Influence of shellfish farming activities on nitrification, nitrate reduction to ammonium and denitrification at the water-sediment interface of the Thau lagoon, France

Franck Gilbert¹, Philippe Souchu², Micheline Bianchi³, Patricia Bonin¹,*

¹Laboratoire d’Océanographie et de Biogéochimie, Centre d’Océanologie de Marseille (OSU), Université de la Méditerranée, CNRS UMR 6535, Campus de Luminy, Case 901, F-13288 Marseille Cedex 9, France
²Laboratoire d’Ecologie, station IFREMER, 1 rue Jean Vilar, F-34200 Sète, France
³Laboratoire de Microbiologie Marine, CNRS UPR 223, Campus de Luminy, Case 907, F-13288 Marseille Cedex 9, France

ABSTRACT: The seasonal patterns of nitrification, denitrification and dissimilatory ammonium production (DAP) rates were studied in the sediment of 2 stations in the Thau lagoon (south of France). The station ZA was located within the shellfish farming zone and the station B was the reference site. A marked effect of shellfish farming on bacterial activities was observed. Spatial differences were associated with discrepancies in the organic content and the reduction state of sediments, i.e. highest reduc- tive processes (denitrification and DAP) were noted in shellfish farming area, whereas the oxidative process (nitrification) was predominant outside the farming zone. At both stations, the DAP activity increased in September (autumn) concomitant with an increase of the C/N ratio in the sediment due to the sedimentation of the summer phytoplanktonic production. Nitrification and denitrification rates exhibited maxima in November (winter) corresponding to dissolved inorganic nitrogen inputs from the surrounding land. In the shellfish farming site, 98% of nitrate was reduced to NH₄⁺ and 2% to N₂O, showing that the most of the NO₃⁻ was reduced to ammonium and remained available for the eco- system.

KEY WORDS: Shellfish farming · Nitrogen bacterial processes · Nitrification · Nitrate reduction to ammonium · Denitrification · Thau lagoon · Mediterranean Sea · Sediment-water exchanges

INTRODUCTION

The potential importance of nutrients in influencing the productivity of marine ecosystems is now well recognised, especially that of dissolved inorganic nitrogen, which appears to limit the primary production in coastal ecosystems (Ryther & Dunstan 1971). Benthic remineralisation is an important pathway in shallow ecosystems (Zetzsche1 1980, Nixon 1981), and the recycled N released from sediments can substantially contribute to the nitrogen requirement for phytoplankton growth (Nixon 1981).

Three major bacterial processes in sediments affect the nitrogen cycle, playing important roles in nitrogen budgets and fluxes of the ecosystem: (1) the ammonium oxidation by nitrification in sediments not only competes with heterotrophic processes for limited supplies of oxygen and nitrogen, but can also indirectly remove nitrogen through its coupling with the denitri- fication process (Koike & Hattori 1978, Jenkins & Kemp 1984). (2) During the remineralisation of organic nitrogen in sediments, 15 to 70% of N can be lost by de- nitrification (Seitzinger 1988). Furthermore, benthic denitrification can also decrease nitrate influxes from terrestrial origin (Jørgensen & Sørensen 1985, Jørgensen & Sørensen 1988). (3) Dissimilatory nitrate reduction to ammonium, referred to as dissimilatory
ammonium production (DAP), competes for nitrate with denitrification in sediments (Sørensen 1978a, Enoksson & Samuelsson 1987). The relative contribution of denitrification and DAP to nitrate reduction is of considerable importance, as the former acts as a nitrogen sink for the ecosystem whilst the latter maintains the nitrogen levels.

The Thau lagoon (south of France) is the biggest shellfish breeding area in Europe with an estimated standing stock of 40 000 t of oysters (Crassostrea gigas and their epibiota) at a density of about 40 oysters m\(^{-2}\) of shellfish farming zone; the harvesting of oysters leads to the removal of large quantities of nitrogen from the ecosystem. Thus, the knowledge of the shellfish farming effect on bacterial activities associated with the N cycle is necessary for a better understanding of the N cycle. Kaspar et al. (1985) showed that the denitrification rate was 7 times higher in sediments from a mussel farm compared to a reference site. Nevertheless, other experiments have shown that high loading of organic matter to sediments tends to decrease N removal by diminishing the coupling of nitrification and denitrification (Jenkins & Kemp 1984, Blackburn et al. 1988, Sloth et al. 1995, Jensen et al. 1996). This paper reports the first results on nitrification, DAP and denitrification measurements at the sediment-water interface of the shellfish farm and at a reference site in the Thau lagoon.

MATERIALS AND METHODS

Studied sites. The study was carried out in the Thau lagoon, a shallow lagoon of 75 km\(^2\) located on the French Mediterranean coast (Fig. 1). This lagoon is connected to the sea through the narrow channels of Sète and receives freshwater mostly from the north shore. The Vène and Pallas are the major rivers representing 43\% of the total watershed (280 km\(^2\)). Two stations were chosen for their differences due to sediment alteration induced by biodeposition (Mesnagne & Picot 1995, Mazouni et al. 1996). Stn ZA (8.5 m depth), located inside the eastern shellfish farming zone, has been previously described in Souchu et al. (1997). Stn B (8.5 m depth), which is the reference site, shows a particle size similar to that of Stn ZA, with the fraction below 63 \(\mu\)m constituting between 80 and 90\%. The macrophytobenthos is almost totally absent at these relatively deep stations (Gerbal & Verlaque 1995), and a description of benthic macrofauna and meiofauna can be found in Guelorget et al. (1994). The stations were studied 4 times between June 1994 and April 1995, i.e. June, September and November 1994 and April 1995. Sediments from Stn ZA consisted of black mud giving off a hydrogen sulphide smell (H\(_2\)S). The interface was partly covered by filamentous cyanobacteria. Sediments from Stn B were made of a grey mud, lightly (1 or 2 ind. m\(^{-2}\)) colonised by the worm Sabella pavonina (Savigny). In September and November, the absence of macrofauna and the blackening of sediments at Stns ZA and B indicated that both stations suffered from bottom anoxia in August. In September, sediments from both stations were covered by a yellow-brown layer rich in suspended particles.

Water column. Bottom water (0.5 m above the bottom) was sampled with a Niskin bottle. Filtration and storage of samples were performed within 1 h after sampling. Samples for ammonium (NH\(_4^+\)) determination were fixed immediately and measured by the colorimetric method of Koroleff (1976) using Bertelot's reaction. Samples were filtered (Whatman GF/F filter) and stored for later determination of NO\(_2^-\) and NO\(_3^-\) concentrations with a segmented flow analyser (Tréguer & Le Corre 1975). A detailed procedure of sampling, filtration and storage is described in Souchu et al. (1997). Records of daily rainfall at Sète were obtained from the National Meteorological Board of Montpellier. Salinity and temperature, recorded using a WTW LF 196 conductimeter (accuracy \(\pm 0.5\%\)), were provided by the observation network of IFREMER.

Sediments. Dry organic matter content and oxygen and redox profiles were measured in sediments collected in acrylic tubes by divers. At Stn ZA, sediments
were sampled 3 m outside the suspended lines of a shellfish farm.

For the percentages of dry organic matter (%OM), triplicate 8 cm wide cores were sliced into 1 cm sections, from which known volumes of sediment were freeze-dried and then heated at 450°C for 12 h.

For the pore water sediment extraction, triplicate 8 cm wide cores were cut into 1 cm segments inside a nitrogen-filled glove bag to avoid air oxidation of reduced nitrogen compounds dissolved in the water. Each slice of sediment was centrifuged at 10,000 rpm (8620 × g) for 15 min with a refrigerated centrifuge (Heraeus Megafuge 20R). Supernatant water was removed from the centrifuge tube, filtered through Whatman GF/F filters and frozen in precombusted Pyrex flasks for later determination of NH$_4^+$, NO$_3^-$, and NO$_2^-$ concentrations as described for the water column. Interference of sulphides with Berthelot (NH$_4^+$) colorimetric reactions was avoided by a dilution (×100) with deionized water.

Redox potential and oxygen concentration were measured immediately after arrival in the laboratory with a pH/mV (Schott CG817T) meter equipped with combined platinum mini-electrodes and an Ag/AgCl reference electrode. Before each measurement, a delay of 2 min allowed the reading to become constant. The oxygen concentration in the sediment was measured with a mini-electrode with a tip diameter of 0.5 mm (Visscher et al. 1991) and an Ag/AgCl external reference electrode. The electrodes were connected to a picoammeter (Keithley 485), with a 750 mV polarization charge positive to the reference electrode. Calibration under non-stirred conditions revealed a linear relationship between oxygen concentration and the observed signal. Typical 0 and 100% air saturation values were 1 and 58 nA. Positioning of the mini-electrode was accomplished with a micromanipulator (resolution 50 μm).

Nitrification activity. Nitrification rates were obtained by measuring the changes of NO$_2^-$ concentration in sediment samples containing allylthiourea (ATU) or sodium chlorate (NaClO$_3$) to inhibit the oxidation of NH$_4^+$ and NO$_2^-$, respectively (Bianchi et al. 1992, 1994). The upper 2 cm of the sediment samples was divided into 3 sets of triplicates subsamples (30 g), and each was mixed thoroughly with filtered bottom water (Whatman GF/F) in a 1 l polycarbonate bottle. One triplicate set of bottles was unamended (control), one received 10 mg L$^{-1}$ ATU (final conc.) and the third received 10 mM NaClO$_3$. No substrate was added. The bottles were incubated in the dark with loosely fitted caps and without shaking at the in situ temperature for 0, 1, 3, 5 and 24 h. After incubation, each tube was treated with 0.1 mL of 1 M HgCl$_2$ solution, vigorously shaken by hand for 2 min, and then centrifuged at 2000 rpm (350 × g) for 3 min.

Denitrifying activity was considered as the linear initial rate of N$_2$O accumulation. After incubation nitrous oxide was measured in the headspace and in the sea water. A subsample (2.5 ml) of the gas phase was injected into a 3 ml pre-evacuated tube (Venject,
The study period began in April during the establishment of warm and dry meteorological conditions; the temperature and salinity increased from April to August (Fig. 2, Table 1). The lack of wind to circulate the water in July and August was responsible for a bottom anoxia which occurred in the deeper eastern part of the lagoon (depth > 6 m) including the shellfish farming zones (Stn ZA). Later on, the period from September to early November corresponded to a rainy period with a drop of salinity down to 30.5 PSU. After November, the freshwater inputs were negligible, leading to the increase of salinity until April, with values close to levels measured in June (Fig. 2), but with a -8°C temperature difference (Table 1).

The concentrations of dissolved inorganic nitrogen (DIN) compounds in the water (NH₄⁺, NO₂⁻, NO₃⁻ = DIN) showed a similar pattern at both stations for all compounds but were higher at Stn ZA, particularly in August (Fig. 2, Table 1). The lack of wind to circulate the water in July and August was responsible for a bottom anoxia which occurred in the deeper eastern part of the lagoon (depth > 6 m) including the shellfish farming zones (Stn ZA). Later on, the period from September to early November corresponded to a rainy period with a drop of salinity down to 30.5 PSU. After November, the freshwater inputs were negligible, leading to the increase of salinity until April, with values close to levels measured in June (Fig. 2), but with a -8°C temperature difference (Table 1).

The concentrations of dissolved inorganic nitrogen (DIN) compounds in the water (NH₄⁺, NO₂⁻, NO₃⁻ = DIN) showed a similar pattern at both stations for all compounds but were higher at Stn ZA, particularly in November (Table 1). The concentrations increased from June to November 10-fold or more and then dropped drastically in April.

Concerning the sediments, in June the %OM was significantly higher at Stn ZA than at Stn B (Fig. 3). In
September (after the bottom anoxia), %OM ranged from 15% (top of sediment) to 10% (at 40 mm depth) for both stations. The sediments collected in November were characterised by the minimum %OM (<10%), while values comparable to those in June were recovered in April with a similar difference between the 2 stations.

Sediments from Stn B displayed positive redox potential (Eh) values which ranged from 50 to 100 mV in June and were close to 230 mV during the next 3 study periods. Eh values were stable with depth whatever the season. On the other hand, at Stn ZA, the Eh was variable with a rapid change from positive to negative values within the top 20 mm for the 3 first study periods. Moreover, a decrease from −100 to −300 mV was observed between June and September (Fig. 3). In November, Eh values remained near −300 mV. In April, Eh values were positive and quite stable with depth and were close to levels measured at Stn B.

Oxygen profile measurements indicated that the depth of O₂ penetration ([O₂] > 6 μM) never exceeded 4 mm (Table 1) and was systematically deeper at Stn B than at Stn ZA. The maximum O₂ penetration was recorded in April at the reference Stn B, the minimum being found in winter at Stn ZA, where it was strictly limited to the interface itself.

Concentration of NH₄⁺ in pore water was stable with depth at Stn B. Pattern of changes with time of NH₄⁺ concentrations were similar for the 2 stations: (1) increase from June to September (from 50 to 100 μM and 220 to 550 μM for Stns B and ZA, respectively), (2) stability in November, and then (3) in April, a drop to levels close to those reported in June.

Bacterial activities

Nitrification

Rates of nitrification ranged from 0 to 77 μmol d⁻¹ l⁻¹ WS. The summer experiment (June) was characterised by insignificant nitrification rates both inside (Stn ZA) and outside (Stn B) the shellfish farming zone (Fig. 4A, B). At Stn ZA, both steps of nitrification in the sediment were only measurable in September, when the superficial layer rich in suspended particles was observed. In winter (November), the nitrification was enhanced at Stn B, where the first step of nitrification (NH₄⁺ oxidation; Fig. 4A) was 2.5 times higher than the second step (NO₂⁻ oxidation).

Table 1. Concentrations of DIN in the bottom water and sediments, temperature and salinity in the bottom water and depth of O₂ penetration in sediments ([O₂] > 6 μM) from June 1994 to April 1995 at Stns ZA and B

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ZA</td>
<td>B</td>
<td>ZA</td>
<td>B</td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>22.1</td>
<td>22.1</td>
<td>18.6</td>
<td>18.6</td>
</tr>
<tr>
<td>Salinity (PSU)</td>
<td>36.1</td>
<td>36.1</td>
<td>38.0</td>
<td>38.0</td>
</tr>
<tr>
<td>[NH₄⁺] (μM)</td>
<td>0.66</td>
<td>0.34</td>
<td>5.3</td>
<td>3.4</td>
</tr>
<tr>
<td>[NO₂⁻] (μM)</td>
<td>0.07</td>
<td>0.08</td>
<td>0.48</td>
<td>0.37</td>
</tr>
<tr>
<td>[NO₃⁻] (μM)</td>
<td>0.12</td>
<td><0.05</td>
<td>5.8</td>
<td>2.6</td>
</tr>
<tr>
<td>Sediment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂ penetration (mm)</td>
<td>1.7</td>
<td>2.7</td>
<td>1.2</td>
<td>3.2</td>
</tr>
<tr>
<td>[NO₂⁻] (μM)</td>
<td><0.05</td>
<td>0.1</td>
<td>0.09</td>
<td>0.11</td>
</tr>
<tr>
<td>[NO₃⁻] (μM)</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
</tr>
</tbody>
</table>
Dissimilatory processes: DAP and denitrification

In June, both the denitrification and DAP natural rates were very weak, averaging 0.26 and 1.57 μmol d⁻¹ l⁻¹ WS, respectively, in Stn B (Fig. 4C, D). No significant differences were found between Stns ZA and B. In September, no denitrification activity was found at Stns ZA and B. On the other hand, highly enhanced DAP rates were measured, particularly at Stn ZA (249 ± 33 μmol d⁻¹ l⁻¹ WS; mean ± SE). In November, denitrifying rates were 2.1 ± 0.4 and 0.7 ± 0.1 μmol d⁻¹ l⁻¹ WS at Stns ZA and B, respectively, corresponding to the highest values obtained (Fig. 4C). At this sampling time, the DAP rates at the 2 stations dropped to very low values, corresponding to those found in June (Fig. 4D). Later on, between November and April, the denitrifying rates were back within the same range (around 0.6 μmol d⁻¹ l⁻¹ WS) at both stations, whereas no significant changes in DAP rates were found in sediments.

For pore water NO₃⁻ and NO₂⁻ sediment concentrations never higher than 3.0 μM, natural DAP and denitrifying activity may be very low. In view of this, we decided to complete the study by also taking into account their potential rates. Moreover, because of the oxygen penetration in the studied 0 to 2 cm layer (Table 1), which inhibits both the DAP and denitrifying activities, the activity rate measurements were extended down to 4 cm depth and separated into 2 layers (L1: 0 to 2 cm; L2: 2 to 4 cm). The natural denitrification and DAP rates measured in the 2 to 4 cm layer of the sediments of Stns ZA and B were of the same order of magnitude as those measured in the upper 0 to 2 cm layer (Table 2) and presented the same patterns of changes with time (data not shown).

The fluctuations with time of potential denitrification and DAP rates in the 2 layers of sediments from Stns ZA and B are presented in Fig. 5. In June, the potential denitrifying rates measured (<23 μmol d⁻¹ l⁻¹ WS) were higher at Stn B than at Stn ZA in both layers of sediments (Fig. 5A, B). At the same time, the potential DAP oxidation; Fig. 4B). These high rates of ammonium oxidation were also demonstrated by the significant net nitrifying activity (23 μmol of N-NO₂ produced d⁻¹ l⁻¹ WS) in controls at Stn B in November (data not shown). A weaker but significant activity was also obtained outside the shellfish farming zone (Stn B) in April.

The fluctuations with time of potential denitrification and DAP rates in the 2 layers of sediments from Stns ZA and B are presented in Fig. 5. In June, the potential denitrifying rates measured (<23 μmol d⁻¹ l⁻¹ WS) were higher at Stn B than at Stn ZA in both layers of sediments (Fig. 5A, B). At the same time, the potential DAP
rates at Stns ZA and B were about 27 and 40 \(\mu \)mol d\(^{-1}\) 1\(^{-1}\) WS in the 0 to 2 cm (Fig. 5C) and 2 to 4 cm layer (Fig. 5D), respectively. In September, the activity rates were either slightly (to 40 \(\mu \)mol d\(^{-1}\) 1\(^{-1}\) WS; potential denitrification) or strongly enhanced (to 1300 \(\mu \)mol d\(^{-1}\) 1\(^{-1}\) WS; potential DAP) at the 2 sites. In November, the potential activity rates came back within the same range as that measured in June. In April, both denitrification and DAP rates showed their highest values.

A 3-way ANOVA was applied to the data, in order to determine the space-time variations of bacterial activities (Table 2).

DISCUSSION

The wide fluctuations of environmental conditions, including the temperature, organic matter and DIN content, lead to considerable differences in nitrification, denitrification and DAP rates measured in the sediment of different ecosystems (Table 3). Because of the large variability, the values proposed in the literature, the nitrification, denitrification and DAP rates measured in the sediment of Thau lagoon sediment fall within the same range.

The results obtained have shown significant changes for the different bacterial processes with time and station localisation.

Seasonal variation

In June, the first sampling cruise was carried out during the typical summer situation. Dry periods correspond to low inputs of nutrients from the watershed, and primary production tends to be limited by nitrogen recycling process (Picol et al. 1990). Similar hydrological conditions were found in April, but the large difference in temperature (8° C) might have played a major role in the variation of benthic metabolism. However, in April, the nitrification, denitrification and DAP rates were on the same order as those of June. On the other hand, the concentration of \(O_2 \) at which \(NH_4^+ \) oxidation stops

Table 2. ANOVA analysis comparing the stations (Stns ZA and B), time (season) and sediment layers for the 3 bacterial N processes. When a significant effect is found with 'Time', the season with maximal activity is indicated. When a significant effect is found with 'Station' or 'Layer', the mean stimulation factor is indicated. NS: not significant; L1: 0 to 2 cm sediment core layer; L2: 2 to 4 cm sediment core layer; ND: not determined; * * p < 0.001; * p < 0.01; * p < 0.05

<table>
<thead>
<tr>
<th>Process</th>
<th>Station</th>
<th>Time</th>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural rates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(NH_4^+) oxidation</td>
<td>ZA < B** [x12]</td>
<td>Winter***</td>
<td>ND</td>
</tr>
<tr>
<td>(NO_2^-) oxidation</td>
<td>ZA < B** [x3]</td>
<td>Winter***</td>
<td>ND</td>
</tr>
<tr>
<td>Denitrification</td>
<td>ZA > B* [x3.7]</td>
<td>Winter***</td>
<td>NS (p = 0.49)</td>
</tr>
<tr>
<td>DAP</td>
<td>ZA > B* [x3.3]</td>
<td>Autumn***</td>
<td>NS (p = 0.29)</td>
</tr>
<tr>
<td>Potential rates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denitrification</td>
<td>ZA < B** [x1.4]</td>
<td>Autumn, spring***</td>
<td>L1 > L2** [x1.5]</td>
</tr>
<tr>
<td>DAP</td>
<td>ZA > B** [x1.5]</td>
<td>Autumn, spring***</td>
<td>L1 > L2* [x2]</td>
</tr>
</tbody>
</table>
Table 3. Nitrification, denitrification and DAP rates in various sediments (μmol l⁻¹ d⁻¹). Both natural and experimentally enriched (*) activities are presented.

<table>
<thead>
<tr>
<th>Bacterial process</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrification</td>
<td></td>
</tr>
<tr>
<td>2.86</td>
<td>Koike & Hattori (1978)</td>
</tr>
<tr>
<td>0–150</td>
<td>Henriksen (1980)</td>
</tr>
<tr>
<td>15–70</td>
<td>Henriksen et al. (1981)</td>
</tr>
<tr>
<td>4.8–11.0</td>
<td>Szwerinski (1981)</td>
</tr>
<tr>
<td>760</td>
<td>Herbert (1986)</td>
</tr>
<tr>
<td>0.42</td>
<td>Enoksson & Samuelsson (1987)</td>
</tr>
<tr>
<td>0–77</td>
<td>Present study</td>
</tr>
<tr>
<td>Denitrification</td>
<td></td>
</tr>
<tr>
<td>50–435*</td>
<td>Sørensen (1978a)</td>
</tr>
<tr>
<td>17.5</td>
<td>Sørensen (1978b)</td>
</tr>
<tr>
<td>60</td>
<td>Sørensen et al. (1979)</td>
</tr>
<tr>
<td>0–96</td>
<td>Andersen et al. (1984)</td>
</tr>
<tr>
<td>790*</td>
<td>Goeyens et al. (1987)</td>
</tr>
<tr>
<td>0–94.8</td>
<td>Raymond (1992)</td>
</tr>
<tr>
<td>23.2–35.4</td>
<td>Gilbert (1984)</td>
</tr>
<tr>
<td>0–19.8</td>
<td>Omnes (1996)</td>
</tr>
<tr>
<td>0–2.9</td>
<td>Present study</td>
</tr>
<tr>
<td>7.6–57.5*</td>
<td>Present study</td>
</tr>
<tr>
<td>DAP</td>
<td></td>
</tr>
<tr>
<td>120–750*</td>
<td>Sørensen (1978a)</td>
</tr>
<tr>
<td>9–267</td>
<td>Blackburn (1979)</td>
</tr>
<tr>
<td>34</td>
<td>Jones et al. (1982)</td>
</tr>
<tr>
<td>2.8–110.4*</td>
<td>Enoksson & Samuelsson (1987)</td>
</tr>
<tr>
<td>790*</td>
<td>Goeyens et al. (1987)</td>
</tr>
<tr>
<td>1.3–83.2</td>
<td>Omnes (1996)</td>
</tr>
<tr>
<td>1.9–249</td>
<td>Present study</td>
</tr>
<tr>
<td>20.3–8054*</td>
<td>Present study</td>
</tr>
</tbody>
</table>

Ranges from 1.1 to 6.2 mM (Henriksen & Kemp 1988) and as the oxygen penetration was only a few millimeters (Table 1), it is likely that nitrification in sediments was limited to the first centimeter. Due to conditions of low oxygen availability, H₂S inhibition and competition for NH₄⁺ (Hansen et al. 1981, Joye & Hollibaugh 1995, Jensen et al. 1996), the nitrification rates decrease during summer.

In autumn (September), the high salinity reported showed that the increase of DIN concentrations in the water could not be explained by freshwater inputs from the surrounding land. The mineralisation of the organic matter due to the primary producers of summer communities and NH₄⁺ release from sediments after the anoxic period could have induced an increase in NH₄⁺ concentrations in the water column, which would have probably enhanced pelagic nitrification (Berounsky & Nixon 1985, Collos et al. 1988), and thus increased NO₃⁻ concentrations. Higher NO₃⁻ concentrations at Stn ZA suggest that higher levels of NH₄⁺, coming from filter feeders and their epibionts, stimulated nitrification at the filter-feeder-water interface (Mazouni 1995), and then the NO₃⁻ produced was available for both dissimilatory processes (denitrification and DAP). However, at the same time, the highest %OM measured in the upper 20 mm of sediment confirmed the sedimentation of the phytoplankton bloom. In the presence of this organic matter supply, the elevation of the C/N ratio in sediments, already shown in autumn in the shellfish farming zone (Barranguet et al.
Effect of shellfish farming activity

The ANOVA results (Table 2) also showed significant influence of the shellfish farming on bacterial activity. The dissimilatory processes (denitrification and DAP) were 3.5 times higher at Stn ZA than at Stn B. On the other hand, it appeared that Stn B presented an enhanced nitrification rate (×12 for NH$_4^+$ oxidation; ×3 for NO$_2^-$ oxidation) compared to that at Stn ZA. In fact, if the sediments were essentially similar, both being dominated by fine particles, sediments at Stn ZA had a slightly higher %OM, which reflects the greater deposition rates characteristic of shell farming areas (Dame et al. 1979). Moreover, the zone of rapid change from positive to negative Eh values situated in the upper 2 cm at Stn ZA indicated an organic enrichment in these sediments (Sampou & Oviatt 1991) compared with sediments from Stn B. The marked difference in concentration profiles of NH$_4^+$ between sediments from Stns ZA and B can be seen as resulting from different organic inputs (Sloth et al. 1995) combined with different nitrogen processes occurring in sediments (Enoksson & Samuelsson 1987). Because of oxygenated conditions at Stn B, aerobic nitrification could be observed. In contrast, the more reduced conditions at Stn ZA were more favourable for the anaerobic N processes (denitrification and DAP). In both stations, the end-product partitioning of dissimilatory nitrate reduction between nitrogen gas and ammonium was favourable to the DAP process (Fig. 4), suggesting that in the studied sediments, most of the nitrate was reduced to ammonium and recycled. Kaspar et al. (1985) estimated nitrate ammonification from the overall nitrate reduction minus denitrification. They also concluded that denitrification was the main dissimilatory nitrate reducing process, representing 76% of total nitrate reduction at the mussel farm and 93% at a reference site.

While the natural denitrification and DAP rates show the same pattern for the 2 sites, the ANOVA results obtained for the potential rates are different (Table 2). In contrast to the natural rate, the potential denitrification rate (corresponding to the enzyme content) in Stn ZA sediment was 1.4 times lower than at Stn B (Table 2), indicating the essential role of environmental conditions, such as carbon content, in the stimulation of the denitrification at Stn ZA, as already suggested by Kaspar et al. (1985). On the other hand, as for the natural rate, the potential DAP rate was higher at Stn B. For both denitrification and DAP, the 2 sites' sediments show similar natural rates in the 2 studied layers (0 to 2 and 2 to 4 cm), even if the respective potential rates were higher in the first (0 to 2 cm) than in the second layer (2 to 4 cm).

Conclusion

The changes in environmental conditions associated with the shellfish farming significantly influence the nitrogen cycle at the water-sediment interface of the Thau lagoon. The shellfish farming activity causes a lowering of the nitrification rate, whereas dissimilatory
nitrile reducing processes are stimulated. If the dis-
similatory nitrile reducing processes are enhanced in
such an ecosystem, denitrification remains a minor
process versus IA.P, suggesting that the loss of nitro-
gen for primary production is minimal. The DAP
process maintains nitrogen available as ammonium,
which plays a crucial role in the productivity of the
coastal ecosystem.

Acknowledgements. The authors are grateful to F. Dagault,
N. Garcia, C. Juge and D. Raphel for their technical assis-
tance. This work is a contribution of the Oxythau Project from
the Programme National d’Oceanographie Côtier.

LITERATURE CITED

Andersen TK, Jensen MH, Sørensen J (1984) Diurnal vari-
tion of nitrogen cycle in coastal marine sediments I. Deni-
trification. Mar Biol 83:171–176

Balderston WL, Sherr B, Payne WJ (1976) Blockage by acety-
lene of nitrous oxide production in Pseudomonas perfec-

Barraquyet C, Alliot E, Plante-Cuny MR (1994) Benthic
microphytic activities at two Mediterranean shallowl
its sites with reference to benthic fluxes. Oceanol Acta
17(2):211–222

Beroussky VM, Nixon SW (1985) Eutrophication and the rate
of net nitrification in a coastal marine ecosystem. Estuar
Coast Shelf Sci 20:773–781

Bianchi M, Bonin P, Feliautra (1994) Bacterial nitrification and
denitrification rates in the Rhône river plume (north-

aerobic and anaerobic bacteria associated with sinking
particulate matter and zooplankton fecal pellets. Mar Ecol
Prog Ser 88:55–60

Blackburn TH (1979) Method for measuring rates of NH3
turnover in anoxic marine sediments, using a 15N-NH3

Blackburn TH, Lund BA, Krom MD (1988) C- and N-mineral-
ization in the sediments of eartien marine fishponds. Mar
Ecol Prog Ser 44:221–227

marine bacterium Pseudononas neutica strain 617. Ann
Inst Pasteur Microbiol 138:371–383

Bowman RA, Focht DD (1974) The influence of glucose and
nitrate concentrations upon denitrification rates in sandy
soils. Soil Biol Biochem 6:297–301

Brooks PD, Stark JM, McInthatte MR, Preston T (1989) Diffu-
sion method to prepare soil extracts for automated nitrogen-

Chan YK, Knowles 0 (1979) Measurement of denitrifica-
tion in two freshwater sediments by an in situ acetyl-
eny method. Appl Environ Microbiol 37:
1097–1072

Collos Y, Linley EAS, Frckova MG, Raval B (1986) Phyo-
plankton death and nitrification at low temperatures.
Estuar Coast Shelf Sci 27:341–347

Dame RF, Zingmark RG, Nelson D (1979) Filter feeder cou-
pling between the estuarine water column and benthic

Dugdale RC, Goering JJ (1967) Uptake of new and regener-
ated forms of nitrogen in primary productivity. Limnol
Oceanogr 12:196–296

Enoksson V, Samuelsson MO (1987) Nitrification and dissimi-
latory ammonium production and their effects on nitrogen
flux over the sediment-water interface in bioturbated

meuble de l’étang de Thau (France, Méditerranée) et
facteurs environnementaux associés. Oceanol Acta 18:
557–571

Gilbert F (1994) Influence de la bioturbation sur l’activité
dénitrifiante dans des sédiments marins côtiers. Effet d’un
apport exogène de matière organique: les hydrocarbures.
Thèse de l’Université d'Aix-Marseille II, ANRT-Grenoble:
94/AIX2/2052 (in French)

experiment on the relative importance of denitrification,
nitrate reduction and ammonification in coastal marine

Grabinska-Lobowska A, Slomczyński T, Kansa Z (1985)
Denitrification studies with glycerol as a carbon source.
Water Res 12:1471–1477

Guelorget O, Perthsiot JP, Lamy N, Lefebvre A (1994) Struc-
ture et organisation de l’étang de Thau d’après la faune
benthique (macrofaune, meiofaune). Relations avec le
confinement. Oceanol Acta 17:105–114

Hansen JL, Henriksen K, Blackburn TH (1981) Seasonal distri-
bution of nitrifying bacteria and rates of nitrification in

Henriksen K (1980) Measurement of in situ rates of nitrifica-

Henriksen K, Hansen J, Blackburn TH (1981) Rates of nitrifi-
cation, distribution of nitrifying bacteria, and nitrate fluxes
in different types of sediment from Danish waters. Mar
Biol 81:299–304

Henriksen K, Kemp WM (1988) Nitrification in estuarine and
coastal marine sediments. In: Blackburn H, Sørensen J
(eds) Nitrogen cycling in coastal marine environment.
Wiley, New York, p. 207–250

Herbert RA (1986) Nitrate respiration and nitrification in estu-
Mar Bacteriol. Brest, October 1984, GERBAM-France,
Conférence Internationale de Marine Bacteriology [1985]
CNRS. IFREMER. Actes Colloq Ifremer 3:277–281

and denitrification in two estuarine sediments. Limnol
Oceanogr 29:609–619

Jensen KM, Jensen MH, Kristensen E (1996) Nitrification and
denitrification rates in the Rhône river plume (northwest-

and denitrification in two estuarine sediments. Limnol
Oceanogr 29:609–619

sources of ammonia in freshwater lake sediments. J Gen
Microbiol 128:2823–2831

Jorgensen BB, Sørensen J (1965) Seasonal cycles of O2, NO3-
and SO42– reduction in estuarine sediments: the signifi-
cance of an NO3 reduction in spring. Mar Ecol Prog Ser
24:65–74

Jorgensen KS (1989) Annual pattern of denitrification and
nitrate ammonification in estuarine sediment. Appl Envi-
ron Microbiol 55:1841–1847

reduction and denitrification in estuarine sediment (Nors-

on nitrification and nitrogen regeneration in sediments. Sci-
ence 270:623–625

Kaspar HF, Gillespie PA, Boyer IC, MacKenzie AL (1985)
Effects of mussel aquaculture on the nitrogen cycle and
Mac Allfie C (1971) GC determination of solutes by multiple phase equilibration. Chem Tech 1:46–51

This article was submitted to the editor

Manuscript first received: December 9, 1996
Revised version accepted: March 3, 1997