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Abstract

Most geostatistical methods rely on a global vaaog model, assuming
stationarity for the underlying random function. plying stationary approaches
in the case of large/complex areas, even locally &i moving neighbourhood,
can lead to unsuitable estimates. Though prefetatdeme extent, non stationary
approaches hardly handle prior knowledge nor rapredprecisely complex
structures, such as local anisotropies, spatialying small-scale structures or

heterogeneity.

The paper aims at presenting an innovative metloggolicalled M-GS (Moving-
GeoStatistics), which is fully dedicated to theaooptimization of parameters
involved in variogram-based models. M-GS considéne structural and
computational parameters as a set of dependanmptees to be spatially
optimized. The optimization process, which may hedgd by objective or
subjective criteria, is carried out during a M-stuwral analysis phase that leads to
a set of spatially variable structural and compateti parameters. Thus, M-GS
ensures a better adequacy between the geostatistdal and the data.



The methodology is applied for bathymetry mappifge adequacy of the M-GS
methodology is illustrated and compared with cleesestimates for the Marenne-

Oléron coast (West of France).

Introduction

Today, most geostatistical methods rely on a glolmiogram model. The
variogram allows to build effective estimation ¢ing) and simulation operators
by catching the mean spatial correlation inherena tdata set. These methods
commonly assume stationarity for the underlying daan function. This
assumption is too constraining in numerous appdingt as soon as the target area
becomes large or involves complex structural pasterApplying stationary
approaches in such cases, even locally with a ngaveighbourhood, can lead to
unsuitable estimates and non stationary approaateegreferable to some extent,
provided that one is ready to accept to loose soorgrol on the underlying
structural model. Furthermore, even non statioadéggrithms hardly handle prior
knowledge nor reproduce precisely complex strustusach as local anisotropies,
spatially varying small-scale structures or heteraty, etc.

The paper aims at presenting an innovative metloggolcalled M-GS (Moving-
GeoStatistics), which is fully dedicated to theaooptimization of parameters
involved in variogram-based models. M-GS considéne structural and
computational parameters as a set of dependanmptees to be spatially
optimized. The optimization process, which may hedgd by objective or
subjective criteria, is carried out during a M-stuwral analysis phase that leads to
a set of spatially variable structural and compateti parameters. Thus, M-GS
ensures a better adequacy between the geostatistdal and the data.

The methodology is applied for bathymetry mappifige adequacy of the M-GS
methodology in a complex structural environment &mda specific oriented-
acquisition design is illustrated and compared valssical estimates for the

Marenne-Oléron coast (West of France).



1. Conventional variogram-based models

1.1. Global approach

The majority of geostatistical models that are ydaihplemented in the industry
are variogram-based models - see (Dubrule 2003Xample. They are used for
processing spatially distributed data, especialpatural resources domains such
as mines, petroleum and environment. They are snalelvoted to mapping,

filtering and uncertainty management applications.

Variogram-based models rely generally on the modgbf a statistical function,
the experimental variogram, which depicts the mgaatial correlation between
data samples. When data can be considered assihié oé a stationary random
process, the variogram model is fitted directlythe experimental variogram,
which is supposed to be representative of the whkialia field or of a well-
separated area of the data field. Based on theogram model, effective
estimation (kriging) and simulation operators anétland applied to the data set.

In the second-order stationary case, the variodrased approach is rather
intuitive as some parameters of the model may bateck directly to the

observation of the data themselves. Non-statiomasglels, such as IRF-k models
(Matheron 1971, Chilés 1999), are more intricatd l&ad to less control on the
underlying structural model. It justifies that, yesften, data are still transformed
for working in a stationary framework as in thewarsal kriging case, despite the

observed bias of the residuals variogram (Pardaejgiza 1998).

1.2.Variogram-based models parameters

1.2.1. Structural parameters

In the stationary case variogram modelling is dritlerough a two-steps phase
called structural analysis. The first step consistgterpreting the experimental
variogram computed from the data. This step iserdlikely to involve the user’'s
knowledge about his data set. Based on the fiegt @bnclusions, the second step

aims at fitting a single or a set of parameterifgctions to the experimental
4



variogram, thus defining the variogram model. Bigadpeaking, structural
parameters are the parameters that are relatedetoariogram model such as

range(s), sill(s), anisotropy coefficient(s), etc.

1.2.2. Computational parameters

In order to run variogram-based estimation and Ktman algorithms, some
computational parameters must be tuned. They aifalynéed to the moving
neighbourhood used for selecting data points sadimg the target point (the
point to be estimated or simulated). In practibe, tomputational parameters are
often utilized for managing processing times, sipeadly when dealing with large

data sets, or for adjusting the neighbourhood a@icgrto the samples pattern.

1.3. Limits

Variogram-based estimation and simulation resussansible to structural and
computational parameters. Although sensibility rhayhighly variable depending
on some data characteristics, such as samplingtgemsvariable continuity for
example, it is rarely null. This point is often ppaeciated while running
variogram-based models.

More specifically, sensibility to the parametersrdae very problematic when
facing with complex structural environment or sfiecacquisition patterns. In
such cases global stationary models may not fib¢al data characteristics and

can lead to unexpected poor results.

2. M-GS (Moving-GeoStatistics) models

2.1. Principle

M-GS methodology is fully dedicated to the localtiopzation of parameters
involved in variogram-based models. M-GS considéne structural and
computational parameters as a set of dependanmptees to be spatially

optimized. The optimization process, which may hedgd by objective or
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subjective criteria, is carried out during a M-stwral analysis phase that leads to
a set of spatially variable structural and compaotetl parameters.

2.2. M-parameters

M-parameters are locally optimized versions of ctrical and computational
parameters of variogram-based models. They vanyadiyaover the data field. In
the past, non-stationarity has been explored foers¢ parameters, such as
anisotropy, especially in the environment domaae (€aetano 2004 for example).
When dealing with these models the major challaade get stable variations of
the parameters and as far as possible to automatparameters determination

process.

Several approaches are possible to compute M-péesnd simple one merely
consists in computing local variogram parametersadjacent areas of the data
field and then to smooth the obtained parametemsder to make them available
at every target grid node. More sophisticate atgors currently under
development are based on automatic validation tques. They simplify the
determination of the M-parameters and lead to psomgiresults on various real

cases that have been tested.

One example of results obtained with an automatdidation approach is
presented irrig_ch2_ 1 which displays a 2D seismic data geg( ch2_ 13 and
one associated M-parameter map corresponding taahge variations of an
isotropic spherical modeF{g_ch2_10. An interpolation error criterion has been
used for determining the optimal parameters. Thehreastern part of the data
field appears to be less structured (range smailiar) the rest of the data field.
The M-parameters are used to map the seismic dgataordlinary kriging
(Fig_ch2_19.

It should be noted that the M-structural analysi®cpss involves some
dependency relationship between several paramé&erexample, in the second-

order stationary case the size of the moving neigbmod in one direction is



related linearly to the range of the largest sséilecture in that direction. More
complex relationships can be introduced into th@n@pation process.
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Fig_ch2_1

Seismic data mapping (conventional and M-GS)

2.3. Advantages

M-GS ensures a better adequacy between the getisitmodel and the data. In

consequence, spatial estimation and simulatioriteeare more precise than those
obtained with conventional variogram-based mod&egarding the previous

seismic data mapping example, the improvement las lguantified through a

cross-validation process. The M-GS map is on aweB8§6 more precise than the
conventional kriging mapHg_ch2_19 in the north-eastern part of the field. In
other words the estimation errors have been rediace20%.



Moreover, M-GS opens the way to advanced geostalismapping (even
simulating) practices by allowing the user to idwoe his structural a priori
knowledge about the data field directly into thatsd estimation model. In that
way geostatistical mapping is no more a variograndeyl process aiming at
generating the most probable map, but a human gsamening at generating the
most probable desired map. This last case isiditesd inFig_ch2_2.A channel
information, that should result from human intetatien, is introduced into the
kriging model for mapping 25 depth data sampledifeato a channel-driven map
(Fig_ch2_23 to be compared with a conventional global appnoanap
(Fig_ch2_2h. The former presents a better continuity for¢hannel (red arrow)

than the conventional which displays several irdiial depressions.
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Fig_ch2_2
M-GS guided mapping

3. M-GS application to bathymetric mapping

3.1. Context

The availability of accurate seafloor estimates eissential for numerous
oceanographic projects, including hydrographic,anographic and biological
models, sedimentary processes, seismic interpyatadi buried channels or
canyons, etc. Seafloor usually presents strong stationarity and complex
structures, such as small channels with varyingntaitions, spatially varying
measurements errors, local heterogeneities fort@loaseas, or deep canyons

within general gentle slope for continental margins



Conventional variogram-based models often fail todpce consistent maps
within such complex structural environment. Moreaxtced models, such as M-

GS models, can be advantageously applied.

3.2. Data set description

Marenne-Oléron (West of France) is a semi-enclasg Brst oyster farming zone
in Europe. Shellfish culture activity induces sitfion large intertidal mud and
sandy-mud flats. Several channels incise the ib&ttveen the coast line and
Oléron Island. They are mainly controlled by strdidgl currents (up to 1.4 knots
during the spring tides) with a residual ebb deltishore the SW channel. The
data set used in this work consists in more tham tiwousandsample points,
organized along lines from West to Edsig( ch3 13. Samples are separated by
few meters within lines. The (North-South) gap besgw two lines is about 100m.
Data were acquired with a single beam echoes sodadéhe monitoring of the

evolution of the muddy layer.
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Marenne-Oléron data set



A target area Kig_ch3 1b and Fig_ch3 2 is selected for illustrating
conventional and M-GS mapping results differences.

NORTH

Fig ch3_2

Target area

3.3. Conventional variogram-based mapping

For kriging purpose an experimental variogram impoted within the target area.
An anisotropic spherical model (range 800m alonditéction, 1200m along Y

direction) is fitted to the experimental variogr@fng_ch3_3 and used to map the
depth data.
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Global variogram modeling
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The resulting bathymetric map is shown Big_ch3_4 Major structures have

been well imaged. However when looking into detdie map contains some
artefacts on the walls of the channels which areipaue to the line-oriented

organization of the data within strongly anisotmopreas. Moreover, one micro-
channel (red arrow), which is interpretable on dhiginal data set, has not been
reproduced at all.

Fig ch3_4

Global mapping results

Therefore, a more refined model is needed to attientlhe artefacts and to image
correctly the interpreted micro-channel.
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3.4. M-GS mapping

The M-GS methodology enables to determine locafiyinoized structural and

computational parameters. For the current apptinaéi specific emphasis is put
on the range, the anisotropy and the related @iiemt of a generic spherical
model. Firstly parameters are optimized during asthMictural analysis step,
leading to several M-parameters maps. One resuMisgarameter map is shown
in Fig_ch3_5a This map illustrates the spatial variations & #fortest axe of the
anisotropy ellipsoid. Afterwards prior knowledge irgegrated into the model:
additional information regarding the interpretectroichannel is introduced into
the M-parameters maps. The previous M-range magamsformed as shown in
Fig_ch3_5b.
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Fig_ch3_5

Short range map

Finally the M-parameters are used to estimate #tieyimetry. Mapping results are
displayed orFig_ch3_6 The artefacts identified on the conventional raeg no
more visible and the interpreted micro-channefriaged. In this case it is evident
that the M-GS map is of better quality than thevemtional map.
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Fig_ch3_6
M-GS mapping results

Conclusion

The popularity of stationary variogram-based modglsiainly explained by the
easy interpretation which is made of the involvedameters. In particular, some
structural parameters can be directly linked to dbservation of the structural
properties of the data. Advanced methodologieschvililow to manage spatial
variations of these parameters, bring more accutacsariogram-based models
results, especially when processing large data aedgor areas with complex

structural patterns.
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In this direction, the M-GS methodology, which isditated to the optimization
of variogram-based models parameters, is provée faromising when applied to
bathymetric or seismic interpretation data in a plax structural environment.
The adequacy of the M-GS methodology in the frantkwof bathymetric

mapping for Marenne-Oléron coast (West of Franse)lvious. Moreover such
methodology could be used to input different Iastalictures into a general model

in the aim of a regional synthesis.
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