture (20 millions de palourdes sont en élevage dans le bassin). Dans les claires expérimentales, les 21 000 palourdes semées au mois d'août 1980 avec des poids unitaires de 3,7 gr dans 5 unités de filet à des densités de 120 à 320 par m² ont été échantillonnées 1 an plus tard (août 1981). Aucune différence significative n'est apparue entre 120 et 200 individus par m². La longueur moyenne des différents lots est de 3,77 cm avec un poids de 13,31 gr.

Programme national palourdes

Rappelons que 1 500 000 palourdes japonaises (tamis de 4 mm) ont été semées le 11 et 12 septembre 80 selon deux techniques.

- 1/3 selon la technique casiers de prégrossissement posés sur la vase et ensuite semés entre deux filets.
semis direct sur vase avec enclos de protection.

La très mauvaise qualité du naissain livré par la SATMAR a entraîné une mortalité de 50% du naissain chez la quasi totalité des coopé-
rents. L'éclosor, très consciente de ce problème a accepté de réinjecter dans le programme à titre gracieux 50 000 palourdes qui ont été semées le 17 octobre 81.

Le protocole technique a évolué

- prélèvement en poche avec écarteur mais en
 surelevé et non plus souillé sur la vase.
- un seul enclos a été conservé avec protection
 supplémentaire au niveau du sol par filets.

Résultats :

Dans les 5 enclos implantés, on constate une mortalité
totale due à la prédation par le crabe vert, y compris chez des éleveurs qui
ont apporté un soin à la préparation de leur structure et à la pêche de crabe
par la pose de casiers adaptés. Il semble que les marais charontais soient un
secteur de reproduction très actif du crabe. À la période du semis de nombreux
jeunes crabes passent à travers l'enclos de protection et se développent à
l'intérieur de la structure. Rappelons que les marais de Soudre et d'Oléron
ne sont pas asséchés périodiquement et favorisent ainsi un élevage de crabe
dans l'enclos (plus de 900 crabes de 2 cm en octobre dans un enclos de 1 000 m²).

D'autres difficultés sont apparues, comme l'apparition de
nombreux trous dans les filets qui semblent dus aux rongeurs. Enfin de nombreu-
ses négligences de la part des professionnels ont été commises car il ne sont
pas habitués à la servitude de la "chasse aux crabes" dans les élevages d'huîtres.

L'enclos semé en 1981 et protégé partiellement par des filets
sur le sol ne semble pas avoir résolu les problèmes car en décembre il ne reste
que 11% de palourdes et avec la protection supplémentaire d'un filet mais de maille
non adaptée à la taille des palourdes, il en reste 33%.
Lors du prégrossissement en poche posée sur la vase, la croissance est très hétérogène et cette disposition permet le développement de jeunes crabes à l'intérieur de la poche qui peuvent induire une mortalité de 30 % du cheptel si l'éleveur ne fait pas un entretien régulier. Pour cette raison, en septembre, les poches de prégrossissement ont été surélevées pour améliorer la pénétration de jeunes crabes dans la structure (les crabes marchant sur la vase) et pour augmenter et homogénéiser la croissance en favorisant la circulation d'eau.

Après la mise sous filet qui s'est effectuée en avril-mai il n'a pas été constaté de mortalité. La croissance est très bonne en avril, les palourdes ont une longueur moyenne de 11,5 mm et un poids de 0,8 g, et en novembre, soit 14 mois après avoir été semées à partir de tamis de 4 mm, une longueur moyenne de 36,3 mm et un poids individuel de 12 g, pour une densité sous filet de 170 individus au m². La croissance a été lente à démarrer jusqu'en février, elle est exponentielle de mai à octobre, s'infléchit à l'automne mais se poursuit en hiver, en particulier avec les températures élevées de 1981.

On note un certain pourcentage de palourdes boudeuses, jusqu'à 18 %, dont la coquille s'arrondit, et qui semble être lié à la couche de vase trop peu épaisse mise entre les deux filets par certains ostréiculteurs.

3.3 nouveaux procédés
- de captage

À la demande de la société belge DEKRAERT, spécialisée dans la fabrication de la grillage, nous avons effectué, cette année encore, des essais de collecteurs en treillis soudés et chaulés de différents types :

- accordéons à maille de 4 mm
- accordéons à maille de 8 mm
- spirales à maille de 4 mm
- spirales à maille de 8 mm
Ces différents collecteurs ont été posés sur deux sites du bassin : banc de Mérignac et Mus de Loup.

Les résultats du captage sont nuls. Le captage réalisé sur les collecteurs traditionnels des mêmes secteurs étant insignifiants aucune comparaison n'est possible.

Cependant, si la mise en place des collecteurs grillagée a été beaucoup plus facile et rapide cette année, il ne semble pas que la non obturation des mailles par la chaux soit une technique bien adaptée.

- Progessissement de naissance en claire

Le captage ayant été inexploitable cette année, cet essai est remis à l'année suivante.

3.4 Étude des possibilités d'utilisation des rejets d'aquaculture de poissons en conchyliculture.

Cette étude est effectuée à La Pauline (Aquaculture marine française) avec une aide financière de EPR Poitou-Charentes. Il s'agit principalement d'étudier la croissance et l'engraissement des huîtres placées dans les eaux de rejet d'une pisciculture intensive d'élevage de truites. Ainsi il a été testé le pouvoir éparateur d'huîtres placées dans le chenal de rejet et jugé de la compatibilité de la qualité bactériologique obtenue en rapport avec les normes de salubrité réglementaires. Dans un souci d'augmenter la rentabilité de pisciculture intensive, il est intéressant de connaître les possibilités d'utilisation des déchets dus à l'élevage des truites pour un élevage d'huîtres dans les eaux de rejet.

Cette investigation porte sur un ensemble de stations suivies mensuellement concernant les coquillages expérimentaux et la matière organique qui peut présenter un rôle trophique pour les huîtres : biomasse phytoplanctonique et substances détritiques.

Les résultats de l'expérience "déchet 1981" mettent en évidence que sur le plan bactériologique, le chenal d'évacuation est le secteur des contaminations observées dans les huîtres, les bassins à poissons provoquent un apport chronique en coliformes totaux et épisodique en bactéries spécifiques.
de certaines maladies piscicoles.

- La croissance hivernale des truites n’a pas perturbé le démarrage de la croissance printanière des huîtres, la croissance de la coquille est excellente à partir d’avril, que ce soit dans la réserve et dans les chenaux de rejet. La qualité de la chair des mollusques est par contre variable, très bonne dans la réserve, elle est nettement inférieure dans les chenaux d’évacuation des eaux piscicoles.

- Les dosages de chlorophylles, de protides, lipides et glucides ne présentent pas des différences marquées entre les eaux de la réserve et le rejet. Ainsi on peut penser que ce n’est pas la nourriture qui est le facteur limitant mais plus la qualité du milieu (sulfures, nitrites etc.).

Programme 4 : Sélection génétique

Depuis quelques années, il est apparu chez C. gigas cultivées sur les côtes françaises des variations se traduisant par une diminution de croissance, de fertilité et parfois une anomalie de la calcification de la coquille. Les différences phénotypiques rencontrées entre les zones de culture s’accentuent. Aussi nous est-il apparu important de déterminer s’il existe des variabilités génétiques entre ces populations. Notre activité a porté essentiellement sur l’analyse de populations naturelles de sites choisis : les gisements naturels.

Ces variations de caractère se traduisant au niveau biochimique, l’analyse par électrophorèse de composants tels que les protéines donne une indication de la diversité génétique entre les populations et l’intérieur d’une même population.

Cette analyse a porté sur :

- Les protéines de l’hémolymphe
- Les protéines de l’huître totale et du muscle, extraites à partir de matériaux frais, congelé et lyophilisé.

Elle a nécessité une étude méthodologique :

- de l’extraction de l’hémolymphe
- de la concentration des protéines qui est faible dans l’hémolymphe. En fin d’année, un appareil destiné à concentrer les protéines sur membranes collodion a été mis en démonstration au laboratoire. Il a donné

.../...
toute satisfaction et son acquisition permettrait de résoudre ce problème.
- de la composition du tampon d'extraction des protéines.
Actuellement, nous utilisons un tampon phosphate pH = 6,5 contenant du saccharose.
- des supports de migration :
 - bandes acétate de cellulose de divers types.
 - gel polyacrylamide en tube
 - gel polyacrylamide en plaque
- des conditions de migration, voltage etc...

Résultats préliminaires

C. gigas
- Des différences de migration électrophorétiques sont apparues entre les protéines des gisements d'Arcachon et du bassin de Marennes-Oléron.
- D'autre part, des variations quantitatives ont été observées entre certaines bandes de migration des protéines d'huîtres du gisement de Mouillelande et des Flamands.

Mais cette étude doit être étendue à un plus grand nombre d'individus.

Début juillet des huîtres pêchées sur les gisements des Flamands furent transférées sur les gisements de Mouillelande, en Seudre. Jusqu'à présent, les différences observées entre ces huîtres transférées et celles constituant le banc de Mouillelande subsistent. Leur étude se poursuit afin de connaître l'influence environnement génotype.

L'électrophorèse sur bande acétate de cellulose ne donnent qu'une approche des variations entre la variation de constitution des échantillons en acides aminés. Pour une étude plus complète, sur un plus grand nombre d'échantillons, un matériel plus spécialisé est nécessaire.

Hors programme :

Craie : A la demande pressante de la Section régionale, suite aux articles parus dans la presse faisant écho de résultats très favorables obtenus dans le bassin d'Arcachon, nous avons effectué deux opérations limitées de dévasage.

/*
par le Nautex. En fonction des résultats des opérations plus vastes pourraient être envisagées. En collaboration avec FEUILLET et SORLIN et avec la firme NEMC qui commercialise le Nautex, il a été traité le 7 avril, 7 ares sur la Casse (Nord du bassin) dans une zone de fort courant pour voir s'il pourrait y avoir un effet sur un dépôt récent de "mollin" de l'ordre de 30 cm. D'autre part le 13 avril, 1 ha a été traité sur Bourgeois, zone où l'envasement est important. Sur Bourgeois, il s'est effectivement produit une minéralisation de la vase qui est devenue plus fluide avec une teneur en eau plus élevée. Par contre, il ne s'est pas produit de dévassage, dans la zone traitée, supérieur à 1 cm excepté aux endroits munis de laveurs (15 cm) qui provoquent des courants et du battage. Par ailleurs, sur la Casse, zone où les courants sont importants et où le dépôt de vase était récent (hiver dernier) il a été constaté un dévassage de l'ordre de 15 cm.

Mortalité et pathologie

De nombreuses huîtres creuses ont été examinées en particulier à cause de la présence de Mytilicola orientalis et de mortalités provoquées par la ponte tardive et les basses salinités de l'automne et du début de l'hiver. Par ailleurs, des fixations de différentes huîtres creuses et plates ont été transmises au laboratoire de pathologie de Sète pour examen cytologique.

Météorologie

Le Laboratoire de La Tremblade est inséré dans le réseau départemental météorologique ce qui oblige quotidiennement y compris les week-end, le personnel à effectuer les différents relevés, à tour de rôle.

Colloque National de la Recherche

Une part non négligeable de l'énergie du personnel a été investie dans la préparation du colloque régional et des groupes de travail régionaux (5 sur 6) en octobre et en novembre.
- confection et présentation de poster pour la salon conchyli-cole de La Tremblade, sur tous les programme du laboratoire.

- rangement et installation, dans les garages, d'étageres pour le matériel ostréicole et pour la mise en place des bacs expérimentaux.

2 Difficultés rencontrées

Ces difficultés tiennent toujours au manque de personnel, rappelons qu'en 1980 le laboratoire a perdu un poste de chercheur occupé par Mr Gras nommé Délégué régional, et, en 1981 nous constatons à nouveau la perte d'un deuxième chercheur, Mr Zanette qui travaillait depuis 4 ans à La Tremblade grâce à une convention du Conseil général - Section régional. Licencié en septembre 1981, il a été très dommageable pour le laboratoire de se priver de ses services, et il est illogique que ce chercheur confirmé nait pu être recruté par l'I.S.T.P.N.

Le travail d'entretien et de bricolage, est assuré par du personnel scientifique ce qui diminue d'autant sa disponibilité ceci est aberrant sur le plan des répartitions des tâches (par exemple : travail de bricolage fait par des chimistes au lieu d'être effectué par un ouvrier d'entretien compétent). L'entretien des élevages expérimentaux (huîtres et palourdes) pourrait être assuré par cet ouvrier.

Le nombre d'heures allouées à la secrétaire vacataire est nettement insuffisant pour la production du laboratoire (lettres, rapports, publications...) Les 1040 heures allouées sont aussi utilisées par le Directeur de Centre et le Délégué régional. Ainsi en décembre, il nous a manqué 90 heures de secrétariat qu'il a fallu financer sur la convention EPR - La Pauline.

L'absence totale de personnel technique pour l'équipe génétique entraîne un retard chronique dans les différents programmes. Par ailleurs le fait de ne pas disposer d'agent de laboratoire provoque des engorgements au niveau des petites tâches (vaisselle, entretien...) encombrant tout le personnel scientifique en nuisant encore à son efficacité.

.../...
Par ailleurs, le programme sur les antifoulings (tests en bac) a mis en évidence que nos moyens expérimentaux sont trop limités, et n'ont pu fonctionner que grâce à la compréhension du personnel qui a accepté, y compris pendant les week-end, de faire fonctionner les circuits d'eau.

Fin mars, le congélateur "génétique" ayant disjoncté, les échantillons d'huîtres ont été perdus. Nous n'avons pu nous réapprovisionner en huîtres d'espèces différentes.

3 Aspects financiers

L'intégralité des sommes allouées sur les chapitres gérés par le laboratoire a été utilisée. La diminution de 20% des crédits de fonctionnement pour 1982 est très dommageable en particulier à cause de l'augmentation croissante du prix du matériel et des produits chimiques dont de nombreux viennent des U.S.A. (+ 18 %). Il serait souhaitable que la gestion du laboratoire puisse être assurée par du personnel administratif en particulier par la secrétaire si elle était employée à temps complet.

4 Chronologie

Programme 1 : Par manque de personnel, la cartographie des différents types d'élevage et les modes de culture n'a pas encore pu être réalisée.

Programme 2 : Les facteurs influençant la reproduction, la nutrition et la physiologie n'ont pas connu l'essort programmé par suite d'une dispersion du personnel sur le programme antifouling et à cause des tâches administratives qui incombent au chef de Laboratoire.

Programme 3 : L'étude sur le verdissement des claires, par suite du départ de Monsieur Zanette, est suspendue.
5 Temps passé par programme (fiches annexes)

6 embarquement (Jasus + bateaux professionnels)

J.F. BERTHOMÉ

21 janvier parc Dagnas
4 février parc Dagnas
5 février parc Dagnas
6 février parc Dagnas
11 février parc Dagnas
20 février banc Bourgeois craie
7 avril Bourgeois - craie
9 avril parc Dagnas
21 avril Bourgeois - craie
5 mai gisements Charente bateau professionnel
6 mai parc Dagnas
7 mai Mouillélande bateau professionnel
8 mai parc Dagnas
11 mai parc La Casse bateau professionnel
15 mai parc les lest bateau professionnel
18 mai parc Dagnas
1 juin parc Mérignac bateau professionnel
11 juin pêches larves
16 juin parc La Casse bateau professionnel
25 juin pêches larves
20 juillet pêches larves
27 juillet pêches larves
13 août pêches larves
27 août sortie larves La Tremblade-Le Chapus
3 septembre sortie larves Le Chapus
21 septembre sortie larves Le Chapus - La Grève
29 septembre sortie larves + parc expérimental Le Chapus
28 octobre sortie parc expérimental Le Chapus
7 décembre sortie RNO Le Chapus
15 décembre sortie parc expérimental Le Chapus
J. M. DESLOUS-PAOLI
du 2 au 11 septembre
dragage Marennnes-Oléron
15 septembre
parc Charret
19 octobre
visite gisement Coquille St Jacques
13 novembre
parc Charret

J. GARNIER
10 mars
chapus RNO
30 mars
Chapus RNO
15 juin
pêches larves
22 juin
pêches larves
15 juillet
pêches larves
23 juillet
pêches larves
3 août
pêches larves
10 août
pêches larves
24 août
pêches larves

M. HERAL
7 avril
La Casse épandage craie
13 avril
Bourgeois épandage craie bateau professionnel
4 mai
Charret crépidules bateau professionnel
7 mai
Flamands bateau professionnel
16 juin
Flamands bateau professionnel
3 juillet
poches gélatineuses ensemble du bassin
16 juillet
crépidules bateau professionnel
29 septembre
prélèvements antifouling
16 octobre
banc de Lanouroux
19 octobre
gisement de coquille St Jacques

J. MOREAU
13 septembre
pêches larves
14 septembre
pêches larves
17 septembre
pêches larves
<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 janvier</td>
<td>RNO</td>
</tr>
<tr>
<td>17 janvier</td>
<td>RNO</td>
</tr>
<tr>
<td>25 février</td>
<td>déplacements au Chapus RNO</td>
</tr>
<tr>
<td>10 mars</td>
<td>déplacements au Chapus RNO</td>
</tr>
<tr>
<td>30 mars</td>
<td>déplacements au Chapus RNO</td>
</tr>
<tr>
<td>7 avril</td>
<td>La Casse - épandage craie</td>
</tr>
<tr>
<td>9 avril</td>
<td>parc Dagnas</td>
</tr>
<tr>
<td>14 avril</td>
<td>RNO</td>
</tr>
<tr>
<td>22 avril</td>
<td>RNO</td>
</tr>
<tr>
<td>4 mai</td>
<td>RNO</td>
</tr>
<tr>
<td>6 mai</td>
<td>parc Dagnas</td>
</tr>
<tr>
<td>8 mai</td>
<td>parc Dagnas</td>
</tr>
<tr>
<td>26 mai</td>
<td>RNO</td>
</tr>
<tr>
<td>2 juin</td>
<td>RNO</td>
</tr>
<tr>
<td>10 juin</td>
<td>RNO</td>
</tr>
<tr>
<td>16 juin</td>
<td>parc Dagnas</td>
</tr>
<tr>
<td>29 juin</td>
<td>larves</td>
</tr>
<tr>
<td>1 juillet</td>
<td>RNO</td>
</tr>
<tr>
<td>12 août</td>
<td>RNO</td>
</tr>
<tr>
<td>24 août</td>
<td>larves</td>
</tr>
<tr>
<td>27 août</td>
<td>larves</td>
</tr>
<tr>
<td>31 août</td>
<td>RNO</td>
</tr>
<tr>
<td>7 septembre</td>
<td>RNO</td>
</tr>
<tr>
<td>18 septembre</td>
<td>Baie de Bonne Anse</td>
</tr>
<tr>
<td>15 septembre</td>
<td>larves</td>
</tr>
<tr>
<td>23 septembre</td>
<td>larves</td>
</tr>
<tr>
<td>29 septembre</td>
<td>larves</td>
</tr>
<tr>
<td>13 octobre</td>
<td>gisement</td>
</tr>
<tr>
<td>15 octobre</td>
<td>gisement</td>
</tr>
<tr>
<td>7 décembre</td>
<td>RNO</td>
</tr>
</tbody>
</table>
7 Missions et déplacements

7.1 Missions à l'étranger

M. HERAL

du 29 août au 1er septembre : Institute for Marine Environmental Research - Plymouth, rencontre de travail avec J. WIDDOWS (mission sans frais)

7.2 Missions en France

J.P. BERTHOMÉ

du 31 mars au 1er avril Nantes CAP n° 1
1er avril ; CAP chercheur Nantes
19 octobre : Assises Régionales de la Recherche Poitiers
5 novembre : Assises Régionales de la Recherche Poitiers

J.M. DESLOUS-PAOLI

9 octobre : Colloque Poitiers Thème III
15 octobre : Colloque Poitiers
29 octobre : Colloque Poitiers
5 novembre : Colloque Poitiers
17 au 20 novembre : Présentation Poster GABIN
5 décembre : Thèse Sornin Nantes

M.P. GRAS

9 et 10 février : Siège central I.S.T.P.M. Nantes - Bilan des expériences d'élevage de palourdes.
5 au 11 juillet : Centre I.S.T.P.M. Sète - Laboratoire d'électrophorèse Expérimentations génétiques.
5 et 6 novembre : Poitiers - Assises régionales de la recherche et de la technologie.
M. HERAL

27 janvier : Nantes RNO + mission scientifique Arcachon
10 février : Nantes réunion palourde + transfert huîtres plates
14 avril : Nantes RNO + urée + antifoulinf + crépidules
19 mai au 20 mai : Beauvoir sur Mer et Bouin exposé palourdes

C.E.A.S.M.

25 mai : Arcachon réunion Section régionale environnement
2 juin : Arcachon réunion poche gélantineuse Dr Krampitz
9 juillet au 11 juillet : Brest congrés du C.I.C.
9 au 12 septembre : présentation de communication UNESCO

SILCO Bordeaux

22 septembre : équiment du laboratoire en matériel informatique I.S.T.P.M. Nantes
4 novembre : Démonstration d'un counter coulter + RNO

I.S.T.P.M. Nantes

5 novembre : colloque national de la recherche assises régionales Poitiers
19 au 21 novembre : présentation d'une communication au GABIM au COB à Brest.

25 novembre : Jury de thèse de Sicard, Faculté de pharmaciens Bordeaux.

3 décembre : réunion thématique palourdes Bouin

5 décembre : thèse de Sornin + réunion de travail sur les biodeposits. Faculté des Sciences de Nantes.

D. RAZET

19 octobre : assises régionales de la recherche Poitiers
6 novembre : colloque régional de la recherche Poitiers

5 décembre : thèse de Sornin.
7.3 Liste des déplacements

Section Régionale

M. HÉRAN

5 janvier réunion de bureau
12 janvier réunion pleinière
30 janvier réunion pleinière
10 avril Marennes réunions de commissions
26 mai Arvert réunion pleinière
15 mai Marennes réunion de bureau
26 mai Marennes réunion Bonne Anse
15 juin Marennes réunion de bureau
26 juin L'Eguille réunion pleinière
8 septembre réunion D.P.M.
13 septembre réunion environnement
20 octobre réunion revalorisation des claires
21 octobre réunion D.P.M.
22 octobre réunion environnement
9 novembre réunion de bureau
18 novembre Section régionale. Les Mathes.

J.P. BERTHOUX

5 janvier réunion de bureau
15 janvier comité de banc St Froult
10 avril Marennes réunion de commission
17 avril Marennes réunion de bureau
27 avril Marennes réunion comité de banc
29 avril Marennes réunion comité de banc
27 mai Marennes réunion comité de banc
10 juin Marennes réunion de comité de banc
25 août réunion pleinière Les Mathes
10 septembre réunion bureau Marennes
20 octobre réunion bancs naturels Marennes

//
J.M. DESLOUS-PAOLI

21 octobre réunion section régionale DPM

M.P. GRAS

5 janvier réunion de bureau

Y. ZANETTE

5 janvier réunion de bureau

déplacements divers

J.P. BERTHOIE

28 janvier claires expérimentales
28 janvier réunion DDE Royan
.5 février Royan vase
10 février Chapus RNO
25 février Chapus RNO
24 et 25 avril salon conchylicole
15 mai claires expérimentales
7 septembre Marenses enseignement C.E.A.S.M.
11 septembre le Chateau-Marennes Réunion Affaires Maritimes
15 septembre Talmont- St Palais visite gisements huîtriers
rive droite Gironde
18 septembre La Palmyre sortie baie de Bonne Anse
22 septembre Avallon sortie claires expérimentales
13 octobre Port des Barques visite gisements huîtriers
rive gauche Charente
14 octobre Port des Barques visite gisements huîtriers
rive gauche Charente
21 octobre Marennes Réunion Piballe
30 octobre La Rochelle Assises régionales recherches
12 novembre Beschers -St Palais - visite gisements huîtriers
rive droite Gironde
16 novembre La Rochelle Assises Régionales de la recherche

/
J.M. DESLOUS-PAOLI

16 septembre : Affaires Maritimes
30 septembre : Sortie claire
1 octobre : Chambre de Commerce et d'Industrie
13 octobre : visite gisement
14 octobre : visite gisement
27 octobre : Réunion CNEXO 3 ème pôle La Rochelle
10 décembre : Prélèvement DBO ultime

M.P. GRAS

12 février : suivi huîtres plates, claires expérimentales
23 février : prélèvements huîtres plates claires expérimentales
26 mars : prélèvements huîtres plates claires expérimentales
29 avril : pêche des huîtres plates dans la claire expérimentale
30 avril : pêche des huîtres plates dans la claire expérimentale
12 mai : Réception huîtres de Vendée
16 mai : Réception huîtres - Bourcefranc
29 mai : Contrôle pétoncles - Le Chapus - La Tremblade
11 mai : Contrôle naissain plate et pétoncles - Bourcefranc
17 septembre : Le Chapus - Réception huîtres des Flamands
18 septembre : Le Chapus - Réception huîtres des Flamands
16 novembre : claires expérimentales huîtres plates
17 novembre : huîtres plates claires expérimentales
4 décembre : huîtres plates claires expérimentales
18 décembre : Réception huîtres creuses pour étude génétique - Royan.

25 et 26 avril : salon conchylicole.

J. GARNIER

5 février : contrôle ANVAR
6 février : contrôle ANVAR

.../...
9 janvier : réunion ADACO La Rochelle
19 janvier : La Pauline
21 janvier : pêche au filet sur les claires
5 février : contrôle ANVAR
6 février : contrôle ANVAR
10 février : réunion Nantes
3 mars : ADACO poisson La Rochelle
6 mars : prélèvements huîtres Oléron
18 mars : filet ANVAR
27 mars : ADACO journées d'aquaculture
30 mars : nurseries Chaillevette
8 avril : Palourdes ANVAR
24 avril : Rochefort Mr Sornin
25 et 26 avril : La Tremblade salon conchylicole
5 mai : La Rochelle DDA Seudre
11 mai : Mérignac palourdes ANVAR
12 mai : La Rochelle Délégué régional aquaculture La Pauline
25 mai : Royan étude d'impact DDE port de St Georges
27 mai : Marennes Affaires Maritimes Civelles
4 juin : Boyardville marée noire + palourdes ANVAR
5 juin : Ile de Re palourdes
19 juin : palourdes ANVAR
30 juin : Seudre palourdes
2 juillet : Boyardville antifouling et palourdes
8 juillet : Rochefort Mr Ricaud - bateau
9 juillet : La Rochelle préfecture
12 août : palourdes ANVAR
14 août : palourdes claires expérimentales
27 août : écloserie Shearwater + antifouling Boyardville
7 septembre : enseignement au CEASMA Marennes
8 septembre : Rochefort : Robert et Rincé Faculté des Sciences de Nantes
13 septembre : Talmont-Brouage, visite bassin par le congrès UNESCO-SILCO.
15 septembre : Bourcefranc crépidules
21 septembre : antifouling Boyardville
25 septembre : palourdes ANVAR Boyardville
1 octobre : palourdes Chatressac
15 octobre : Affaires maritimes Marennes
17 octobre : palourdes et semis ANVAR
20 octobre : palourdes ANVAR Chaillevette
23 octobre : palourdes ANVAR Marennes
27 octobre : 3ème pôle CNEXO La Rochelle
13 novembre : coordination recherche université de Poitiers
 La Rochelle
16 novembre : palourdes ANVAR
17 novembre : Rochefort Deslous-Paoli
17 novembre : zonage des parcs Boyardville
19 novembre : métaux préfecture La Rochelle
10, 11 décembre : colloque régional aquaculture La Rochelle

J. MOREAU

19 janvier : La Pauline
26 février : La Pauline
27 mars : La Pauline
 2 avril : aquaculture marine française
21 avril : aquaculture marine française
 7 mai : claires expérimentales
10 juin : aquaculture marine française
12 juin : aquaculture marine française
17 juin : aquaculture marine française
22 juin : aquaculture marine française
30 juin : aquaculture marine française
 7 septembre : Avallon claires expérimentales
15 octobre : La Pauline avec stagiaire argentine
21 octobre : Avallon claires expérimentales
30 novembre : Avallon claires expérimentales
 3 décembre : Avallon claires expérimentales avec M. Marnais
 Sté Goë Mar St Malo.
7 décembre : Avallon claires expérimentales
8 décembre : Avallon claires expérimentales
11 décembre : Avallon claires expérimentales

D. RAZET
23 février : marais du Douhet
26 mars : déménagement vieux laboratoire
25 et 26 avril : salon conchylicole
23 septembre : Rochefort (Alzieu)
20 octobre : Chaillevette (palourdes)
22 octobre : Rochefort (photographe + Alzieu)
30 octobre : La Rochelle (colloque recherche)
17 novembre : Boyardville antifouling
30 novembre : Marennes (St Félix, Leroy)
1 décembre : Royan (Deltreil)

8) stagiaires

Mr SICARD : thésard pharmacien Bordeaux
Mr SICARD : thésard laboratoire de géologie marine Nantes
E. RESNIER : maîtrise de biochimie Bordeaux
1/7/81 au 28/8/81
D. PRIOUJ : Maîtrise de sciences naturelles Orsay
1/1/81 au 28/8/81
A.M. PASQUIER : technicienne BTAO mai 81
L. DUPRENE : licence océanographie Brest
17/7/81
M. SEAMAN : DEA océanographie Brest
24/9/81 au 1/10/81
M.A. TOYOS DE GUERRERO : Puerto Madrin Argentine
14/10/81 au 22/10/81
Visites

8 janvier : Société toniclaire (fertilisants)
8 janvier : SGDUR Pechiney Ugone Kuhlman (tables en aluminium)
11 février et le 4 mars : Seawater Fisfarming (analyses)
13 février : Directeur des poissons maritimes
13 février : Monsieur Lagardère
13 février : Monsieur Flasch
5 mars : nouvel administrateur de Marennes-Oléron
5 mars : élèves administrateurs
10 mars : officiers administrateurs
16 mars : stagiaires LEP Guérande
6 avril : Mr Dujardin Mission régionale
8 avril : société Bekert collecteurs
9 avril : Mr Coulreau Laboratoire géologie marine Nantes
20 au 24 avril : Mr Sornin Laboratoire géologie marine Nantes
21 avril au 11 juin : Mr Carpentier aquaculture marine française
15 avril : journaliste du "marin"
27 avril : élèves EAM La Rochelle
20 mai au 17 août : Mme Laurent COB
21 mai : Mr Sabant Sea Water fishfarming
29 mai : élèves du DEA de Paris VI
4 au 20 juillet : Mr Massé CNRS Endoume - crépidules
21 juillet 20 et 21 août, 2 septembre : Mr Robert Laboratoire biologie marine Nantes
27 juillet : Monsieur le Professeur Lubet laboratoire zoologie Caen.
29 juillet : télévision régionale
26 octobre - 30 octobre : Mr Massé et Mr Lagardère - contrat CNEXO
30 octobre : Monsieur le Professeur Lassère
14 septembre : Anne Laurent laboratoire des crustacés de Poitiers
3 septembre : AGEAN stage palourdes
14 septembre : Mr Devassy - National Institute of Goa.
30 septembre : A. Riva laboratoire des Embiez
15 octobre : CIPRA
10 novembre : réunion antifouling I.S.T.P.M.
27 novembre : Mr Monette, Mr Cliché, Mr Murand, direction des pêches du Québec
30 novembre : Mr Delamare DORST
30 novembre Mr Heron, direction des pêches
1-2 décembre : responsables des laboratoires cultures marines I.S.T.
P.M.
10 décembre : Mr Errera et Libbrecht — Société Bekaert

Et en permanence, de nombreux professionnels des cultures marines.

9) **Articles, communications, rapports**

ALZIEU C., BOUTIER B., THIBAUD Y., DELTREIL J.P., HERAL M., PELLIER C.,
COEURDACIER de GESNES M., ANGELI J.P., 1981. — Evaluation des risques dus à

ALZIEU, THIBAUD Y., HERAL M., BOUTIER B., 1981. — Evaluation des risques dus

BERTHOME J.P., RAZET D., GARNIER J., 1981. — Description, évolution et importance
des différentes techniques de captage en rivière Seudre
(bassin de Marennes-Oléron) : incidence sur la production

DESLOUS-PAOLI J.H., 1981. — *Hytilicola orientalis, Crassostrea gigas* parasite

//
DESLOUS-PAOLI J.M. - Croissance et qualité de l'huitre Crassostrea gigas Thunberg en élevage dans le bassin de Marennes-Oléron. Article présenté à Thétya (en cours de correction).

.../...

//

Différents rapports ont été transmis :

- action en faveur du développement de la conchyliculture.
- port de Royan et port de St Georges de Didonne
- immersion d'huîtres plates
- opération de dragage crépidules
- avis divers aux affaires maritimes et au CIC ...

10) Collaboration aux travaux d'organismes extérieurs

- Faculté des Sciences de Nantes - Laboratoire de biologie marine : programme "Ecotron" du C.N.E.X.O. Étude de la production des algues unicellulaires des claires à huîtres ; détermination des facteurs limitant la croissance de ces algues ; essai de mise au point de mélanges enrichissants permettant de maintenir la production constante.

- Station marine d'Endoume - Thème "ressources vivantes" qui fait l'objet d'un contrat C.N.E.X.O. : écologie d'un écosystème estuarien à vocation aquicole. Estimation de la production secondaire et en particulier des compétiteurs de l'huître dans le bassin de Marennes-Oléron.

- Centre Océanologique de Bretagne : programme national palourde qui fait l'objet d'un contrat C.N.E.X.O. - ANVAR.

- Continuité de la collaboration pour les études génétiques avec la Faculté des Sciences de Nantes, Laboratoire de chimie organique.
- Collaboration pour dosages avec la Chambre Départementale d'Agriculture (La Rochelle) et le Laboratoire de Pédologie de l'Université de Poitiers.

- Collaboration avec la Chambre de Commerce de Rochefort pour les élevages de palourdes.

- Partenaire de l'action incitatrice DGRST "Bases biologiques de l'aquaculture". Etude écophysiologique des besoins énergétiques de quelques mollusques d'intérêt commercial et de leurs compétiteurs sur le plan trophique, coordonnateur H. Massé.

- Collaboration pour le transfert des résultats du laboratoire aux professionnels de la mer avec l'ADACO.
11) Temps passé par programme

Programme 1

<table>
<thead>
<tr>
<th></th>
<th>1 - 1</th>
<th>1 - 2 - 1</th>
<th>1 - 2 - 2</th>
<th>1 - 2 - 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. HERAL</td>
<td>2E + 1A</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>J.P. BERTHOMÉ</td>
<td>10 (7) 1</td>
<td>45 (2) A + 10E</td>
<td>30 (2) A</td>
<td>32 (6) A + 17E</td>
</tr>
<tr>
<td>J.M. DESLOUS-PAOLI</td>
<td>1E + 2(2) A</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M.P. GRAS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>J. MOREAU</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4E</td>
</tr>
<tr>
<td>J. GARNIER</td>
<td>-</td>
<td>6E + 2 A</td>
<td>5 A</td>
<td>18 A</td>
</tr>
<tr>
<td>D. RAZET</td>
<td>3 E</td>
<td>7E + 32 A</td>
<td>1 A</td>
<td>4E + 2 A</td>
</tr>
</tbody>
</table>

Programme 2

<table>
<thead>
<tr>
<th></th>
<th>2 - 1</th>
<th>2-2-1</th>
<th>2-2-2</th>
<th>2-2-3</th>
<th>2-3</th>
<th>2-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. HERAL</td>
<td>2E +</td>
<td>11(3) A + 5 A</td>
<td>15A+2D</td>
<td>10 A + 2E+35(4) 2E+13(3)</td>
<td>1A+4(2)D</td>
<td>A</td>
</tr>
<tr>
<td>J.P. BERTHOMÉ</td>
<td>2E + 5A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>J.M. DESLOUS-PAOLI</td>
<td>-</td>
<td>3(1) A</td>
<td>13 A</td>
<td>5A+4D</td>
<td>-</td>
<td>5A</td>
</tr>
<tr>
<td>M.P. GRAS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>J. MOREAU</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>J. GARNIER</td>
<td>34(4) A</td>
<td>52A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10A</td>
</tr>
<tr>
<td>D. RAZET</td>
<td>6 A</td>
<td>12E+20A</td>
<td>16 A</td>
<td>5A +D</td>
<td>-</td>
<td>25A+3E</td>
</tr>
</tbody>
</table>
Programme 3

<table>
<thead>
<tr>
<th></th>
<th>3-1-1</th>
<th>3-1-2</th>
<th>3-1-3</th>
<th>3-2</th>
<th>3-3</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. HERAL</td>
<td>5 A</td>
<td>-</td>
<td>-</td>
<td>34(25) A</td>
<td>+12+5(1)D</td>
<td>-</td>
</tr>
<tr>
<td>J.P. BERTHOME</td>
<td>2(1) A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4(1) A</td>
<td>-</td>
</tr>
<tr>
<td>J.M. DESLOUS-PAOLI</td>
<td>-</td>
<td>1(1) A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M.F. GRAS</td>
<td>-</td>
<td>-</td>
<td>39(13) A</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>J. MOREAU</td>
<td>71(31) A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100(21)A</td>
<td>-</td>
</tr>
<tr>
<td>Y. ZANETTE</td>
<td>120(20)A</td>
<td>-</td>
<td>-</td>
<td>20(5) A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>J. GARNIER</td>
<td>27 A</td>
<td>-</td>
<td>-</td>
<td>5 A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D. RAZET</td>
<td>1 A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 A</td>
<td>-</td>
</tr>
</tbody>
</table>

Programme 4

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M.P. GRAS</td>
<td>132 (8) A + 5 D</td>
<td></td>
</tr>
<tr>
<td>D. RAZET</td>
<td>1 A</td>
<td></td>
</tr>
<tr>
<td>M. HERAL</td>
<td>1 A</td>
<td></td>
</tr>
</tbody>
</table>

Hors programme thématique

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M. HERAL</td>
<td>2 E + 3 A + 1 D</td>
<td></td>
</tr>
<tr>
<td>J.P. BERTHOME</td>
<td>4 E + 7 A + 2 D</td>
<td></td>
</tr>
<tr>
<td>J.M. DESLOUS-PAOLI</td>
<td>4 D</td>
<td></td>
</tr>
<tr>
<td>M.F. GRAS</td>
<td>2 D</td>
<td></td>
</tr>
<tr>
<td>D. RAZET</td>
<td>13 (1) A + 3 D</td>
<td></td>
</tr>
</tbody>
</table>

/
<table>
<thead>
<tr>
<th></th>
<th>Sur programmes</th>
<th>Thématiques hors prog.</th>
<th>non thématiques</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HERAL</td>
<td>141 8</td>
<td>11 3 2 - - 1 - - - - 52 - - - - 3 1 21 - - 261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERTHONE</td>
<td>132 30</td>
<td>7 4 - - 2 - - - - 46 - - - - 2 23 1 3 - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESLOUS-POLLI</td>
<td>57 11</td>
<td>4 - - - - - - - - - 4 5 - - - - - - 3 - - 84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAS</td>
<td>171</td>
<td>- - - - - - - - - - - - - - - - - - - 34 10 - - 250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOREAU</td>
<td>156 4</td>
<td>- - - - - - - - - - - - - - - - - - - 130 - - - - - 28 15 - - 248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GARNIER</td>
<td>153 6</td>
<td>- 42 - - - - - - 28 21 - - 250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAZET</td>
<td>111 28</td>
<td>- 13 3 - 26 11 4 - 250</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SY = Absences syndicales