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Protists are of major importance to marine 
ecosystems, especially to microbial food webs 
(Azam et al. 1983).  In such webs, grazing is 
dominated by phagotrophic protists, yet these 
organisms are still understudied compared to 
bacteria and phytoplankton.  Protists are ubiquitous 
grazers, their prey sizes vary from 2 µm flagellates 

to > 100 µm ciliates and dinoflagellates, and they 
exhibit a wide array of feeding behaviors (Tillman 
2004).  It is now well established that protists are 
a major source of predation on bacteria, and are 
important grazers of phytoplankton, as well as of 
other protists and sometimes metazoan eggs and 
small crustaceans (Sherr and Sherr 2002).  In 
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turn, they constitute a significant source of food for 
metazooplankton, and contribute to regenerated 
production and to the export of biogenic carbon 
in the sea (Legendre and Le Fevre 1995, Mitra 
et al. 2003).  The main grazer-prey interactions 
(encounter, selection, and capture) occur at 
individual levels mediated by sensory modalities 
of mechanoreception and chemoreception.  As 
a result, interactions on micro-scale levels are of 
major importance, since they may affect the entire 
dynamic of microbial food webs and ultimately 
of marine ecosystems.  A better understanding 
of such detailed interactions is now possible for 
ciliate-copepod interactions (e.g., Broglio 2001, Wu 
et al. 2009) and for ciliate-protist prey interactions 
(Jakobsen et al. 2006).

The feeding of ciliates is related to their 
swimming patterns, and the grazing rates of 
ciliated protozoan plankters may be larger than 
those obtained with an average homogeneous 
prey concentrat ion, because of behavioral 
adaptations for remaining within areas with higher 
food concentrations (Buskey and Stoecker 1989).  
These adaptations are complex, and protists 
exhibit many different types of swimming patterns 
(Buskey et al. 1993).  One characteristic pattern 
in protists is helical swimming, which also exists 
for a wide variety of organisms, including protists, 
ascidian larvae, and human spermatozoa (Macnab 
1977, Buskey and Stoecker 1989, Crenshaw 
1989, Strom and Buskey 1993, Crenshaw et al. 
2000, Fenchel 2001, McHenry 2001, Farley 2002, 
Bartumeus et al. 2003, Christensen-Dalsgaard and 
Fenchel 2004).  Fenchel (2001) and Machemer 
(2001) described the physiological and molecular 
basis for this swimming pattern.  Other authors 
described it in a more-mathematical way (Buskey 
and Stoecker 1988 1989, Crenshaw 1989 1993a b, 
Crenshaw and Edelstein-Keshet 1993, Crenshaw 
et al. 2000, Bartumeus et al. 2002 2003, Menden-
Deuer and Grünbaum 2006).  Buskey and Stoecker 
(1988 1989) studied the swimming behavior of a 
tintinnid and characterized the swimming patterns 
using the mean velocity, the density distribution 
of velocities, the rate of changes in direction, and 
the net to gross displacement ratio (NGDR), and 
they observed a decrease in the mean velocity 
with increasing food concentrations.  Crenshaw et 
al. (2000) characterized helical swimming patterns 
in 3 dimension (3D) by considering the geometry 
of the trajectories.  With this approach, helices 
are characterized by their velocity, curvature, and 
torsion.  Those authors developed an algorithm 

(finite helix fit: FHF) in order to measure these 
parameters and describe the helices.  Other 
parameters are calculated using these 3 measures 
based on the trajectories.  This algorithm was 
tested on simulated 3D helices, and the trajectories 
of flagellates, ciliates, spermatozoa of sea urchins, 
and ascidian larvae.  Bartumeus et al. (2003) and 
Menden-Deuer and Grünbaum (2006) studied 
the swimming behavior of the flagellate Oxyrrhis 
marina using different food conditions.  They 
concluded that this species has specific behaviors 
such as helical motion to exploit spatially structured 
resources, affecting both the population distribution 
of O. marina as well as their encounter rates with 
prey.  Bartumeus et al. (2003) interpreted these 
trajectories as being Lévy walks.  Lévy walks are 
considered “super-diffusive” compared to Brownian 
motion which is considered “diffusive” (Metzler and 
Klafter 2004).  These 2 models describe random 
motion with the direction between 2 steps being 
random and the norm of the motion being issued 
from a Gaussian law in the case of the Brownian 
walk and in a Lévy law in the case of the Lévy 
walk.  

Characterization of helical patterns and 
swimming statistics of microorganisms is important 
to understand the feeding relationships among 
protists in microbial food webs.  We studied the 
swimming behavior of the ciliate Strobilidium 
sp. in the presence of increasing concentrations 
of its food, the flagellate Gymnodinium sp.  
Cinematographic and statistical techniques, 
first used for studying the swimming behavior 
of metazooplankton especially copepods and 
cladocerans (Buskey 1984, Schmitt and Seuront 
2001 2002, Seuront et al. 2004a b, Schmitt et 
al. 2006, Moison et al. 2009, Wu et al. 2010), 
were used to analyze the behaviors.  With this 
approach, we performed a statistical analysis of 
behavioral dynamics in order to quantitatively 
characterize behavior activity and perform 
stochastic simulations.

MATERIALS AND METHODS

Culture of microorganisms

We studied a protozoan species of the genus 
Strobilidium which belongs to the Spirotrichea 
class of the phylum Ciliophora.  Strobilidium sp. 
was isolated from a 20 μm net tow taken from the 
University of Texas Marine Science Institute pier 
(27'48.40°N, 97'05.53°W) in July 2004.  Ciliates 
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were cultured in 250 ml polycarbonate flasks with 
0.2 μm filtered seawater (at a salinity of 32 psu) 
and fed a mixture of Isochrysis galbana (25%), 
Rhodomonas sp. (25%), and Heterocapsa sp. 
(50%) every other day.  Ciliate cultures were grown 
in incubators set to 20°C with a 12:12 h light/dark 
photoperiod and transferred once a week.  Food 
cultures were grown in F/2-Si media (Guillard 
1975) under the same conditions and transferred 
monthly.

Experimental conditions

Experiments were performed on 30 July 
2004 at the University of Texas at Austin, Marine 
Science Inst i tute, Port Aransas, TX, USA.  
Samples of Strobilidium sp. were introduced 
into an experimental vessel of 3.75 (height) × 
4 (length) × 1 cm (width) with a cover on the 
top, containing 15 ml of sample at a salinity of 
30 psu.  Videos were recorded in a dark room (to 
avoid phototrophism) at 22°C.  The only source 
of light was a near-infrared LED of 1.45 V, with a 
peak wavelength of 910 nm.  Densities of ciliates 
and prey (Gymnodinium sp.) before and after 
the experiments are presented in table 1.  A low 
food concentration was used in experiment 1, 
medium in experiment 2, high in experiment 3, and 
extremely high in experiment 4.  After transferring 
ciliates and their dinoflagellate food into the 
filming vessel, an acclimation period of 15 min 
was allowed prior to filming.  Ciliate behavior was 
recorded using a SONY video camera (model XC-
EI50; Tokyo, Japan) with an Angénieux F = 1:1.5, 
f = 50 mm lens (Paris, France), with a temporal 
resolution of 1/30 s and a spatial resolution of 
60.6 µm.

Acquisition of trajectories

After filming, videos were analyzed using 
the TrackIt 2 computer program (Iguana Gurus, 
Milwaukee, WI).  Before using this software, it 
was necessary to transform the movies into image 
sequences: this was performed using Adobe 
Premiere software (Adobe systems incorporated).  
The tracking software displayed images one by 
one, and by successively clicking on the position 
of the ciliate in each frame, a trajectory was 
numerically reconstructed.  In total, 100 trajectories 
were extracted for each experiment.  Each 
trajectory contained approximately 800 frames.  In 
total, 3.2 × 105 frames were analyzed.  A resolution 
of 30 frames/s produced about 3 h of ciliate 
swimming paths.  Representative trajectories 
for each experiment are shown in figure 1.  This 
digitalization was conducted at the Institute of 
Marine Biology, National Taiwan Ocean University, 
Keelung, Taiwan.

RESULTS

All analyses of ciliate swimming trajectories 
were performed with programs designed by the 
authors using MatLab (vers. 7.0.1, Mathworks) 
with statistics and curve-fitting toolboxes.

Global analysis based on swimming velocities

We first considered the velocity of organisms 
for each experiment.  Table 2 shows the mean 
velocity, its standard deviation (SD), and maximum 
velocity for all 4 experiments (all values in this table 
are in µm/s).  The mean velocity first increased 
from experiment 1 to experiment 2 (from 315 to 
800 µm/s) and then decreased (to 370 µm/s).  
Maximum velocities were much higher: from 32.4 
(in experiment 1) to 51.2 mm/s (in experiment 
3).  We then considered the probability density 

Table 1.  Experimental conditions.  This table displays concentrations of Strobilidium sp. and Gymnodinium 
sp. before and after the 4 experiments

Food concentration Density of ciliates (ind./ml) Density of algae (cells/ml) Concentration of food (µg C/L) Exp.

Before After Before After Before After

Low 20 12 121 113 10 9.3 1
Medium 20 10 625 369 50 29.5 2
High 20 19 3025 2041 250 168.7 3
Extremely high 20 19 15,125 7690 1250 635.5 4
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functions (pdfs, i.e., the histogram where the 
integration from minus infinity to infinity is equal to 
1) of velocities for the different experiments (Fig. 2).  
These pdfs are displayed as log-linear plots and 
compared to a Gaussian pdf with the same mean 
and SD: large velocities were much more frequent 
than with the Gaussian pdf, corresponding to 
so-called “heavy tails”.  We then considered the 
scale dependence of the velocity.  We measured 
it by changing the resolution of the trajectory and 
estimating the NGDR (Buskey 1984) and the scale 
dependence of the mean velocity in order to check 
if the sampling time resolution had an influence.  
The NGDR is shown in figure 3A in a log-log 

plot.  Scale dependence of the mean velocities is 
shown in figure 3B.  If the sampling resolution is 
small enough, the velocity should not be scale-
dependent.  On the other hand, for a particle 
following Brownian motion, the mean small-scale 
position increment, ∆Xτ = |Xt+τ - Xt| , depends on the 
time increment, τ, of the form

∆Xτ = √Diff τ1/2;.............................................. (1)

where Diff is the diffusivity (see e.g., Berg 
1993).  The velocity Vτ = ∆Xτ / τ estimated with 
time resolution, τ, then has the following scale 
dependence
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Fig. 1.  Examples of trajectories recorded for all experiments.  (A) Experiment 1 (low food); (B) experiment 2 (medium food); (C) 
experiment 3 (high food); and (D) experiment 4 (extremely high food).  Positions x and y are in mm.

Table 2.  Mean velocity, standard deviation, and maximum velocity 
during the 4 experiments.  All values are in µm/s

Exp. Mean velocity Standard deviation Maximum velocity

1 315 1320 32,370
2 800 2010 42,170
3 540 1860 51,200
4 370 1835 40,370
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Vτ ≡ ∆Xτ

τ  = √Diff τ -1/2;.................................. (2)

which shows that the velocity increases for 
τ with smaller and smaller resolution.  In order 
to emphasize such possible scale dependence 
and to compare it with Brownian motion, a log-log 
velocity plot is shown in figure 3B.  In this figure, 
we show the velocity estimated with resolution τ, 
for all experiments (normalized in each case by 
the velocity at the smallest scale, i.e., the mean 
velocities in table 2) compared to the Brownian 

case,Vt /Vt0 = (t0 /t)1/2, where t0 is the smallest scale.  
The faster this decrease, the more the trajectory is 
irregular.  The curves obtained in figure 3A and B 
could be fitted by power-law functions.  The NGDR 
at scale τ could be fitted for a large range of scales 
by a power-law relation of the form:

NGDR(τ) = NGDR(T )‧( t
T ) D-1;................... (3)

where T is the large scale and D is interpreted 
as a fractal dimension (Mandelbrot 1984).  The 
same type of law can be written for the scale 
dependence of the velocity Vτ:

Vt = Vt0 ( t
t0

)1-D;............................................ (4)

In figure 3B, 2 groups are visible: velocities 
for experiments 2 and 3, and velocities for 
experiments 1 and 4.  Fractal dimensions were 
D ≈ 1.21 for experiments 2 and 3 and D ≈ 1.15 for 
the others.  These plots illustrate that in all cases, 
velocity and the NGDR did not reach a plateau 
at small scales.  This means that a sampling rate 
of 30 frames/s is not large enough to accurately 
estimate the ciliate’s true velocity.  The latter is 
then expected to be in fact larger than our present 
estimate.  Only for experiment 4 did it seem that 
a small-scale plateau was almost reached.  The 
fractal dimension introduced above is an indicator 
of changes in the shapes of the trajectories.  An 
important pattern that was visually identified was 
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Fig. 2.  Velocity probability density functions (pdfs) estimated for 
all 4 experiments.  A Gaussian fit is presented for comparison.  
Heavy tails are visible: large velocities have a much larger pdf 
than a Gaussian distribution would predict.
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the helical pattern, which is important for these 
organisms.  We then focused in the next step 
on automatically recognizing helices and the 
succession of swimming states.

Identification of helices

We propose here a method to clearly identify 
helices using the values of angles between 2 
consecutive segments of a ciliate’s swimming 
path.  We first faced a problem of resolution: 
coordinates x and y are integers, so the smallest 
displacement recordable was 1 pixel.  Since a 
pixel is about 60 µm, which is more than a ciliate’s 
size, we observed jerky motion with a staircase 
appearance, providing a discretization effect with 
many angles of 90°.  We then chose to smooth the 
trajectories with a running average using a window 
of 7/30 s corresponding to a running average 
involving 7 consecutive values, i.e., 3 steps before 
and 3 after the current position.  This value is 
the minimum necessary to smooth small-scale 
discretized angles.  An example of this smoothing 
is shown in figure 4, where we show visual helical 
trajectories before and after this treatment.  After 
this, it became possible to perform angle analyses 
and use the angle estimation to characterize the 
helices.  The angle distribution for each experiment 
and for 6 trajectories with observed important 
helical patterns are shown in figure 5.  The main 
difference between the 2 cases was obtained for 
angles between 10° and 30°.  This suggests that 
there was a large probability of these angles being 
associated with a helical pattern.  On this basis, 
we proposed an algorithm to identify helices.  For 
each point at time t, we first considered a window 
taking into account the last T points and the current 
point.  We defined N1(t) as the number of angles, θ, 
between 10° and 30° in this window, and N2(t) as 
the number of angles between 40° and 100°:

N1(t) = Σ
t

i= t -T
 {Θi ∈ [10°, 30°]} and................... (5)

N2(t) = Σ
t

i= t -T
 {Θi ∈ [40°, 100°]}........................ (6)

Then we proposed the fol lowing hel ix 
criterion:

if a‧N1(t) - b‧N2(t) > c,.............................. (7)

then the state at time t is called a helix, where 
T, a, b, and c are parameters that are determined 
below.  If the conditions above are not verified, 
there are 2 possibilities: (i) it is impossible to 
calculate an angle, so the ciliate is in a “break” 
event, and (ii) the ciliate is not in a break event.  In 
that case, it is moving, but the movement is not a 
helix: we defined this state as a non-helix.

With the above algorithm, we had a procedure 
to transform quantitative trajectory information 
(x and y positions) into a succession of symbols 
possessing 3 states: H (helix), B (break), and NH 
(non-helix).  Because testing the helical pattern 

Fig. 5.  Comparison of the probability density function 
(pdf) of the angle between consecutive segments for all 
trajectories (continuous curve) and for 6 extracted trajectories 
corresponding to visually identified helices (dotted curve).  The 
main difference lies in the 10°-30° range (highlighted in light 
gray).
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Fig. 4.  Effects of smoothing on a trajectory.  (A) Trajectory 
before smoothing and (B) after smoothing.  The helical pattern 
of this trajectory clearly appears and enables the automatic 
recognition of helices.  Positions x and y are in mm.
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came first, we localized null velocities inside.  This 
prevented the misidentification of short breaks 
between successive helices that could correspond 
to an effect of using 2D projections.

We parameterized the algorithm using 
simulated helices (with amplitudes and periods 
provided by the experiments) and simulations of 
persistent Brownian motion (Brownian motion with 
a constant direction) by changing the parameters 
T, a, b, and c to find the best ones, i.e., the ones 
which recognized the most helices and the least 
Brownian motion.  The periods of the helices 
were provided by computing the Fourier spectral 
energy densities of the trajectories (Fig. 6).  We 
found that periods fell within a range of 0.8-1.7 s 
(24/30-51/30 s).  To estimate the amplitude, we 
smoothed the helices with a large window running 

average, and then by calculating the distance 
between this curve and the original curve, we 
found that amplitudes were close to 10 pixels.  
The parameters T, a, b, and c were estimated by 
exploring the parameter space and choosing the 
values that maximized the recognition of simulated 
helices and minimized the false recognition of 
persistent Brownian motion as a “helix”.  For 
T = 25, a = 2.1, b = 0.9, and c = 3.4, we found that 
99.76% of the simulated helices were recognized 
as helices, and 1.99% of cases of persistent 
Brownian motion were recognized as helices 
(for 50 generated helices of 1000 points and 
the same for persistent Brownian motion).  With 
non-persistent Brownian motion, about 10% of 
the helices were recognized.  We noted that the 
parameterization gave a value of T which was 
close to the maximum half period of the helices.  
To validate this algorithm and check its robustness 
with respect to the noise level, we used Monte-
Carlo-like degradation of the data, following the 
method of Bernard and Souissi (2004) applied to 
identify significant extrema of time-series data.  
A trajectory was simulated; then 1%-60% of the 
data were randomly eliminated.  After that, the 
algorithm was applied to the degraded data.  This 
procedure was repeated 2000 times, and statistics 
of helix identification were calculated (Table 3).  
We found that 87% of helices were still recognized 
with a degradation rate of 10%, emphasizing the 
good robustness of the recognition algorithm.  We 
also tested the robustness of the algorithm adding 
Gaussian noise to simulate helices, as done by 
Crenshaw et al. (2000).  Since the size of a ciliate 
is about 1 pixel, we chose Gaussian noise with 
a standard deviation equal to ‘x’ pixels, with x 
varying from 1 to 30 (Table 4).  When noise was 

Table 3.  Results of the test of the robustness of the algorithm to identify helices.  One can see the 
percentage of part of the trajectories recognized as helices under different degradations of trajectories.  This 
test was performed on 2000 trajectories of 1000 points each for every percentage of degradation

Percent (%) degradation 0 1 5 10 15 20 30 40 50 60
Percent (%) of helices recognized 99.8 99.5 96.3 87.1 73.8 59.4 33.6 15.9 6.5 2.4
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f (s-1)
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 (f

)

Fig. 6.  Power spectrum on logarithmic scales of a trajectory 
visually corresponding to a helix.  It was separately computed 
here on x and y coordinates and then summed.  The bold arrow 
shows the peak corresponding to the frequency of the helical 
waves.  This frequency of 1/s corresponds to a period of 1 s or 
30 τ0.  Computed on other helices, this period varied from 0.8 to 
1.7 s.

Table 4.  Results of the test of the robustness of the algorithm for identifying helices.  One can see the 
percentage of part of the trajectories recognized as helices under different levels of noise addition.  The 
noise was Gaussian noise with a standard deviation (SD) equal to ‘x’ times the size of the ciliate.  This test 
was performed on 2000 trajectories of 1000 points each for every percent of degradation

SD of the noise (x) 0 1 1.5 2 3 4 5 10 20 30
Percent (%) of helices recognized 99. 99.4 96.4 87.0 56.6 36.2 26.9 10.2 8.5 7.4
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added with an SD of 2 pixels, 87% of the helices 
were recognized, indicating the good robustness 
with noise addition.  An example of the recorded 
trajectories recognized by this algorithm is given in 
figure 7.

Symbolic analysis and simulations

Symbolic analysis

Symbolic analysis is a method often used 
to study non-linear and chaotic phenomena, 
when classical statistics are not sufficient, by 
transforming the observed phenomena into a 
sequence of symbols and considering its dynamic 
properties (Ebeling and Nicolis 1992, Nicolis et 
al. 1997).  We applied the algorithm presented 
above to all experimental trajectories belonging to 
experiments 1-4.  With this procedure, trajectories 
were transformed into a series of swimming 
sequences, represented by the 3 symbols, H, 
B, and NH.  We then studied the statistics and 
dynamics of the sequences of these symbols.

Several types of information can be extracted 
from symbolic data.  We first considered the 
relative frequency in each state, represented 
as a percentage (Table 5).  Experiment 2 with 
a medium food concentration contained 45% 
helices, while experiment 4 with a extremely high 
food concentration only contained 5% helices, 
which was less than non-persistent Brownian 
motion.  The basic measure is the residence 

time probability density.  Such an approach was 
previously undertaken by Buskey (1984) when 
considering histograms of residence times for 
copepod swimming states (histograms and 
probability densities differed by only a multiplicative 
factor).  Other useful information was provided 
by the transition probabilities, i.e., the probability 
(denoted Pij) to go from state i to state j.  With this 
type of modeling, we characterized the symbolic 
dynamics by probability densities in each state, 
qi(x), and transition probabilit ies, Pij.  Such 
modeling was done to study copepod behavior 
using 2 states where the partition was based on 
swimming velocities (Schmitt et al. 2006) and 
more recently using 4 states of slow swimming, 
fast swimming, breaking, and grooming (Moison 
et al. 2009).  Herein, the partition differed, since 
it was based on swimming types as determined 
by the above procedure.  Figures 8A-L shows the 
qi(x) in all states, for all 4 experimental conditions.  
This was estimated using the following number 
of residence time events: 6489 for case 1; 6181 
for case 2; 9522 for case 3; and 9364 for case 
4.  These residence times are represented in 
log-log plots, and some of them were fitted by a 
distribution emphasizing the hyperbolic tails in the 
form:

p(x) = p0x -(µ+1)  x ≥ x0 ;.................................. (8)

where x0 is a threshold, p0 is a constant, and 
µ is an important parameter since it determines 
the relative strengths of all extreme events.  We 
observed in figure 8 that such fitting was only 
possible for residence times in the helical state 
for experiments 1 and 2.  For other pdfs, we 
considered exponential fits associated with a test 
of the Markovian nature of the symbolic dynamics 
(Dynkin 1965).  Consider qii, the probability to be 
in state i at time t+1 knowing that at time t it was 
in the same state i.  This is a 1 step conditional 
probability.  For a Markovian process, there is 

Table 5.  Percentage of time spent in each state 
as estimated from the experimental data

Exp. Break Helix Non-helix

1 61% 13% 26%
2 27% 46% 27%
3 35% 17% 48%
4 48% 6% 46%

Fig. 7.  Results of our helix identification algorithm, applied 
to 2 sample trajectories: a trajectory which could visually be 
identified as an helix (A) and a trajectory which could not (B).  
Parts of the trajectories recognized as helices are in black.  
Positions x and y are in mm.
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no memory, so qii is sufficient to estimate the 
residence probability, qi(x), corresponding to x 
consecutive values in the i-state:

qi(x) = qii
x = e-x/T0,.......................................... (9)

with T0 = -1/ log(qii) > 0.  This relation 
corresponds to an exponential decrease in 
residence time probabilities with a characteristic 
time determined by qii.  Values of qii can be 
directly estimated for each state (Table 6), and the 
resulting fits given by equation (9) are displayed in 
figure 8, together with the Pearson determination 
coefficients (R ²) between experimental distributions 
and exponential ones (more precisely between 
the log of experimental values and straight lines).  

One can see that in state B of experiments 2 and 4 
and state H of experiments 1 and 2, experimental 
residence times were the most distant from a 
Markovian model.

Other important parameters in the symbolic 
analysis are transition probabilities, Pij, that indicate 
to which state j ≠ i the ciliate swimming type 
symbolic dynamics is going when leaving state 
i (not to be confused with qij).  These transitions 
are shown in table 7.  We see that the food 
concentration also changed these probabilities.  
For example, if a ciliate in experiment 2 left state H, 
it had only a 16% probability of going to state B.  In 
the same situation, a ciliate in experiment 1 had a 
36% probability of going to state B.

This model can be summed up as follows 
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Fig. 8.  Log-log plot of residence times of probability densities for all states in each experiment and comparison with the exponential 
(Markovian) model (gray lines) and power-law fits (black dotted lines) when possible.  These densities are presented using a logarithmic 
binning (presented by Sims et al. 2007, as the best method to show the probability density function (pdf) of flight/residence times) of 
1.5τ/τ0.  (A-C) Experiment 1; (D-F) experiment 2; (G-I) experiment 3; and (J-L) experiment 4.  (A, D, G, J) The break state; (B, E, H, K) 
the helix state; and (C, F, I, L) the non-helix state.  Pearson determination coefficients (R ²) between exponential and experimental pdfs 
are shown in the right upper part of each plot.  The ones which were < 0.95 are highlighted.  In (B) and (E), we adjusted a power-law 
(formula 8) for the distribution tails, and the exponent µ was 1.5 in case B and 1.3 in case E.
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(Fig. 9): the symbolic dynamics are defined by a 
state and a residence time corresponding to this 
state.  The fluxes between states are controlled 
by transition probabilit ies.  The distribution 
of residence times and values of transition 
probabilities are the fundamental parameters of 
this symbolic analysis.

Simulations

In this section, we present simulations done 
using the following algorithm: (0) start from a given 
initial state i; (1) generate a random variable the 
pdf of which is close to the experimental pdf of 
residence times in state i; (2) generate a uniform 
random variable and, depending on its value, 
choose the next state j according to transition 
probabilities from state i to other states j ≠ i; this 

determines the next state.  Then return to step (1).  
This algorithm generates a succession of symbols 
according to a stochastic model.  When there 
are only 2 states, such a model is reduced to an 
alternate renewal process (Feller 1971); see e.g., 
Schmitt et al. (1998) for an application to rainfall 
and Schmitt et al. (2006) for an application to 
copepod behavior.

To go from a succession of symbols to a 
trajectory, another set of hypotheses is needed.  
We considered here a simple choice: there 
are 3 states, two of which are associated with 
movements (the H and NH states).  For the H 
state, we chose to reproduce deterministic helices 
with the amplitude and period given by random 
variables.  These random variables were estimated 
only once for each helix sequence, according to 
the experimental pdfs estimated from the data.  For 
the NH state, a simple random-walk approach was 

Table 6.  Probability qii (in percent) of staying in 
the same state during 2 consecutive times (1/30 s).  
q11 corresponds to the probability of staying in the 
break state, q22 of staying in the helix state, and 
q33 of staying in the non-helix state.  Values are 
presented for all 4 experiments

exp. q11 q22 q33

1 94 96 85
2 90 97 86
3 86 95 88
4 89 92 88

break (1)
pdf residence time

helices (2)
pdf residence time

non-helices (3)
pdf residence time

P13

P31

P32
P23

P21

P12

Fig. 9.  Conceptual scheme of the symbolic analysis.  Double 
arrows correspond to transition probabilities among the 3 
states.

Fig. 10.  Example of a symbolic trajectory using a model to 
reconstruct the helices.  This model was associated with a 
period, an amplitude, and a direction to each helix.  Positions x 
and y are in mm.
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Table 7.  Transition probabilities (Pij; in %) of 
going to state j after leaving state i ≠ j for all 4 
experiments.  States are break (B), helix (H), and 
non-helix (NH)

Experiment  1 Experiment  2

B H NH B H NH

B - 36 89 - 16 68
H 2 - 11 3 - 32
NH 98 64 - 97 84 -

Experiment  3 Experiment  4

B H NH B H NH

B - 22 86 - 24 93
H 1 - 14 1 - 7
NH 99 78 - 99 76 -
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chosen: a velocity and an angle were randomly 
estimated for each time step and then generated 
from experimental pdfs.

To generate residence times, 2 different 
methods were adopted: (i) when the experimental 
pdf was close to the exponential (Fig. 8), the 
following generation formulae for exponential 
random variables were used (Evans et al. 2000): 
T = (1/log(qii)) × log(R); where R is a uniform 
random variable between 0 and 1 and qii is an 
experimentally determined parameter; and (ii) 
when the experimental pdf was far from the 
exponential (state B for experiments 2 and 4 and 
state H for experiment 1 and 2), we adopted the 
rejection method using experimental pdfs (Devroye 
1986).

A trajectory simulated using this algorithm 
is shown in figure 10.  This trajectory is visually 
realistic.  To quantitatively check the degree of 
realism of the simulations, we calculated the 
percentage of each state for each concentration 
of food (Table 8).  A comparison of this table with 
table 5 indicates that the percentages of each state 
in simulated trajectories were close to the recorded 
ones.  This was estimated using 100 trajectories 
of 1000 points for each food condition.  This 
quantitatively showed that the algorithm which was 
chosen generates sufficiently realistic trajectories.

DISCUSSION

Methods

We considered ciliate behavior using different 
classical and non-classical tools.  The NGDR 
is one of the classical measures widely used to 
characterize the behavior of zooplankters (Buskey 
1984).  Authors generally compute the NGDR at 
the smallest scale, but, as shown in figure 3A, 
this measure is scale dependent.  To provide only 

1 value for an NGDR is therefore not enough for 
comparison with other studies, since this indicator 
depends on the resolution, which might not be the 
same for each experiment (e.g., the resolution of 
the camera can differ).  It is much more general to 
compute the NGDR at different scales and provide 
a more-general equation corresponding to the 
experimental curve.

Bartumeus et al. (2003) recorded ciliate 
trajectories using camera recordings and image 
analysis software to extract 2D trajectories.  Their 
analysis was mainly based on tumbling angles 
at the smallest available scale.  They chose 100° 
as the cut-off angle between helical paths and 
reorientation leaps.  The hypothesis herein was to 
consider the helix state as fully characterized by 
the small-scale angle.  This approach may also be 
considered a symbolic analysis: there are only 2 
symbols, helix (H) when the angle is < 100°, and 
turning (T) when the latter is larger.  They found 
that the probability density of the residence time in 
the helix state has a power law tail of the form τ -(µ+1) 
with µ = 1.1 or 1.2 depending on the experiment.  
They interpreted this as a “Lévy walk” (Metzler 
and Klafter 2004).  This assumes that, during the 
helix state, the motion of the ciliate is deterministic 
with a constant velocity and direction.  However, 
this is not realistic since the organism exhibits 
random behavior, with variable velocity and angles 
between 0 and 99°, which allows large freedom 
in wandering behavior.  The Lévy walk model 
proposed in this paper therefore captures only 1 
aspect of the angle symbolic dynamics, but the 
complexity of random displacements associated to 
angles in the range of 0°-100° was not taken into 
account.

In order to overcome these limitations, we 
used another approach.  We proposed a partition 
into 3 states according to a non-local criterion.  
This way, we characterized the helices in a 
consistent way, and showed that the residence 
time probability density in the H state has a 
power-law tail with a slope of the form τ -(µ+1) with 
µ = 1.5 ± 0.5.  This exponent is somewhat larger 
than the exponent recorded by Bartumeus et al. 
(2003), but we must note that the definitions of 
helix state were not identical.  We do not propose 
here the term “Lévy walk” to characterize such 
animal behavior, for the following reasons: 1st, we 
partitioned the behavior into 3 symbols, whereas 
the Lévy walk theoretical framework corresponds 
to 2 states (break and constant velocity; see 
Shlesinger et al. 1987), and 2nd, during the helical 
state, the velocity is not constant.

Table 8.  Percentage of each state simulated 
using results from the symbolic analysis for the 4 
experiments.  This table can be compared to table 5

Exp. B H NH

1 62 12 26 
2 25 44 30 
3 37 15 48 
4 47 6 47 
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The main motivation of our approach here 
was to propose a way to characterize the helical/
other mixture of an animal’s motion, which enabled 
the reconstruction of realistic synthetic trajectories.  
This symbolic analysis provided parameters that 
can be used to perform simulations (i.e., transitions 
probabilities and pdfs of residence times).  Figure 
10 and a quantitative analysis showed that 
the simulated trajectories were very close to 
observed ones.  Performing realistic simulations 
can help validate an analysis, i.e., show that the 
main parameters of the process were identified 
and were able to reproduce it.  This last point is 
very important in the context of individual-based 
models (e.g., Caparroy 2004).  The software used 
by Caparroy (2004), called PASTIS, enables the 
reconstruction of a virtual reality in 3D by giving 
behavior to each numerical animal.  The main 
objective of the present study was to test and 
validate some methods of analyzing swimming 
behavior, and provide some insights into the 
ecology of ciliates.

Ecological implications

The mean velocity estimated through 100 
trajectories showed an interesting functional 
response in relation to the amount of food, i.e., an 
increase from experiments 1 to 2, and a decrease 
from experiments 2 to 4.  This evolution is similar 
to that recorded by Buskey and Stoecker (1988 
1989) for the tintinnid Favella sp., where velocity 
decreased with increasing food concentrations.  
Furthermore, we also observed a strong decrease 
in velocity at low food concentrations.  The 
degradation of data (Fig. 3) discr iminated 
experiments 2 and 3 from 1 and 4, and the latter 
2 showed a less-ramified pattern.  It seems to 
be approximately the same functional response 
as for the mean velocities: there were 2 groups, 
experiments 2 and 3 and experiments 1 and 4.  
Medium and high food concentrations (experiments 
2 and 3) showed the same influence on swimming 
behavior but with higher values for the medium 
food level .   Low and extremely high food 
concentrations (experiments 1 and 4) seemed to 
have the same effect on ciliate’s behavior and were 
much more difficult to discriminate with these basic 
measures.  We noted differences in the density 
distributions of velocities (Fig. 2), with experiment 
4 showing more-frequent extreme values.  The 
main differences among these experiments 
were obtained using more-advanced analyses, 
showing the importance of symbolic dynamics 

for the characterization of swimming states.  The 
most important pattern which visually appeared 
was helical motion.  Some authors (Buskey 
and Stoecker 1989, Crenshaw 1989 1993a b, 
Crenshaw and Edelstein-Keshet 1993, Crenshaw 
et al. 2000, Bartumeus et al. 2002 2003) showed 
the importance of this motion and its widespread 
distribution.  To study this motion, we proposed 
a robust algorithm to automatically recognize it 
in 2D.  This enabled us to statistically analyze it 
using symbolic tools.  Table 4 shows the relative 
contribution of each state for each experiment.  
This also corresponds to a functional response.  
Experiment 4 showed the smallest helical motion 
percentage, followed by experiments 1, 3, and 
finally 2, which showed the largest helical motion 
percentage.  This situation was the opposite to 
that of the B state.  For the NH state, we had 2 
groups: experiments 4 and 3 showed the largest 
percentage and experiments 1 and 2 showed the 
smallest.  This percentage analysis discriminated 
all experiments.  Experiment 1 was characterized 
by long breaks and few helical and non-helical 
motions, experiment 2 by few breaks and non-
helical motions, and long times spent in helices, 
experiment 3 by medium times spent in helices 
and breaks, and a lot of time spent in non-helical 
motion, and experiment 4 by very few helices, 
quite-long breaks, and a lot of time spent in non-
helical motion.

The proximity between experiments 1 and 4 
obtained from previous analyses was not evident 
for the state residence statistics.  The short time 
spent in non-helical motion seemed to reveal 
stress.  Long rests, low complexity, and small 
mean velocities seemed to be caused by starvation 
stress in experiment 1, since the ciliates had to 
conserve energy.  For experiment 4, the same 
symptom could be interpreted as being associated 
with satiety.  In experiment 2, there was only a 
little time spent in non-helical motion; thus, there 
was some starvation stress, but less than in the 
1st experiment.  Ciliates performed many helices 
in order to scan their environment to enhance the 
encounter rate with Gymnodinium sp.  Experiment 
3 seemed to be halfway between experiments 2 
and 4.  The concentrations of ciliates before and 
after the experiments (Table 1) in experiments 
1 and 2 had significantly decreased (from 20 to 
10 ind./ml); while in experiments 3 and 4, the 
concentrations were similar (20 to 19 ind./ml).  This 
high mortality observed in experiments 1 and 2 
confirms that the animals were under stress.

The transformation of trajectories into 
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a sequence of states highlights some deep 
differences between experiments associated with 
dynamic analysis, whereas the percentage in each 
state is a statistical analysis.  For state H, the 
process was the most distant from an exponential 
decrease (Markovian, Fig 8).  The same pattern 
was seen for B states in experiments 2 and 4 but 
not for NH states, which were always close to 
an exponential decrease.  Power-law probability 
densities for the B and H states revealed more-
complex behavior associated with long-range 
memory and scale invariance.  This type of pdf 
was associated with Lévy walks (Cole et al. 1995, 
Viswanathan et al. 1996, Harnos et al. 2000, 
Bartumeus et al. 2003, Ramos-Fernández et al. 
2004, Brown and Liebovitch 2007, Sims et al. 
2007), but as discussed in Schmitt et al. (2006), 
this is a much more-general property which is 
frequently found in animal behavior.  Transition 
probabilities also revealed complex behavior.  
They were affected by both the food concentration 
and time spent in the previous state, and this 
influenced the dynamics of the process.

Our modeling approach involved a mixture of 
deterministic and stochastic frameworks.  Helical 
patterns were mainly locally deterministic since 
they were associated with a rotating frequency 
and a translation velocity.  This is a behavioral 
strategy which appears following an evolutive 
process.  The cellular arrangement of protists 
makes it easy for them to perform such swimming 
motions (Machemer 2001).  But the succession 
of swimming state sequences was still modeled 
in a stochastic framework.  Such sequences may 
be associated with ciliate’s responses to local 
stimuli; with the approach adopted here, we did not 
attempt to characterize each individual response, 
but instead the global response statistics.

In conclusion, we isolated helical motion 
from recorded trajectories and identified different 
states (break, helix, and non-helix).  This allowed 
us to perform a symbolic analysis that provided 
characteristic parameters (percentage of each 
state, transition probabilities, and residence times), 
which discriminated the different experiments, 
and enabled, as a second step, stochastic 
simulations.  All these behavioral parameters 
(and some other basic measures) highlighted the 
functional responses which may be widespread 
in protist behavior and of major importance in 
understanding their ecology.  As highlighted by 
Sherr and Sherr (2002), predation by protists is a 
key to understanding fluxes inside microbial food 
webs.  We need to understand processes at the 

individual (small) level and their consequences at 
higher scales (i.e., population) prior to developing 
predictive tools (Wu et al. 2010).  Moreover, 
methods developed herein can be used to study 
widespread varieties of trajectories, from protists 
to humans and monkeys (Ramos-Fernández et al. 
2004, Brown and Liebovitch 2007).
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