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Underwater images often suffer from poor visibility due to photon scattering. However, in some cases, optical
polarization filtering techniques can decrease the contribution of the scattered light and improve the visual image
quality. In this Letter, the influence of these techniques for underwater image registration is analyzed, particularly
when backscattered light is the main perturbation induced by the submarine environment. This analysis is
performed using the Cramer–Rao bound and relies on a standard image formation model, taking into account
various kinds of noises. © 2012 Optical Society of America
OCIS codes: 010.4450, 110.5405, 110.4280, 110.3000.

Object location and image registration are two key tasks
in optical underwater imaging, especially for applications
such as mosaicing or autonomous underwater vehicle
positioning [1–3]. These tasks are in general challenging
since underwater imaging suffers from poor image visual
quality due to various sources of noise and to light scat-
tering in sea water [4–6]. Polarization filtering techniques
have previously been used to improve underwater
visibility by reducing the contribution of backscattered
light [7–10] (i.e., light that has been scattered by the
medium directly to the camera; see Fig. 1). In that case,
it is generally necessary to illuminate the scene with
polarized light and to analyze the different polarization
components of the signal received by the camera.
However the extent of polarization filtering impact on
image registration is yet to be studied. This Letter
addresses this issue in the context of underwater optical
imaging under artificial illumination. For that purpose, a
standard image formation model is considered that takes
into account backscattered light fluctuations, photon
noise on the image sensor, and electronic additive noise.
The main parameters that influence the image registra-
tion precision are then discussed with the Cramer–Rao
bound (CRB) [11–13], which allows one to get an analysis
independently of any particular unbiased registration
technique.
For the sake of clarity, the one-dimensional (1D) case

is considered, and the image registration issue comes
down to estimating a 1D translation parameter. The
results of the analysis can, however, be generalized in
two dimensions, but at the expanse of a more tedious
formalism not useful for the purpose of this Letter. Let
i�x� be the measured image where x is the spatial coor-
dinate. According to standard Jaffe–McGlamery model
[14–16], i�x� can be seen as the sum of a contribution
s�x�, resulting from the light that propagates to the cam-
era after being reflected by the scene, and a backscatter-
ing contribution b�x� due to light directly scattered
toward the sensor (Fig. 1). In standard intensity imaging,
the mean value hi�x�i of i�x� (i.e., in the absence of noise)
can be written as

hi�x�i � s�x − η� � b�x�; (1)

where h i stands for the statistical (or ensemble) average
and η is the unknown translation parameter to estimate.
Since the backscattering only relies on the medium prop-
erties and on the detection-illumination configuration,
b�x� has thus been assumed to be independent of the
translation of the observed scene in Eq. (1).

If the source light is totally polarized and the image is
captured through a polarization splitting system (PSS),
s�x� can be written as the sum of the copolarized inten-
sity s∥�x� and the crossed-polarized intensity s⊥�x�.
Using such an imaging system has the interest of improv-
ing the image contrast either by reducing the veiling light
due to backscattering or by revealing polarization con-
trasts intrinsic to the scene. However, the latter phenom-
enon is not specific to underwater imaging and does not
allow one to separate the gain due to the scene properties
and the gain specific to underwater imaging. In order to
characterize only the effect of polarization filtering in the
presence of backscattered light (independently of the
scene properties), it will be assumed that the same reflec-
tivity contrast is available with both standard and polari-
metric techniques. In that case, the degree of polarization
(DOP) P of the scene contribution s�x� is thus constant

polarized
light source

camera

reflected light

1-P
2

1+P
2

illuminated scene

1-β
2

1+β
2

PSS

backscattered
light b(x)

s(x)

Fig. 1. Image formation model and setup. A polarization split-
ting system (PSS) allows one to select one or both polarization
states. The “intensity imaging” configuration refers to the case
where the PSS is not used.
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over the image leading to s∥�x� � 1�P
2 s�x� and

s⊥�x� � 1−P
2 s�x�, with P ∈ �0; 1�. Similarly, β is defined

as the DOP of the backscattered light and is assumed
to be constant over the image [17]. The mean value of
the backscattering contribution polarized parallel (resp.
perpendicular) to the incident light can then be written as
1�β
2 b�x� (resp. 1−β

2 b�x�) with β ∈ �0; 1�. The mean value
hi∥�x�i of the intensity i∥�x� measured in the same
polarization state as the source is thus

hi∥�x�i �
1� P
2

s�x − η� � 1� β

2
b�x�. (2)

The mean value hi⊥�x�i in the orthogonal state is then
easily deduced from Eq. (2) with the substitutions
β → −β and P → −P.
In the study, three types of noises are assumed to cor-

rupt the measurements: white electronic noise, signal
fluctuations of the backscattering contribution, and
photon noise. Additive electronic noise can be modeled
with a Gaussian probability density function (pdf) of
variance σ20. Moreover, in order to take into account
backscattering signal fluctuations (due, for example, to
turbulence [18] or to small variations of the scattering
particle density), the backscattering signal b�x� is also as-
sumed to be corrupted with an additive Gaussian noise
with variance σ2b�x�. Finally, photon noise is generally
described with a Poisson law, which can generally be
approximated with a Gaussian pdf with a variance equal
to its mean value, as most of the image acquisition con-
ditions correspond to high intensity limit. At high photon
level, the pdf of i�x� can thus be written

Λ�i�x�jη� �
exp

�
−

�i�x�−hi�x�i�2
2�σ20�σ2b�x��hi�x�i�

�
���������������������������������������������������
2π�σ20 � σ2b�x� � hi�x�i��

q .

Given this model, the precision on the estimation of the
unknown translation parameter η can now be discussed
with its CRB [12]. Indeed the variance of any unbiased
estimator cannot be smaller than the CRB which is equal
to I−1F where the Fisher information IF is defined by

IF � −h∂2 log Λ�ijη� ∕ ∂η2i;

where i � fi�1�; i�2�;…; i�N�g if the image has N pixels.
The CRB, and thus the image registration precision, can
therefore be discussed through the analysis of IF .
Without PSS, since the noise is assumed to be spatially

independent, log Λ�ijη� � PN
x�1 log Λ�i�x�jη�, and the

Fisher information is thus IF ≃
P

x�1� A��s0�x − η��2 ∕
�σ20 � σ2b�x� � hi�x − η�i� with A−1 � 2�σ20 � σ2b�x� � hi�x −

η�i� and u0�x� � ∂u�x� ∕ ∂x. In the considered high inten-
sity limit σ20 � σ2b�x� � hi�x − η�i ≫ 1, and defining
ξ�x� � σ2b�x� � b�x�, it leads to

IF �
X
x

�s0�x − η��2
σ20 � ξ�x� � s�x − η� . (3)

Let now I∥F (resp. I⊥F ) be the Fisher information
for the image acquired in a polarization state parallel

(resp. perpendicular) to the source one. It can be
shown that

I∥F � �1� P�2
4

X
x

�s0�x − η��2
σ20 � 1�β

2 ξ�x� � 1�P
2 s�x − η� . (4)

I⊥F is also easily deduced from Eq. (4) with the substitu-
tions β → −β and P → −P. If both components are mea-
sured, the noise on each component is independent and
the Fisher information is equal to ITF � I∥F � I⊥F .

As mentioned above, the precision of an image regis-
tration estimator can be characterized by its variance.
For unbiased and efficient estimators, the variance is
equal to the CRB and thus to I−1F . Using polarization ima-
ging may decrease this variance. In particular, when a
two component polarimetric setup is used instead of a
standard intensity imaging system, the variance of such
estimators is decreased by a factor GT � ITF ∕ IF . This fac-
torGT is denominated as the registration “precision gain”
in the following. Therefore a registration precision gain
equal to 5 corresponds to a decrease of the variance by a
factor 5 for unbiased and efficient estimators.

Let m � min�P; β�. In that case, �1�m� ∕ 2 ≤
�1� β� ∕ 2 ≤ 1 and �1�m� ∕ 2 ≤ �1� P� ∕ 2 ≤ 1. Combining
Eqs. (4) and (3), one obtains �1� P�2IF ∕ 4 ≤ I∥F ≤

�1� P�2IF ∕ �1�m�. A similar expression is obtained
for I⊥F substituting �β; P;m� by �−β;−P;−M� with
M � max�P; β�. Therefore, using the definition of GT ,

1� P2

2
≤ GT ≤

1
2

��1� P�2
1�m

� �1 − P�2
1 −M

�
. (5)

These bounds, which only depend on the polarimetric
properties of the measured signals, correspond to the
less and most favorable situations that may be encoun-
tered using a polarimetric setup. This result is illustrated
in Fig. 2(a) (dashed and plain lines for the lower and
upper bounds, respectively). As can be seen in Eq. (5),
the upper bound diverges if β is equal to 1. However, this
situation corresponds to the case where the backscatter-
ing light b�x� is totally filtered by the PSS in one polar-
ization state of the imaging system, which generally
does not correspond to practical situations and will
not be considered in the following.

WhenGT ≃ �1� P�2 ∕ 2 ≤ 1 [dashed line in Fig. 2(a)], no
gain can be expected. This situation occurs when the
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Fig. 2. (a) Variations as a function of P, of the lower (dashed
line) and upper (plain line) bounds of the precision gain GT

given by Eq. (5) and of GT given by Eq. (6) (black diamonds
and black dots), for β � 0 and β � 0.9. (b) Map of GT for back-
scattering limited imaging [see Eq. (6)] as a function of P and β.
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electronic noise is the main source of noise. Moreover if
P � 0, the location precision described by the CRB
decreases by a factor of 2. On the other hand, gain in
location precision can be obtained when the main source
of noise comes from fluctuations induced by the back-
scattered light (ξ�x� ≫ s�x�, ξ�x� ≫ σ20) as in the case
of long range imaging or when the source is close to
the camera. In that case

GT ≃ 1� �P − β�2 ∕ �1 − β2�; (6)

and the gain is thus always greater than 1 [cf. Fig. 2(b)
and black markers in Fig. 2(a)], which shows that using
a full polarimetric setup is advantageous in that situation.
In particular, the higher the difference between P and β
is, the higher the gain can be, particularly when the back-
scattering light is partially polarized. For example, if β �
0.9 and P � 0, then GT ≃ 5 [see Fig. 2(b) and black dots
in Fig. 2(a)]. No gain is, however, obtained if β � P,
which is easily understandable since both backscattered
and reflected lights have the same effect on polarization
measurements in that case.
In the above analysis, image quantization effects have

been assumed negligible. However, they can severely de-
grade the registration quality. At first approximation,
quantization noise can be modeled [19] by adding a var-
iance σ2Q � �A ∕n�2 ∕ 12 (where n is the number of quanti-
zation levels and A is proportional to the maximum value
of the image) to σ20 in Eq. (3). In the backscattering lim-
ited case, A ∝ max ξ�x�, which changes into �1� β�A ∕ 2
(resp. �1 − β�A ∕ 2) when acquiring the image in the paral-
lel (resp. perpendicular) polarization state. Moreover
if quantization effects are the main source of noise,
Eqs. (3) and (4) now lead to GT ≈ �1� P�2 ∕ �1� β�2�
�1 − P�2 ∕ �1 − β�2, which can be shown to be always
greater than in Eq. (6). Polarization filtering tech-
niques are thus favorable to the backscattering limited
case, and particularly when quantization noise becomes
important.
Nevertheless, in all this study, the scene is considered

to be illuminated with a polarized light. If thermal light is
used, polarizing the light decreases the intensity by a fac-
tor of 2, which could be avoided when no PSS is required
and which can degrade the precision (as with electronic
and Poisson noise limited imaging) limiting the cases
where GT ≥ 1: A careful study should then be done to
determine whether polarization filtering might be bene-
ficial. However, it has also been assumed that P is
independent of x. Therefore if the scene demonstrates
polarization contrasts (as when imaging man-made ob-
jects on a natural background), the gain on registration
precision will necessarily increase, which can compen-
sate for a precision loss due to the source intensity
decrease mentioned above.

In conclusion, this Letter has presented a theoretical
framework to quantify the gain that can be achieved
on image registration precision in the context of under-
water optical imaging. It has been shown that notable im-
provements can be expected if the images are limited by
the perturbations induced by backscattered light, which
is a canonical context for underwater polarization ima-
ging. In that case, the amplitude of the precision increase
is directly linked to the relative DOP of each contribution
of the image.
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