Free-living and particle-associated prokaryote metabolism in giant kelp forests: Implications for carbon flux in a sub-Antarctic coastal area

Mathilde Schapira*, Christopher D. McQuaid, Pierre W. Froneman

Southern Ocean Group, Department of Zoology and Entomology, Rhodes University, PO Box 94, 6140 Grahamstown, South Africa

*: Corresponding author: M. Schapira, email address: mathilde.schapira@ifremer.fr

Abstract:

Extensive beds of large subtidal kelps are characteristic of many temperate and subpolar coastlines. They provide habitats for a wide range of other species and are sites of high primary production that generate large quantities of water-borne particles and dissolved organic compounds that support distinctive communities of prokaryotes. We measured prokaryotic metabolism along transects from the shore to the outside of three giant kelp forests (*Macrocystis pyrifera*) located in the shelf waters of the Prince Edward Islands (Southern Ocean). Abundance, heterotrophic production (PHP), respiration rates (R-ETS) and growth efficiencies (PGE) were investigated within the particle-associated (PA) and the free-living (FL) communities. Temperature, salinity and inorganic nutrient concentrations indicated distinct hydrological differences among the kelp forests that were related to different levels of freshwater input through island run-off. In contrast, detritus and particulate organic matter concentrations showed a common pattern, decreasing from the near-shore to offshore at all sampling sites, suggesting the retention of organically enriched water masses inshore of the kelp forests. While FL and PA abundances did not differ significantly along transects, FL and PA-PHP and PGE all varied significantly across the kelp forests, following the same pattern across each forest. PA-PGE was significantly higher than FL-PGE in the near-shore waters and farther offshore, while FL-PGE was higher or equal to PA-PGE inside the kelp. This shift can be interpreted in terms of gradients in both the age and origins of organic material across the kelp forests. Higher PA-PGE implies that a larger fraction of organic carbon on colonized particles is converted into prokaryotic biomass and so becomes available to higher trophic levels inshore and offshore of *M. pyrifera* forests than inside the kelp bed. In contrast, low PA-PGE suggests that a large quantity of carbon passes through the PA-community and is mainly respired within the kelp forest. These results suggest the retention of particles within giant kelp forests. In controlling the metabolic activity of PA and FL prokaryotes, this retention will influence overall carbon flux around the archipelago. In particular, the observation of a common pattern across different *M. pyrifera* forests has important implications for the role of this species as an autogenic ecological engineer in coastal environments.

Keywords: prokaryotes; free-living; particle-associated; growth efficiency; kelp; sub-Antarctic island
1. Introduction

Giant kelp (*Macrocystis pyrifera*) forests are among the most productive ecosystems in the world (Mann, 2000). Kelp forests occur along many temperate coasts and scattered islands in the Southern Ocean (Wormersley, 1954; Dayton, 1985), providing habitat, food and refuge for numerous marine organisms (e.g. Foster and Schiel 1985). *M. pyrifera* therefore plays a vital role in coastal environments and is an important ecosystem engineer (*sensu* Dayton, 1985; Jones et al., 1994). More particularly, kelp forests strongly affect flow, reducing water transport from the shore to the outer edge of the kelp and ultimately alter concentrations in flow-derived substances and particles in nearshore coastal waters (e.g. Gaylord et al., 2007; Rosman et al., 2010). While the potential retention of water masses within giant kelp forests has been widely acknowledged (e.g. Pakhomov et al., 2002; Gaylord et al., 2007; Fram et al., 2008), the consequences of this retention on the structure and functioning of organisms at the base of the marine food web remain unclear.

Heterotrophic prokaryotes are critical components of the carbon cycle and food webs in marine ecosystems (e.g. Azam et al., 1983; Williams, 1998; Simo et al., 2002). In particular, the balance between their biomass production and respiration represents a major carbon-flow pathway in these systems (e.g. Azam and Malfatti, 2007). The availability of organic matter (e.g. del Giorgio and Scarborough, 1995; del Giorgio et al., 1997) and inorganic nutrients (Rivkin and Anderson, 1997) is known to control prokaryote metabolic activity tightly. Consequently, the retention of enriched water masses within *M. pyrifera* forests could profoundly affect carbon utilization by prokaryotes and the food web structure of giant kelp forests as well as carbon flux within forests and exchange between them and nearshore waters. Moreover, a substantial amount of suspended debris/particles may accumulate within kelp forests (e.g. Gaylord et al., 2007). Particles are known to be highly active sites of microbial processes (e.g. Grossart and Ploug,
2000; Simon et al., 2002) and elevated enzymatic activity on particles has been shown to release
organic and inorganic nutrients into the surrounding water, creating hot spots that greatly extend
the volume of intense decomposition processes (Cho and Azam, 1988; Grossart and Ploug, 2001). Therefore, a significant part of overall microbial activity within *M. pyrifera* forests may take place on or in the vicinity of particles.

The Prince Edward Islands comprise Marion and Prince Edward Islands, situated in the Indian sector of the Southern Ocean. The archipelago lies directly in the path of the easterly-flowing Antarctic Circumpolar Current (ACC), giving it a west-east or upstream-downstream axis (Ansorge et al. 1999, Froneman et al. 1999). Like many oceanic islands, the archipelago is seasonally home to up to 5 million breeding pairs of top predators including flying seabirds, penguins and mammals (e.g. Chown and Froneman, 2008). A substantial part of the coastline of the archipelago is occupied by dense *Macrocystis pyrifera* forests, principally in the more sheltered waters of the eastern coast of the larger Marion Island (Attwood et al., 1991). Although the potential for retention of water masses in *M. pyrifera* forests in the near-shore zone around Marion Island has previously been observed (Pakhomov et al., 2002), the consequences for food web structure and carbon flux are still unknown.

Our main hypothesis was that retention of particles and nutrients within kelp forests may enhance microbial processes and the recycling of carbon and organic matter within the canopy and therefore play a mayor role in carbon cycling and downward flux in nearshore waters. The objectives of this study were to (i) characterize the effect of kelp forests on near-shore water masses, (ii) investigate the variability in free-living (FL) and particle-associated (PA) prokaryote abundances and metabolism across different *M. pyrifera* forests, (iii) characterize the role of particles and retention of water masses by kelp forests on the patterns observed in the prokaryotic
communities, and (iv) explore the potential consequences of these changes for carbon retention and downward flux in the shallow shelf waters of these sub-Antarctic islands.

2. Materials and methods

2.1. Sites and sampling

The Prince Edward Islands (46°38’S-37°57’E) rise from a depth of 3000 m and the two islands (Prince Edward and Marion) are ca. 10 nautical miles apart and separated by a shallow plateau approximately 200 m deep. The archipelago has a hyperoceanic climate (Smith and Steenkamp, 1990) characterized by high precipitation and humidity (e.g. average annual precipitation approximately 1975 mm; le Roux and McGeoch, 2008) so that the near-shore waters of the islands are strongly influenced by freshwater run-off. A substantial part of the coastline of the archipelago is occupied by dense kelp forests; Durvillaea antarctica dominates the infra-littoral fringe, while Macrocystis pyrifera, formerly Macrocystis laevis Hay (see Macaya and Zuccarello, 2010), predominates between the 5 m and 30 m isobaths, particularly in the comparatively sheltered waters of the eastern coast of Marion Island (Attwood et al., 1991; Beckley and Branch, 1992).

Sampling was undertaken in Macaroni and Archway Bays (Fig. 1) during voyage 145 of the research vessel S.A. Agulhas in early austral autumn (April/May) 2009, using a small motorized launch (Fig. 1). Macaroni Bay is a relatively large sheltered bay, receiving substantial freshwater input (Fig. 1). Sampling was undertaken at two representative sites in Macaroni Bay: (i) a sheltered site inside the bay (M1) and (ii) a more exposed site located in front of the western cape of the bay (M2) (Fig. 1). In contrast, the smaller Archway Bay receives limited freshwater input and is the site of a large colony of King Penguins (i.e. ~ 1500 breeding adults; Crawford et al., 2009).
At each site, samples were collected at 3 stations perpendicular to the coast located (i) in the near-shore kelp-free waters (i.e. < 5m deep), (ii) inside the kelp forest and (iii) offshore of the forest. These stations are hereafter referred to as ‘inshore’, ‘kelp’ and ‘offshore’, respectively (Fig. 1). Temperature and salinity profiles were collected at each sampling station with an XR-620 CTD (conductivity, temperature, depth meter) from the surface to the bottom or a maximum depth of 50 m. Water samples were taken from the sub-surface (1 m) using a 5-L Niskin bottle.

2.2. Dissolved inorganic nutrients

For the determination of dissolved inorganic nutrient concentrations (nitrate + nitrite, ammonium and orthophosphate) 20 mL water samples were filtered through glass-fibre filters (Whatman GF/F) and immediately frozen (-20°C). Concentrations were determined in the laboratory with a Lachat Flow Injection auto-analyser, following standard protocols (Grasshoff et al., 1999).

2.3. Dissolved organic carbon (DOC) and organic nitrogen (DON)

For the determination of DOC concentrations, 8 mL of seawater was gently filtered through pre-combusted glass-fibre filters (Whatman GF/F), collected in pre-combusted (450°C for 12 hours) glass ampoules, acidified with 3-4 drops of 45% H₃PO₄ and stored at -20°C until analysis. DOC analysis was performed using the high temperature combustion method on an elemental Hi-TOC analyser following standard protocols (Clesceri et al., 1998).

For DON concentrations, aliquots of 60 mL from each station were gently filtered through pre-combusted glass-fibre filters (Whatman GF/F) in acid-washed polyethylene bottles and stored at -20°C until analysis. Organic and inorganic dissolved nitrogen were determined
photometrically following Koroleff's method (1969). DON concentrations were obtained by subtracting the sum of inorganic nitrogen species (i.e. ammonium + nitrite + nitrate) from the corresponding total dissolved N concentrations.

2.4. Particulate organic carbon (POC) and organic nitrogen (PON)

Samples for POC and PON (1-1.5 litres) were filtered through pre-combusted (450°C; 12 hours) and pre-weighed glass-fibre filters (Whatman GF/F) and stored at -20°C until analysis. In the laboratory, filters were rinsed with MilliQ water, dried at 60°C for 24 h, and re-weighed to determine the mass of Suspended Particulate Matter (SPM) on the filter (Hewson et al., 2001). Analyses were performed on a Thermo Finnigan Delta XP Plus mass spectrometer interfaced with a Conflo III device to a thermo Flash EA 1112 Elemental Analyser.

2.5. Phytoplankton biomass

For chlorophyll a (Chl a) estimates, triplicate 250 mL samples were gently filtered through glass-fibre filters (Whatman GF/F) and immediately extracted in 8 ml of 90% (v/v) acetone for 24h at -20°C. Chl a concentrations (µg L⁻¹) were then determined fluorometrically following Holm-Hansen and Riemann (1978). Phaeopigment concentrations (µg L⁻¹) were determined after acidification with 1.2M HCl.

2.6. Prokaryotic abundance

For the identification and enumeration of prokaryotes, triplicate 1mL samples were collected, fixed with 0.5% (final concentration) glutaraldehyde in the dark at 4°C for 15 minutes, quick frozen in liquid nitrogen and then stored at -80°C until analysis (Brussaard, 2004). Prokaryotes were counted after staining with SYBR Green I solution (1:5000 dilution) using a Beckman
Coulter FC500 flow cytometer, following standard protocols (Brussaard, 2004). Fluorescent beads, 1 μm in diameter (FluoSpheres®) were added to all samples, as an internal size and concentration standard. Prokaryote populations were identified and quantified using the flow cytometry analysis software WinMDI 2.9 (© Joseph Trotter).

Abundance of particle-associated (PA) prokaryotes was estimated in the size fraction greater than 0.8 μm. Immediately after collection, triplicate 5 mL samples were filtered through 0.8 μm pore size polycarbonate membranes (Isopore filters, Millipore), fixed in 5 mL glutaraldehyde (2%) in the dark at 4°C for 15 minutes, quick frozen in liquid nitrogen and then stored at -80°C until analysis. After being gently thawed, filters were sonicated (306 μm amplitude, 50% duty cycle, cooling in water bath) for 2 minutes to disperse prokaryotes from the particles (Velji and Albright, 1993). Attached prokaryotes (i.e. in the fraction >0.8 μm) were identified and counted by flow cytometry after staining with SYBR Green I solution as described above. Free-living (FL) prokaryote abundance was calculated from the difference between total prokaryote abundance in the unfiltered samples and PA prokaryote abundance estimated from the 0.8 μm pore-size filters.

2.7. Prokaryotic heterotrophic production (PHP)

Total heterotrophic production was estimated from ³H-Leucine (Amersham, 139 Ci mmol⁻¹) incorporation rates into proteins as described by Kirchman et al. (1985). ³H-Leucine incorporation rates were measured by incubating triplicate 40 mL samples and 2 formaldehyde killed blanks (2% final concentration), with a saturating 20 nM leucine final concentration (hot:cold = 1:9) in the dark, at in situ temperatures. After 5 hours, incubations were terminated by adding formaldehyde (2% final concentration) to the samples. Kinetic experiments conducted during this study showed that leucine incorporation was linear during this time period (data not
shown). The fixed samples and blanks were filtered through 0.22 µm nitro-cellulose membranes (GSWP, Millipore), incubated with 3 ml of 5% ice-cold trichloroacetic acid (TCA) for 15 minutes, rinsed 3 times with 3 ml TCA, dried and stored at -20°C until analysis. After being dried overnight, filters were placed in scintillation vials and dissolved with 1 mL of ethyl acetate for 30 minutes. Scintillation cocktail Ultima Gold XR (10 ml) was added to each vial and after 18 h, samples were analysed using a Beckman 5801 liquid scintillation counter. The mean disintegrations per minute (DPM) of the formaldehyde-killed blanks were subtracted from the mean DPM of the respective samples and the resulting DPM converted into leucine incorporation rates. Prokaryotic carbon biomass production was estimated using the conversion factor of 3.1 kg C mol⁻¹ Leu (Kirchman, 1993).

Two sets of samples were incubated at each station: the first set was treated as described to estimate total heterotrophic production and the second set (3 replicates and 2 formalin-killed blanks) was filtered through 0.8 µm filters after incubation to estimate the heterotrophic production by FL prokaryotes (i.e. fraction <0.8 µm). As TCA passes through 0.8-pore size filters during protein extraction (Mével et al., 2008), it was not possible to estimate the production in the >0.8 µm fraction directly, and the heterotrophic production by PA prokaryotes was calculated from the difference between total heterotrophic production and production by FL prokaryotes.

2.8. Respiratory activity of the electron transport system (R-ETS)

The respiratory activity of the electron transport system (ETS) was investigated in both the >0.8 µm (i.e. particle-associated) and the <0.8 µm (i.e. free-living) size fractions. Two-litre samples were filtered through 0.8 µm and subsequently through 0.2 µm cellulose ester membranes (Millipore, AAWP). Filters were folded into cryovials and immediately stored in liquid nitrogen until analysis in the laboratory. ETS activity was measured using the modification
of the tetrazodium reduction technique described in Arístegui and Montero (1995), with minor
modifications to increase the sensitivity of the method following Baltar et al. (2009). Rates of
oxygen consumption in carbon units (R-ETS) were calculated using the following equation
(Aristegui et al., 2002) and assuming a respiratory quotient of 1.

\[\log R-ETS = 0.357 + 0.750 \log ETS \]

(1)

2.9. Data analysis

As the normality assumption was not verified with the Shapiro-Wilk’s test (Shapiro and Wilk,
1965), non-parametric statistics were used throughout this work (Zar, 1996). Multiple
comparisons among stations along transects and among sampling sites, were performed using the
Kruskal-Wallis test (KW test hereafter) and subsequently a procedure based on the Tukey test
(Zar, 1996) was used to identify different groups of measurements. Comparisons between
particle-associated and free-living parameters were conducted using the Wilcoxon-Mann-
Whitney U-test (U-test hereafter; Zar, 1996).

3. Results

3.1. Environmental parameters

Temperature and salinity profiles recorded at Archway Bay and M1, exhibited very similar
patterns, with temperature slightly decreasing from 5.62°C inshore to 5.58°C outside the kelp
forest and salinity remaining relatively constant along the transect, ranging between 33.70 and
33.90 (Fig. 2). In contrast, at M2, surface temperature and salinity ranged from 5.47°C and
5.60°C and from 33.30 to 33.90 respectively along the transect. Salinity increased from the shore
to offshore of the kelp forest and from the surface to the deeper layers (Fig. 2).
Highest inorganic nutrient concentrations were recorded at M2 (Table 1). At Archway Bay, nitrogen and phosphate concentrations followed a similar pattern along the transect, increasing from the inshore to offshore waters (Table 1). At M1 and M2, the kelp forest was characterized by high $[NH_4^+]$ (i.e. >30 µmol L$^{-1}$) and low $[NO_3^- + NO_2^-]$ concentrations (i.e. <13.0 µmol L$^{-1}$) (Table 1). A pattern of decreasing phosphate concentrations was observed at M1 with values ranging from 5.3 µmol L$^{-1}$ inshore to 2.0 µmol L$^{-1}$ outside the kelp, whereas at M2 the lowest concentrations (i.e. 10.7 µmol L$^{-1}$) were recorded within the kelp forest (Table 1).

At Archway Bay and M1, DOC concentrations decreased from the shore to the outside of the kelp forest and varied from 82.1 to 72.5 µmol L$^{-1}$ and from 78.3 to 75.8 µmol L$^{-1}$, respectively (Table 1). In contrast, at M2, an increasing gradient was observed with values ranging from 75.0 inshore to 81.3 µmol L$^{-1}$ offshore (Table 1). DON concentrations ranged between 2.9 and 7.1 µmol L$^{-1}$ and followed a similar decreasing pattern from the shore to outside the kelp forest at the 3 sampling sites (Table 1). At Archway Bay and M2, the C: N molar ratio of DOM varied from 12.8 to 25.4 and from 15.0 to 28.4 respectively along transects. The ratios decreased from the shore to offshore of the forest (Table 1). At M1, C: N molar ratios were low with values remaining below 11.8 along the transect (Table 1).

The highest SPM concentrations (32.0 µg L$^{-1}$) were observed at M2, in the inshore waters (Table 1). At the 3 sampling sites, SPM and PON concentrations exhibited a similar pattern along transects, decreasing from the shore to outside the kelp forest (Table 1). At M1 and M2, highest POC concentrations were observed inshore, at 14.1 µmol L$^{-1}$ and 23.8 µmol L$^{-1}$, respectively (Table 1). In contrast, at Archway Bay the highest POC concentrations (14.0 µmol L$^{-1}$) were recorded within the kelp forest (Table 1). At M1 and M2, the C: N molar ratio of POM varied respectively from 9.4 to 7.8 and from 14.8 to 10.4, and decreased from inshore to offshore waters.
In contrast, at Archway Bay the C: N molar ratio increased from the shore to outside the kelp forest with values ranging from 5.1 to 11.6 (Table 1).

Total Chl a concentrations were consistently lower than 0.3 μg L$^{-1}$ over the 3 studied kelp forests (Fig. 3). At Archway Bay and M1, mean Chl a concentrations were significantly ($p < 0.05$) higher offshore than inshore. At M2, total Chl a concentrations ranged between 0.11 and 0.13 μg L$^{-1}$ and did not exhibit any significant spatial patterns ($p > 0.05$; Fig. 3). The relative contributions of phaeopigments to total Chl a biomass exhibited similar patterns along all three transects (Fig. 3), decreasing significantly from 31.5%-68.6% in the near-shore kelp-free waters to 10.2%-21.8% offshore of the *M. pyrifera* forest ($p < 0.05$; Fig. 3).

3.2. Prokaryote abundances

Free-living (FL) prokaryotes were significantly more abundant than particle-associated (PA) prokaryotes (Mann-Whitney U-test, $p < 0.05$), contributing between 88.6% and 99.5% of the total prokaryotic abundance within the 3 kelp forests (Table 2). PA and FL prokaryote abundances did not differ significantly along transects for any of the 3 sampling sites (KW test, $p > 0.05$). PA abundances ranged from 1.53×10^3 to 9.71×10^3 cell mL$^{-1}$ and did not differ significantly among sampling sites (KW test, $p > 0.05$). In contrast, at M1, FL prokaryote abundances ranged between 5.50×10^4 to 7.48×10^4 cell mL$^{-1}$ and were significantly lower than those recorded along transects at M2 and Archway Bay ($p < 0.05$).

3.3. Prokaryotic metabolism

Particle-associated PHP (PA-PHP) ranged from 7.2 to 49.1 μmol C m$^{-3}$ d$^{-1}$ and free-living PHP (FL-PHP) from 0.5 to 20.8 μmol C m$^{-3}$ d$^{-1}$ (Table 3). PA-PHP did not differ significantly
among sampling sites (KW test, p > 0.05). In contrast, FL-PHP was significantly lower at M1 than at M2 inshore of the kelp forests (p < 0.05; Table 3).

At Archway Bay, PA-PHP was significantly higher inshore (26.6 µmol C m⁻³ d⁻¹) than inside the kelp forest (7.2 µmol C m⁻³ d⁻¹), whereas FL-PHP did not differ significantly along the transect (Table 3). At M1, FL-PHP was significantly higher offshore than inshore, at 12.0 µmol C m⁻³ d⁻¹ and 0.5 µmol C m⁻³ d⁻¹ respectively (p < 0.05), whereas PA-PHP did not differ significantly along the transect (KW test, p > 0.05) (Table 3). At M2, PA-PHP and FL-PHP ranged from 9.5 µmol C m⁻³ d⁻¹ to 20.8 µmol C m⁻³ d⁻¹ and between 11.5 µmol C m⁻³ d⁻¹ and 47.2 µmol C m⁻³ d⁻¹ respectively, with no significant variation along the transect (KW test, p > 0.05).

Particle-associated and free-living R-ETS were highly variable, ranging from 1.1 to 106.7 µmol C m⁻³ d⁻¹ and 1.1 to 86.3 µmol m⁻³ d⁻¹, respectively (Table 3). At M1, particle-associated R-ETS varied from 1.1 to 81.9 µmol C m⁻³ d⁻¹ along the transect, increasing from the shore to outside the kelp (Table 3). At M2, the highest particle-associated R-ETS were observed within the kelp forest, at 43.8 µmol C m⁻³ d⁻¹ (Table 3). Lowest free-living R-ETS values were recorded within the kelp at Archway Bay and M1. At M2 R-ETS decreased from 38.9 µmol C m⁻³ d⁻¹ inshore to 19.3 µmol C m⁻³ d⁻¹ offshore of the kelp forest (Table 3).

3.4. Prokaryotic growth efficiency (PGE)

Prokaryotic growth efficiency (PGE) within the FL and PA communities ranged from 0.01 to 0.87 and from 0.18 to 0.97 respectively and differed significantly among sampling sites (KW test, p < 0.05; Fig. 4). Inshore, PA-PGE was significantly higher at M1 than at Archway Bay at 0.97 and 0.19 respectively (p < 0.05), whereas FL-PGE did not differ significantly among inshore sites (p > 0.05). In contrast, FL-PGE measured within the kelp and offshore significantly differed
among sampling sites (KW test p < 0.5; Fig. 4). Inside the kelp forest highest FL-PGE was observed at M1 whereas highest offshore values were recorded at M2 (p < 0.05).

At Archway Bay, PA-PGE ranged from 0.19 to 0.21 (Fig. 4A). FL-PGE was significantly higher within the kelp forest than offshore (p < 0.05) at 0.13 and 0.05, respectively (Fig. 4A). At M1, PA-PGE varied from 0.97 to 0.21, decreasing significantly (p < 0.05) from the shore to outside the kelp forest (Fig. 4B) and highest FL-PGE (i.e. 0.84) was observed within the kelp forest (Fig. 4B). At M2, PA-PGE was significantly higher offshore than inside the kelp (p < 0.05) at 0.82 and 0.18 respectively (Fig. 4C). In contrast, FL-PGE ranged between 0.07 and 0.50 did not differ significantly along transect (KW test, p > 0.05).

Inshore PA-PGE was significantly higher than FL-PGE at all 3 sampling sites (U-test, p < 0.05). No significant difference was observed between FL-PGE and PA-PGE within the kelp forest at M2 (U-test, p > 0.05), whereas FL-PGE was significantly higher than PA-PGE in the kelp forest at M1 (U-test, p < 0.05). Offshore of the kelp forest, PA-PGE was significantly higher than FL-PGE at Archway Bay and M2 (U-test, p < 0.05) whereas no significant difference was observed between the two fractions offshore at M1 (U-test, p > 0.05).

4. Discussion

4.1. M. pyrifera kelp forests and near-shore water masses

Temperature and salinity profiles indicated different hydrological conditions at the 3 sampling sites (Fig. 2). Surface water of reduced salinity and temperature extended into the kelp forest at M2, suggesting a significant impact of freshwater run-off from the island during sampling (Fig. 2). This is consistent with the high ammonium, phosphate and SPM concentrations observed along the transect (Table 1). High concentrations of reduced nitrogen and phosphate have previously been observed in the shallow shelf waters of the island and have been shown to be
largely derived from the guano, dung, urine and animal remains that are carried off the island to
the shelf waters via freshwater run-off (Allanson et al., 1985; Ducombe Rae, 1989). In contrast,
temperature and salinity profiles recorded at M1 and Archway did not suggest any significant
influence of freshwater run-off (Fig. 1). Moreover, despite the high density of top predators on
the shore at Archway Bay, inorganic nutrient and SPM concentrations were lower than in
Macaroni Bay (Fig. 1; Table 1). These results confirm the importance of freshwater run-off to
inorganic nutrient and SPM inputs in the near shore waters.

In addition, the differences observed within Macaroni Bay between M1 and M2 demonstrate
the restricted nature of the influence of freshwater input, leading to high spatial variability in
nutrient and SPM concentrations along the shore. This could have large implications for
prokaryote dynamics in the shallow shelf waters of Marion Island. Furthermore, as nutrient
availability and light penetration exert a major control on Macroystis pyrifera growth (Dayton et
al., 1992, 1999), this small scale variability in nutrient and SPM inputs may also influence the
density and extent of the kelp itself (e.g. Fram et al., 2008) and ultimately the retention capacities
of the kelp forests (Gaylord et al., 2007; Rosman et al., 2010).

Because both current and vertical mixing are reduced within kelp forests, M. pyrifera has been
shown to potentially limit nutrient fluxes and transport of particles from the shore to the outer
dge of the forest (e.g. Pakhomov et al., 2002; Rosman et al., 2010). Changes in water masses
properties were observed from the shore to the outer edge of the kelp forest at the three sampling
sites (Fig. 2; Table 1). However, these changes were sometime small and spatial patterns across
kelp beds were not consistent among sampling sites. We are not able to estimate the residence
times or flushing rates of water from our data, but as residence times within kelp beds may be
high (Graham et al., 2007; Fram et al., 2008), biological activity of both M. pyrifera and its
associated fauna is likely to have significantly influenced the patterns of inorganic nutrient and organic matter observed.

While phytoplankton biomass did not change consistently through the kelp forests, the contribution of phaeopigments to total phytoplankton biomass decreased significantly from inshore to offshore stations at all three locations (Fig. 3), indicating the retention of detritus by the kelp forests (Pakhomov et al., 2002). This is also seen in the offshore decrease in particular and dissolved organic matter (see Table 1). To our knowledge, our results are the first report of POM and DOM enriched waters in near-shore waters and their potential retention within kelp forests. As organic matter supply influences prokaryote growth strongly (e.g. del Giorgio and Cole, 1998), this could have important implications for prokaryote metabolism in other kelp forests.

Total prokaryote abundances varied between 6.2×10^4 to 3.6×10^5 cell ml$^{-1}$ over the study area (Table 1). While these abundances are congruent with those observed elsewhere in the Southern Ocean (Pedrós-Alió et al., 2002; Vaqué et al., 2002; Granéli et al., 2004; Corzo et al., 2005; Ortega-Retuerta et al., 2008; Obernosterer et al., 2008), they are within the lower range of values observed offshore of the archipelago in the same months of April/May 2009 (i.e. 3.3×10^5 cell ml$^{-1}$ to 5.5×10^5 cell ml$^{-1}$; Schapira et al., 2012). Free-living and particle-associated prokaryote abundances did not vary along transects, but prokaryotic metabolism was highly variable among sampling sites and across the *M. pyrifera* forests. This suggests strong modifications to carbon utilization by prokaryotes along the shore and from the near-shore kelp-free waters to offshore of *M. pyrifera* forests. This emphasizes that information on prokaryote abundances alone is not enough to evaluate their ecological and functional role in carbon cycling within the plankton, it is necessary to understand their metabolic state as well.
4.2 Variability in prokaryote metabolism along the shore of Marion Island

No significant differences in PA prokaryote abundances were observed, but FL prokaryotes were significantly less abundant at M1 than at M2 and Archway Bay (Table 2). While the supply of dissolved organic matter (DOM) did not exhibit any significant differences among the three sampling sites, C:N ratios at M1 were lower than along transects at M2 and Archway Bay (Table 2). The lower C:N ratios were accompanied by significantly lower free-living production rates (Table 3). As organic matter supply and stoichiometry (i.e. C: N ratios) influence prokaryote growth strongly (e.g. del Giorgio and Cole, 1998), the lower FL abundances observed at M1 could be explained by a lower quality of DOM at this site. Moreover, this also suggests that despite similar supplies, the organic matter pool is likely to exhibit different degrees of lability and energetic quality at the different locations along the shore, with significant consequences for prokaryote growth and standing stocks. Other factors such as inorganic nutrient concentrations (e.g. Rivkin and Anderson, 1997) and temperature (e.g. Kirchman and Rich, 1997; Rivkin and Legendre, 2001) are strongly affected by freshwater input, and could also have played a role in establishing the differences observed among the different kelp forests. Since multiple factors may interact to control prokaryote production (Church et al., 2000; Smith and Kemp, 2003; Obernosterer et al., 2008; Mills et al., 2008; Martínez-García et al., 2010), specific experiments are needed to understand fully the limitation of heterotrophic free-living prokaryote production in these shallow shelf waters.

One of the main features of the spatial dynamics of prokaryotic metabolism was the high variability in FL and PA prokaryote growth efficiencies (PGE) among sampling sites (Fig. 4). The PGE values reported in each of the three sampling zones (i.e. inshore, kelp and offshore) varied greatly among the different kelp forests. Since PGE has been shown to vary along gradients of environmental conditions (e.g. Cotner and Biddanda, 2002; Carlson et al., 2007), this
suggests that FL and PA prokaryotes were subject to more or less favorable conditions inshore, inside the kelp and offshore depending on the intrinsic properties of the kelp forest considered (e.g. freshwater input, nutrient dynamics, size of the forest and perhaps the physiological state of the M. pyrifera itself). Since the allocation of energy in prokaryotes depends on many factors (Carlson et al., 2007), it is difficult to identify a single factor responsible for the high variability in PGE observed among kelp forests. Instead we highlight the great variability of free-living and particle-associated PGE that occurred at these small spatial scales. This suggests that the role of kelp forests in shaping the interactions within the microbial loop is strongly dependent on the water in which it is immersed.

4.3 Spatial variability in prokaryote metabolism across kelp forests

The contribution of particle-associated prokaryotes to total prokaryote abundances is generally between 5 and 10% (e.g. Cho and Azam, 1988; Simon et al., 2002; Mével et al., 2008). This is consistent with the low contribution of PA prokaryotes (i.e. <11%) to the total abundance observed during this study. While the relative abundances of these two fractions of prokaryotes did not vary significantly along transects, their relative contributions to overall carbon flux did.

Inshore of M. pyrifera forests, the highest PGE were observed within the particle-associated community (Fig. 4). Since PGE typically increase as conditions become optimal (e.g. Cotner and Biddanda, 2002; Carlson et al., 2007), this suggests that environmental conditions in the near-shore waters were more favourable for particle-associated than free-living prokaryotes. The near-shore kelp-free waters showed high concentrations of detritus (SPM) and particulate organic matter with low C: N ratios (Table 1), that are characteristic of freshly produced organic matter (e.g. Ogawa et al., 1999; Carlson et al., 2000). High PGE has previously been reported on freshly colonized particles and related to low respiration and/or high production rates associated with
highly labile organic matter (Grossart and Ploug, 2000; Azam and Long, 2001). The high
particle-associated PGE observed in this zone may thus be related to the colonization of freshly
introduced particles in the inshore kelp-free area.

In contrast, free-living PGE were higher than or similar to particle-associated PGE in the kelp,
suggesting that environmental conditions were less favourable for particle-associated or more
favourable for free-living prokaryotes inside the kelp forest (Fig. 4). As aggregates and particles
are likely to be transported from inshore toward the kelp forest interior (e.g. Gaylord et al., 2007),
the metabolic activity of attached prokaryotes might have led to a progressive depletion of labile
compounds, resulting in more refractory particles within the kelp and ultimately lower particle-
associated PGE (Fig. 4). Furthermore, enzymatic activities and uptake rates are largely decoupled
on aged particles, leading to the release of labile compounds in the surrounding media and
resulting in the formation of hot spots or plumes of organic and inorganic nutrients around
particles (Cho and Azam, 1988; Grossart and Ploug, 2001). Free-living prokaryotes may have
clustered in this chemosphere, exploiting the locally high levels of organic and inorganic
nutrients (Cho and Azam, 1988; Azam and Malfatti, 2007), leading to high growth efficiencies.
However, organic matter is likely to originate from different sources (i.e. terrestrial run-off, kelp-
derived material and phytoplankton) and therefore to have different degrees of lability and
energetic quality in the different regions of the forest. In particular, phytoplankton may have
contributed to a larger fraction of the DOM and POM pool offshore of the forest where
phytoplankton biomass was high (Fig. 3). Changes in organic matter lability and/or the
colonization of new particles produced offshore of *M. pyrifera* forest could favour particle-
associated over free-living prokaryotes, leading to higher PGE within the particle-associated
community offshore (Fig. 4).
The allocation of energy in prokaryotes depends on many other factors, making it difficult to identify a single factor controlling the variability in PGE (Carlson et al., 2007). Abiotic factors such as solar radiation (particularly UV-B) and osmotic shock can contribute to an increase in cell respiration (Koch, 1997) and may have played a role particularly in the shallow near-shore kelp-free waters. In addition, viral infection has been demonstrated to increase cell respiration rates in prokaryotes (Bonilla-Findji et al., 2008) and may have been important. Nevertheless, shifts in the predominance of different fractions of the prokaryotic community can be interpreted in terms of gradients in both the age and origins of organic material across the kelp forests.

4.4. Kelp forests, turbulence and prokaryote dynamics

One of the main characteristic of *M. pyrifera* is that it significantly alters the local flow environment (e.g. Gaylord et al., 2007; Rosman et al., 2010). Depth averaged currents in kelp forests can be reduced by a factor of 1.5 to 5 relative to nearby kelp-free areas (Jackson, 1998; Gaylord et al., 2007; Rosman et al., 2007). Consequently, colonized particles within forest are likely to be subject to less turbulent conditions than inshore or offshore. As the fluid flow around aggregates plays a critical role in the chemical micro-environment and growth conditions of particle-associated prokaryotes (e.g. Ploug et al., 1997; Ploug, 2001; Simon et al., 2002), modification of turbulence conditions within the kelp forest is likely to influence prokaryotic metabolism. In addition, turbulence intensity at small scales can control nutrient patchiness, with significantly more heterogeneous/patchy distributions under low turbulence conditions (Seuront et al., 2002; Seuront, 2008). At scales relevant to prokaryotes, changes in turbulent conditions across kelp forests may have important consequences to the micro-environment experienced by free-living and particle-associated prokaryotes and may therefore influence their relative contribution to carbon flux.
4.5. Implications for carbon flux and food web structure across kelp forests

Regardless of which combination of factors produced the observed pattern, the variability in the growth efficiency of prokaryotes across kelp forests could have significant implications for the fate of organic carbon in these nearshore waters. The significance of higher growth efficiency within the particle-attached community inshore and offshore of *M. pyrifera* forests, is that a larger fraction of organic carbon was converted into prokaryotic biomass and was therefore available to higher trophic levels on colonized particles. Since particle-attached prokaryotes are less susceptible to grazing than their free-living counterparts (Jürgens and Güde 1994; Pernthaler 2005), this difference could have significant consequences for food web structure and biogeochemical cycling in the inshore kelp-free area and offshore of the kelp forests.

In contrast, particles-associated PGE was lower or equal to the free-living PGE inside the kelp forest. The significance of low particle-associated PGE is that a large quantity of carbon passes through the prokaryote community and is mainly respired inside the kelp forest, so that it is not available to higher trophic levels (Legendre and Rassoulzadegan 1995). Intense remineralisation processes on particles and within their surrounding micro-environment, has important implications for vertical carbon flux within the kelp forest. These findings provide new insights into the role of *M. pyrifera* forests as a bioengineer species in coastal ecosystems.

5. Conclusion

Metabolic rates of both free-living and particle-associated prokaryotes were highly variable within and among kelp beds, suggesting that the quantity of carbon processed by prokaryotes was strongly influenced by the intrinsic characteristics of the forests (e.g. physiological state of *M. pyrifera*, size of the forest etc.) and by the water in which they were immersed (e.g. freshwater
inputs, sources of organic matter). It is difficult to untangle these various effects, but spatial
patterns in prokaryote PGE are interpretable in terms of the age and sources of organic material
in the water. Importantly, the variability in prokaryotic growth efficiency has implications for
carbon flux within kelp forests.

Acknowledgements

The authors gratefully acknowledge officers and crew of the research and supply vessel *S.A. Agulhas*
for their assistance at sea and the South African Department of Environmental Affairs and Tourism for
providing funds and facilities for this study. Thanks also to E.L. Allan, C.F. McQuaid and R. Young who
assisted for the data collection in the kelp forests. Dr. M. Van de Venter from the Department of
Biochemistry and Microbiology in Nelson Mandela Metropolitan University (NMMU) is acknowledged
for providing technical support during the flow cytometry work. L. Seuront is acknowledged for his
critical reading and helpful comments of an earlier version of the manuscript. Funding was provided by
the South African National Antarctic Program (SANAP) and Rhodes University. This work is based upon
research supported by the South African Research Chairs Initiative of the Department of Science and
Technology and the National Research Foundation.

References

Allanson, B.R., Boden, B.P., Paker, L., Duncombe Rae, C. 1985. A contribution to the
oceanology of the Prince Edward Islands. In: Siegfried, W.R., Condy, P.R., Laws, R.M. (eds)
Ansorge, I.J., Froneman, P.W., Pakhomov, E.A., Lutjeharms, J.R.E., Perissinotto, R.,
Ballegoooyen, R.C. van (1999) Physical-biological coupling in the waters surrounding the

Table legends

Table 1. Ammonium \([NH_4^+]\), Nitrite + nitrate \([NO_2^- + NO_3^-]\), orthophosphate \([PO_4^{3-}]\), dissolved organic carbon (DOC), dissolved organic nitrogen (DON), suspended particular matter (SPM), particular organic carbon (POC) and particular organic nitrogen (PON) concentrations (\(\mu\text{mol l}^{-1}\)), and carbon to nitrogen molar ratios of the dissolved organic matter (C: N DOM) and of the particular organic matter (C: N POM) observed at observed (i) inshore, (ii) within the kelp and (iii) offshore of the kelp forest at the 3 sampling sites: Archway Bay, Macaroni Bay 1 and Macaroni Bay 2. Confidence levels (\(\mu\text{mol l}^{-1}\)): ammonium = 0.02; nitrite + nitrate = 0.01; orthophosphate = 0.07; DOC = 0.2; DON = 0.1; POC = 0.2; PON = 0.2. ×: no data available

Table 2. Average (±SE) free-living (FL) and particle-associated (PA) prokaryotes abundances (cell ml\(^{-1}\)) observed (i) inshore, (ii) within the kelp and (iii) offshore of the kelp forest at the 3 sampling sites: Archway Bay, Macaroni Bay 1 and Macaroni Bay 2.

Table 3. Prokaryotic heterotrophic production (PHP; \(\mu\text{mol C m}^{-3} \text{ d}^{-1}\)) and potential respiration estimated via ETS measurements (R-ETS; \(\mu\text{mol C m}^{-3} \text{ d}^{-1}\)) of free-living (FL) and particle-associated prokaryotes (PA) observed (i) inshore, (ii) within the kelp and (iii) offshore of the kelp forest at the 3 sampling sites: Archway Bay, Macaroni Bay 1 and Macaroni Bay 2.

Figure legends

Fig. 1. Location of sampling sites in the vicinity of Prince Edward Islands. Transects were conducted in 3 kelp forests (*Macrocystis pyrifera*) located along the east coast of Marion Island: Archway Bay, Macaroni Bay 1 (M1) and Macaroni Bay 2 (M2). Dark grey area between Marion
Island coastline and the 30 m isobaths shows the kelp forest. At each site, samples were collected at 3 stations (black stars) perpendicular to the coast: in the near-shore kelp-free waters (i.e. depth <5 m), within the forest and offshore. SAF: sub-Antarctic Front. APF: Antarctic Polar Front. ACC: easterly-flowing Antarctic Circumpolar Current.

Fig. 2. Temperature (°C) and salinity profiles recorded along transects at Archway Bay (A and B), Macaroni Bay 1 (C and D) and Macaroni Bay 2 (E and F). Inshore (black marks), inside the kelp forest (white marks) and offshore (grey marks).

Fig. 3. Average chlorophyll a concentrations ([Chl a] μg L$^{-1}$) in black bars (A, B and C) and relative concentration of phaeopigments to total chlorophyll a ($\%$ phaeopigments) in grey bars (D, E and F) along transects (inshore, kelp and offshore) at Archway Bay (A and D), Macaroni Bay 1 (M1; B and E) and Macaroni Bay 2 (M2; C and F). The error bars are standard errors. * Significant differences (Tukey test; $p<0.05$)

Fig. 4. Average prokaryotic growth efficiency PGE of free-living (FL: in grey) and of particle-associated prokaryotes (PA: in black) along transects (inshore, kelp and offshore) at Archway Bay (A), Macaroni Bay 1 (M1; B) and Macaroni Bay 2 (M2; C). Particle-associated PGE within the kelp at Archway Bay was not calculated as the respirations rates were not available at this station. The error bars are standard errors. * Significant differences between FL-PGE and PA-PGE (Wilcoxon-Mann-Whitney U-test; $p<0.05$).
Table 1. Ammonium $[\text{NH}_4^+]$, nitrite + nitrate $[\text{NO}_2^- + \text{NO}_3^-]$, orthophosphate $[\text{PO}_4^{3-}]$, dissolved organic carbon (DOC), dissolved organic nitrogen (DON), suspended particulate matter (SPM), particulate organic carbon (POC) and particular organic nitrogen (PON) concentrations (μmol L$^{-1}$) and carbon to nitrogen molar ratios of the dissolved organic matter (C: N DOM) and of the particulate organic matter (C: N POM) observed at observed (i) inshore, (ii) within the kelp and (iii) offshore of the kelp forest at the 3 sampling sites: Archway Bay, Macaroni Bay 1 and Macaroni Bay 2. Confidence level (μmol L$^{-1}$): ammonium = 0.02; nitrite + nitrate = 0.01; orthophosphate = 0.07; DOC = 0.2; DON = 0.1; POC = 0.2; PON = 0.2; no data available.

<table>
<thead>
<tr>
<th></th>
<th>Archway bay</th>
<th>Macaroni bay 1</th>
<th>Macaroni bay 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inshore</td>
<td>Kelp</td>
<td>Offshore</td>
</tr>
<tr>
<td>$[\text{NH}_4^+]$ (μmol L$^{-1}$)</td>
<td>5.3</td>
<td>0.1</td>
<td>9.3</td>
</tr>
<tr>
<td>$[\text{NO}_2^- + \text{NO}_3^-]$ (μmol L$^{-1}$)</td>
<td>13.3</td>
<td>13.1</td>
<td>14.0</td>
</tr>
<tr>
<td>$[\text{PO}_4^{3-}]$ (μmol L$^{-1}$)</td>
<td>3.0</td>
<td>5.6</td>
<td>7.1</td>
</tr>
<tr>
<td>DOC (μmol L$^{-1}$)</td>
<td>82.1</td>
<td>77.1</td>
<td>72.6</td>
</tr>
<tr>
<td>DON (μmol L$^{-1}$)</td>
<td>6.4</td>
<td>4.3</td>
<td>2.9</td>
</tr>
<tr>
<td>C: N DOM</td>
<td>12.8</td>
<td>16.0</td>
<td>26.4</td>
</tr>
<tr>
<td>SPM (ng L$^{-1}$)</td>
<td>166</td>
<td>16.1</td>
<td>16.6</td>
</tr>
<tr>
<td>PON (μmol L$^{-1}$)</td>
<td>1.9</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>POC (μmol L$^{-1}$)</td>
<td>9.5</td>
<td>14.0</td>
<td>11.0</td>
</tr>
<tr>
<td>C: N POM</td>
<td>5.1</td>
<td>12.6</td>
<td>11.6</td>
</tr>
</tbody>
</table>

Table 2. Average (±SE) free-living (FL) and particle-associated (PA) prokaryotes abundances (cell mL^{-3}) observed (i) inshore, (ii) within the kelp and (iii) offshore of the kelp forest at the 3 sampling sites: Archway Bay, Macaroni Bay 1 and Macaroni Bay 2.

<table>
<thead>
<tr>
<th>Sampling sites</th>
<th>Stations</th>
<th>Total abundances (cell mL^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FL</td>
</tr>
<tr>
<td>Archway Bay</td>
<td>Inshore</td>
<td>2.54×10^6 (±3.50 \times 10^5)</td>
</tr>
<tr>
<td></td>
<td>Kelp</td>
<td>3.68×10^6 (±3.34 \times 10^5)</td>
</tr>
<tr>
<td></td>
<td>Offshore</td>
<td>3.63×10^6 (±2.11 \times 10^5)</td>
</tr>
<tr>
<td>Macaroni Bay 1</td>
<td>Inshore</td>
<td>6.47×10^4 (±4.22 \times 10^4)</td>
</tr>
<tr>
<td></td>
<td>Kelp</td>
<td>5.50×10^4 (±2.07 \times 10^4)</td>
</tr>
<tr>
<td></td>
<td>Offshore</td>
<td>7.48×10^4 (±9.51 \times 10^3)</td>
</tr>
<tr>
<td>Macaroni Bay 2</td>
<td>Inshore</td>
<td>3.51×10^4 (±1.90 \times 10^4)</td>
</tr>
<tr>
<td></td>
<td>Kelp</td>
<td>2.97×10^4 (±8.02 \times 10^3)</td>
</tr>
<tr>
<td></td>
<td>Offshore</td>
<td>4.44×10^4 (±3.19 \times 10^4)</td>
</tr>
</tbody>
</table>

SE: Standard Error.
Table 3. Prokaryotic heterotrophic production (PHP; μmol C m⁻² d⁻¹) and potential respiration estimated via ETS measurements (R-ETS; μmol C m⁻² d⁻¹) of free-living (FL) and particle-associated prokaryotes (PA) observed (i) inshore, (ii) within the kelp and (iii) offshore of the kelp forest at the 3 sampling sites: Archway Bay, Macaroni Bay 1 and Macaroni Bay 2.

<table>
<thead>
<tr>
<th>Sampling sites</th>
<th>Stations</th>
<th>PHP (μmol C m⁻² d⁻¹) Average (±SE)</th>
<th>R-ETS (μmol C m⁻² d⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FL (±0.3)</td>
<td>PA (±0.5)</td>
</tr>
<tr>
<td>Archway Bay</td>
<td>Inshore</td>
<td>2.3 (±0.2)</td>
<td>26.7 (±0.1)</td>
</tr>
<tr>
<td></td>
<td>Kelp</td>
<td>2.9 (±0.5)</td>
<td>7.2 (±1.1)</td>
</tr>
<tr>
<td></td>
<td>Offshore</td>
<td>4.2 (±0.3)</td>
<td>15.9 (±0.7)</td>
</tr>
<tr>
<td>Macaroni Bay 1</td>
<td>Inshore</td>
<td>0.5 (±0.0)</td>
<td>43.1 (±5.0)</td>
</tr>
<tr>
<td></td>
<td>Kelp</td>
<td>4.0 (±1.9)</td>
<td>49.1 (±2.9)</td>
</tr>
<tr>
<td></td>
<td>Offshore</td>
<td>12.0 (±1.5)</td>
<td>22.4 (±6.7)</td>
</tr>
<tr>
<td>Macaroni Bay 2</td>
<td>Inshore</td>
<td>11.3 (±0.0)</td>
<td>11.5 (±1.6)</td>
</tr>
<tr>
<td></td>
<td>Kelp</td>
<td>9.5 (±4.3)</td>
<td>18.1 (±1.3)</td>
</tr>
<tr>
<td></td>
<td>Offshore</td>
<td>20.8 (±5.3)</td>
<td>47.2 (±3.0)</td>
</tr>
</tbody>
</table>

SE: Standard Error x: no data available.

Fig. 1. Location of sampling sites in the vicinity of Prince Edward Islands. Transects were conducted in 3 kelp forests (Macrocystis pyrifera) located along the east coast of Marion Island: Archway Bay, Macaroni Bay 1 (M1) and Macaroni Bay 2 (M2). Dark grey area between Marion Island coastline and the 30 m isobaths shows the kelp forest. At each site, samples were collected at 3 stations (black stars) perpendicular to the coast in the near-shore kelp-free waters (i.e. depth <5 m), within the forest and offshore. SAF: sub-Antarctic Front. APF: Antarctic Polar Front. ACC: easterly-flowing Antarctic Circumpolar Current.
Fig. 2. Temperature (°C) and salinity profiles recorded along transects at Archway Bay (A and B), Macaroni Bay 1 (C and D) and Macaroni Bay 2 (E and F). Inshore (black marks), inside the keel forest (white marks) and offshore (grey marks).
Fig. 3. Average chlorophyll a concentrations ([Chl a] µg L⁻¹) in black bars (A, B and C) and relative concentration of pheopigments to total chlorophyll a (% pheopigments) in grey bars (D, E and F) along transects (inshore, kelp and offshore) at Archway Bay (A and D), Macaroni Bay 1 (M1; B and E) and Macaroni Bay 2 (M2; C and F). The error bars are standard errors. * Significant differences (Tukey test; p < 0.05).
Fig. 4. Average prokaryotic growth efficiency PGE of free-living (FL: in grey) and of particle-associated prokaryotes (PA: in black) along transects (inshore, kelp and offshore) at Archway Bay (A), Macaroni Bay 1 (M1; B) and Macaroni Bay 2 (M2; C). Particle-associated PGE within the kelp at Archway Bay was not calculated as the respiratory rates were not available at this station. The error bars are standard errors. * Significant differences between FL-PGE and PA-PGE (Mann-Whitney U-test; p < 0.05).