OCEANOLOGICA ACTA - VOL. 17 - N°6

Variability of $\partial^{13}C$ of ΣCO_2 in ocean waters of the Equatorial Pacific

∂13C Upwelling Pacific Anthropogenic CO₂

 $\partial^{13}C$ Upwelling Pacifique CO₂ anthropogénique

Elzbieta LAUBE-LENFANT and Catherine PIERRE

UMR: CNRS/ORSTOM, Université Pierre et Marie Curie, laboratoire d'Océanographie Dynamique et de Climatologie, 4, place Jussieu, 75252 Paris Cedex 05, France.

Received 22/03/94, in revised form 5/10/94, accepted 18/10/94.

The transect from East to West Pacific realized along the equator during the Alize 2 cruise (January-March 1991) offers a unique opportunity to evaluate the effect of the equatorial upwelling on the ∂^{13} C values of $\sum CO_2$ in oceanic waters. The surface ∂^{13} C distribution from 95°W to 165°E is characterized by a general increase from 0.90 to 1.54% which parallels the temperature rise from 23 to 30°C, both giving a signature of the upwelling and of the westward advection of superficial waters: the ¹³C depletion in the $\sum CO_2$ generated by organic matter remineralization. The vertical ∂^{13} C distribution from the surface down to 1000 metres shows that the upper thermocline and the oxygen minimum are two major boundaries between which the regeneration of organic matter mainly occurs. Furthermore, the comparison of our measurements with those obtained by Kroopnick in 1970 at the same location (150°W) shows that ∂^{13} C values in surface waters have decreased by 0.5% during the last twenty years period as a result of anthropogenic CO₂ inputs.

RÉSUMÉ

ABSTRACT

Variabilité du $\partial^{13}C$ du $\sum CO_2$ des eaux océaniques du Pacifique équatorial.

Le transect d'Est en Ouest du Pacifique le long de l'équateur réalisé pendant la campagne Alizé 2 (janvier-mars 1991) offre l'occasion d'évaluer l'effet de l'upwelling équatorial sur les valeurs de $\partial^{13}C$ du $\sum CO_2$ des eaux océaniques. La distribution des valeurs de ∂13C en surface de 95°W jusqu'à 165°E est caractérisée par une augmentation progressive depuis 0,90 jusqu'à 1,54% qui se corrèle avec une augmentation de la température de 23 à 30°C ; les variations de ces deux paramètres marquent l'amortissement graduel vers l'Ouest du Pacifique de l'influence de l'upwelling qui injecte en surface des eaux froides et chargées en CO₂ appauvri en ¹³C provenant de la reminéralisation en profondeur de la matière organique. La distribution verticale des valeurs de ∂13C depuis la surface jusqu'à 1000 mètres de profondeur montre que la thermocline supérieure et le niveau du minimum d'oxygène sont deux discontinuités majeures entre lesquelles se produit l'essentiel de la reminéralisation de la matière organique. Par ailleurs, la comparaison de nos données avec celles de Kroopnick obtenues en 1970 sur la même radiale transéquatoriale à 150°W montre une baisse générale de 0,5% des valeurs de ∂^{13} C du \sum CO₂ pendant les vingt dernières années qui est due à l'injection dans l'océan de CO₂ d'origine anthropogénique.

Oceanologica Acta, 1994. 17, 6, 633-641.

INTRODUCTION

Upwelling of nutrient and CO_2 -rich subsurface waters in the central and eastern Equatorial Pacific causes high biological productivity in this region. The enhanced primary productivity level is particularly evident when it is compared with the oligotrophic conditions which are characteristic of the low latitude gyres of the adjacent North and South Pacific. The equatorial zonal belt several degrees wide is also considered as a major CO_2 -source for the atmosphere (Lefèvre and Dandonneau, 1992; Tans *et al.*, 1989).

The ∂^{13} C value of $\sum CO_2$ of surface waters is controlled by biological and inorganic processes. The assimilation of dissolved inorganic carbon by phytoplankton is accompanied by large isotope fractionation, giving organic matter with ∂^{13} C values of about -22 % in the region near the equator, and causing the ¹³C enrichment of the remaining ΣCO_2 (Deuser et al., 1968; Goericke and Fry, 1994; Rau et al., 1982, 1989). Conversely the decomposition of organic matter releases ¹³C-depleted CO₂, causing ∂^{13} C decrease of the ΣCO_2 reservoir. The formation of calcium carbonate does not change the carbon isotopic composition of ΣCO_2 , since this process occurs with a small isotope fractionation and removes only minor amounts of bicarbonate from the ΣCO_2 pool. In the evasion process the carbon isotope ratio of the CO_2 crossing the air-sea interface is lighter than that of the surface water $\sum CO_2$ (Mook *et al.*, 1974; Tans *et al.*, 1993). Thus the release of CO_2 by degassing surface ocean water would provoke the ¹³C enrichment of the remaining ΣCO_2 (Inoue and Sugimura, 1985).

In the water column, the ∂^{13} C values of \sum CO₂ in the subsurface, intermediate and deep waters are controlled by the oxidation of organic matter, and below the lysocline by the dissolution of carbonate shells (Kroopnick, 1985).

With the change of ∂^{13} C of the atmospheric CO₂, due to combustion of fossil fuels, ¹³C-depleted CO₂ is introduced into the atmosphere, and the ∂^{13} C values of Σ CO₂ in the ocean also change gradually due to permanent air-sea exchanges (Keeling, 1992; Quay *et al.*, 1992; Tans *et al.*, 1993). At the present time in the equatorial region of the Pacific, the ∂^{13} C value of the atmospheric CO₂ is around – 7.8 % *i.e.* lower by ≈1.5 % compared to the pre-industrial estimations (Keeling, 1992).

This paper presents carbon isotope measurements of ΣCO_2 in surface waters and in the water column from the Equatorial Pacific. The water samples were collected during the French oceanographic cruise Alize 2 (*R.V. Le Norôît*–January-March 1991) (Fig. 1). Among the 110 hydrological sections realized during this cruise, a total of 46 surface stations and ten vertical profiles from surface the down to 1000 or 2000 m distributed on the ship track along the equator (95°W, 104.9°W, 114.9°W, 134.5°W, 150°W, 160.5°W, 168.3°W, 173.8°E, 165°E) have been selected for stable isotope analysis (Tab. 1, 2, 3). The comparison of the horizontal and vertical distributions of ∂^{13} C values with the distributions of other parameters (temperature, dissolved oxygen and nitrate) measured during the cruise appears very useful in relating the carbon isotope variations to the specific physical and biological processes induced by the large-scale equatorial upwelling.

METHODOLOGY

The sea-water samples for stable isotopic analysis were siphoned from Niskin bottles into 125 ml-glass flasks and immediately poisoned with 1 ml of a saturated solution of HgCl₂. Technical procedures used for the preparation of the CO₂ gas samples correspond to the classical method: extraction of the total dissolved inorganic carbon by acidification of water samples with phosphoric acid and collection of the CO₂ gas in the vacuum system. The ¹³C measurements were made on a VG Sira 9 mass spectrometer triple collector with a reproducibility of ± 0.05 %. The ∂^{13} C values are reported relative to the PDB reference :

 $\partial^{13}C = [(^{13}C/^{12}C)sample / (^{13}C/^{12}C)PDB - 1] * 10^3$

RESULTS AND DISCUSSION

The equatorial upwelling in the Pacific Ocean originates in the divergence of surficial waters which causes the upward migration of waters from the uppermost part of the thermocline near the core of the undercurrent (Wyrtki, 1981). During the Alize 2 cruise, temperature, salinity, nutrient and dichlorodifluoromethane distributions indicated that the source of upwelled waters was lying at rather shallow depths below 50 m at 95°W and 110 m at 140°W (Lefèvre *et al.*, 1994). The upwelling is submitted to seasonal variations because the trade winds regime changes throughout the year, but the most important climatic changes which control the oceanographic circulation are due to the influence of the ENSO events. The periods 1986/1988 and

Figure 1

Schematic map of the Alize 2 cruise track in the Equatorial Pacific. Carte schématique du Pacifique équatorial et trajet suivi au cours de la campagne Alizé 2.

N° station	latitude	longitude	S %/%	۲°C	∂13C °/°°
11	0,00S	95,39W	34,707	23,320	1,07
15	0,00S	97,00W	34,706	23,118	0,90
16	0,00S	98,46W	34,753	23,169	1,19
17	0,00S	99,76W	34,841	23,121	1,03
18	0,00S	101,33W	34,339	23,352	1,04
19	0,005	102,87W	33,930	25,825	1,13
20	0,00S	104,93W	34,187	25,379	1,32
21	0,00S	106,70W	34,517	24,322	1,11
22	0,00S	108,47W	34,845	23,788	1,02
28	0,00S	110,00W	34,485	24,279	1,09
34	0,005	111,50W	34,417	24,553	0,94
36	0,005	114,90W	34,857	24,360	1,13
37	0,00S	116,49W	34,827	24,341	0,86
38	0,005	118,40W	34,815	24,728	0,98
43	0,20N	124,78W	34,976	25,054	1,11
45	0,00S	127,25W	34,615	25,284	1,36
46	0,005	128,59W	34,688	26,097	1,31
47	0,005	130,65W	34,852	25,505	1,10
48	0,005	132,63W	35,183	25,627	1,10
49	0,005	134,55W	35,208	25,909	1,10
50	0,005	136,37W	35,215	25,997	1,15
51	0,005	137,92W	35,210	26,376	1,07
57	0,02N	140,18W	35,213	26,398	1,16
71	0,005	150,00W	35,001	27,269	1,20
72	0,005	152,85W	34,995	27,072	1,17
73	0,00S	154,7 3 W	34,977	27,043	1,16
74	0,005	156,42W	35,053	26,761	1,14
75	0,028	158,32W	35,023	26,925	1,10
76	0,005	160,55W	35,254	27,007	1,13
77	0,00S	162,47W	35,189	27,572	1,23
78	0,005	164,62W	35,192	27,691	1,20
79	0,005	166,58W	35,256	27,872	1,11
85	0,005	168,25W	35,276	27,975	1,29
91	0,025	169,53W	35,282	27,805	1,17
92	0,00S	172,20W	35,276	27,824	1,07
93	0,005	174,27W	35,322	27,821	1,16
94	0,00\$	176,25W	35,270	27,967	1,18
95	0,005	178,25W	35,295	28,420	1,29
96	0,005	179,75E	35,248	28,216	1,15
97	0,005	177,75E	35,191	28,554	1,22
98	0,005	175,75E	35,205	28,727	1,27
99	0,005	173,82E	35,176	28,918	1,28
100	0,00S	171,75E	35,341	29,341	1,32
101	0,00S	169,75E	35,330	28,881	1,26
102	0,005	167,75E	35,113	29,601	1,41
108	0,02N	165,00E	34,790	29,866	1,54

Table 1

Salinity, temperature, $\partial^{13}C$ values of $\sum CO_2$, of the surface waters from the Equatorial Pacific collected during the Alize 2 cruise (January-March 1991).

Salinité, température et valeurs de ∂^{13} C du \sum CO₂ des eaux de surface prélevées dans le Pacifique équatorial au cours de la campagne Alizé 2 (janvier-mars 1991).

1988/1989 corresponded to El Niño and La Niña situations (Philander, 1990); the Alizé 2 cruise in early 1991 corresponded to quite normal conditions, where the minimum sea surface temperature was situated at the equator between 180° W and 95° W. However the SST values were higher than those measured a few months before suggesting that the upwelling was in a weak phase of its development (Lefèvre *et al.*, 1994).

Surface waters

The ∂^{13} C variations of \sum CO₂ in surface waters (collected at depths between 2 and 4 m) were observed along the equator in the east-west direction of the surface current, and

compared with the changes in temperature, ΔpCO_2 and nitrate concentrations.

The $\partial^{13}C$ -temperature relationship

Along the equatorial transect of the Pacific Ocean, the ∂^{13} C values of $\sum CO_2$ of surface waters increased from 0.90‰ at 97°W to 1.54‰ at 165°E, which directly parallels the temperature increase from 23°C to 30°C (Fig. 2a). These parameters are both affected by the upwelling and the westward advection of surface waters of the South Equatorial Current: the decrease by 0.64‰ of the ∂^{13} C values in the $\sum CO_2$ at the easternmost side marks the progressive influence of ¹³C-depleted upwelled waters, which are also 7°C colder than at the westernmost side. Under conditions

stati	on 11 (0,00	S, 95,39W)		statio	n 20 (0,00S,	104,90W)	
Depth m	S°/°°	T℃	∂13C•/••PDB	Depth m	S°/°°	T°C	∂13C°/°°PDB
2	34 707	23 320	1 11	•	24 197	25 270	1 22
20	24,707	22 370	1 02	2	34,107	25,575	1,32
20	34,702	22,070	1 01	20	34,250	23,133	1,21
40	34,002	21 882	0.85	30	34,370	24,010	1,22
40	33,042	18 0/0	0.64	39	34,407	24,447	1,10
61	34,871	10,949	0,04	48	34,744	23,123	0,92
81	35,226	17,836	0,64	59	34,785	22,546	0,92
93	35,261	17,020	0.71	79	34,752	19,498	0,42
100	35,169	16,283	0,74	100	34,899	15,484	0,31
118	35,012	14,629	.0,67	118	34,879	14,230	0,22
159	34,937	13,570	0,56	158	34,885	13,024	0,33
399	34,742	10,181	-0,16	327	34,808	11,441	-0,17
1991	34,640	2,328	-0,18	2002	34,634	2,289	-0,30
stati	on 36 (0.00	S. 114.90W)	station	10 000	124 5514/1	
Dooth m	20/00	T°C	213C*/**PDB	Station	1 49 (0,003,	134,3374)	
Depin m	3.1		0130 / 400	Depth m	S°/°°	T°C	∂13C°/°°PDB
2	34,857	24,360	1,07	2	35,208	25,909	1,10
20	34,871	24,298	1,15	25	35,216	25,912	1,14
40	34,913	24,203	1,03	48	35,201	25,844	1.11
49	34,952	24,155	1,16	74	35 217	25 768	1 14
58	35.007	24,005	1.03	00	35 200	25,228	0.01
70	35,120	23,669	1.01	35	25 5 6 9	20,220	0.04
83	35 057	22 133	0.80	119	35,568	22,033	0,94
04	35 075	20 107	0,60	139	34,951	17,984	0.57
34	35,075	16 957	0,00	161	34,999	15,583	0,61
118	35,079	10,852	0,77	200	34,922	13,357	0,43
158	34,903	13,530	0,48	300	34,837	11,842	-0,01
351	34,766	10,669	-0,05	381	34,693	9,395	0,08
1499	34,607	2,935	-0,26	998	34,552	4,615	-0.01
stati	on 71 (0,00	S, 150,00W)	statior	n 76 (0,00S,	160,55W)	
Donth m	00/00	THE	21200/00008		- , , , , , , , , , , , , , , , , , , ,		
	35,001	10	1 20	Depth m	S*/**	1°C	alace/eepbB
4	35,001	27,209	1,20	2	35,254	27,007	1,13
23	35,000	26,742	1,10	20	35,252	26,912	1.05
33	35,003	26,727	1,24	30	35,254	26,909	1,05
43	35,010	26,698	1,12	40	35.254	26,906	0,94
63	35,080	26,668	1,13	59	35,261	26.904	1,02
83	35,210	26,668	1,19	80	35 274	26 881	1.02
104	35,419	24,991	0,92	00	35 400	26 459	1 07
124	35,003	19,554	0,51	110	25 6 25	24.018	99.0
163		14,694	0.01	119	35,035	16 763	0,50
303	34 826	11 652	0.04	159	35,100	10,703	0,75
500	34,020	6 934	0,04	299	34,807	11,360	0,19
288	34,573	0,024	0,01	599	34,575	7,151	-0,05
1009	34.351	4,640	-0,08	1004	34.552	4,392	-0,15
stati	ion 85 (0,00	S, 168,25W	()	statio	n 95 (0,00S	, 178,25W)	
Depth m	S°/°°	T°C	∂13C°/°°PDB	Depth m	S°/°°	T°C	∂13C°/°°PDB
•	05 070	07 705	4.00				
2	35,279	27,795	1.29	2	35,295	28,420	1,29
20	35,263	27,644		20	35,310	28,023	1,20
29	35,265	27,611		30	35,318	27,955	1,11
40	35,267	27,583	1,18	39	35,302	27,905	1,15
61	35,351	27,411	1,12	60	35,302	27,813	1,06
80	35,372	27,280	1,08	80	35,346	27.817	1,08
100	35,397	26,824	1.05	99	35 375	27.759	0.89
120	35,605	25.814	0.97	121	35 546	26 402	0.84
150	35 234	16 988	0.71	121	35,340	17 777	0,63
300	34 812	11 469	0.02	100	04,005	11 570	0,00
600	34,560	6 052	0,02	300	34,635	7 000	0,17
1005	34,509	0,952	-0,05	599	34,583	7,323	0,10
1005	34,550	4,092	-0.05	1015	34,561	4,200	-0,09
statio	on 99 (0,00	S, 173,82E)		station	n 108 (0,02S	6, 165,00E)	•
Depth m	S°/°°	Т⁰С	∂13C°/°°PDB	Depth m	S°/°°	T°C	∂13C°/°°PDB
2	35,176	28,819	1,28	3	34,790	29.866	1.54
20	35.181	28,845	1,26	20	34 709	29 849	1 50
30	35,190	28.842		20	34 000	20,045	1 50
40	35 108	28 833	1.23	30	34,009	23,043	1,00
40	05,180	20,000	1 25	40	34,849	29,844	1,53
60	35,243	20,002	1,20	. 60	34,966	29,672	1,46
78	35,293	28,632	1,26	78	35,175	29,299	1,35
100	35,356	25,482	0,91	99	35,293	26,853	1,24
120	35,292	22,645	0,85	120	35.353	24,266	0.96
157	35,263	18,172	0,60	158		20.754	0.59
299	34.840	11,727	0,39	200	34 856	12 088	0.55
600	34.564	6.920	0,22	500	34 570	7 016	0 1 9
1020	34.556	4.379	0.04	1000	31 651	1,010	-0 00
	5.1566			1000	04,004	4,40/	-0,03

Table 2

Vertical distribution of salinity, temperature and $\partial^{13}C$ values of $\sum CO_2$, of the waters from ten hydrological sections from the Equatorial Pacific collected during the Alize 2 cruise (January-March 1991).

Distribution verticale de la salinité, de la température et des valeurs de ∂^{13} C du Σ CO₂ des eaux prélevées en dix stations hydrologiques dans le Pacifique équatorial au cours de la campagne Alizé 2 (janvier-mars 1991).

of isotopic equilibrium and assuming a ∂^{13} C value of -7.8% for the atmospheric CO₂ (Keeling, 1992), the ∂^{13} C values of Σ CO₂ would be inversely related to temperature by the equation (1) of Mook *et al.* (1974) :

$$\partial^{13}C \text{ eq} = 9483 \text{ T}^{-1} - 31.7$$
 (1)

However, the lack of correlation between temperature and ∂^{13} C values of $\sum CO_2$ shows that the $\sum CO_2$ of the surface ocean is far from isotopic equilibrium with the atmospheric CO₂ (Fig. 2b). Previous studies have shown that in general the system does not reach carbon isotope equilibrium because the rate of CO_2 exchange at the ocean-atmosphere boundary is not fast enough and the residence time of surface waters is not infinite (Broecker and Peng, 1982; Murnane and Sarmiento, 1993). At all events, the amplitude of the deviation from isotopic equilibrium would give an interesting indication on the nature of the processes causing this departure. In that respect, the highest carbon isotope enrichments (1.3 to 1.9%) relative to equilibrium values are encountered west of 150°W where temperatures are maximum, while eastward, the increasing upwelling of ¹³C-depleted CO₂ in the surface waters brings ∂^{13} C values close to equilibrium values (Fig. 2b).

A few anomalies of high ∂^{13} C values are well correlated with the local presence of warm-low saline and nutrientpoor waters with near-zero CO₂ fluxes, which are introduced from the north by equatorial long-waves. These anomalies are more important in the eastern part of the Equatorial Pacific. West of 135°W the well developed westward zonal current reduces the fluctuations caused by equatorial long waves (Eldin *et al.*, 1992; Lefèvre and Dandonneau, 1992; Lefèvre *et al.*, 1994).

The $\partial^{13}C$ - ΔpCO_2 relationship

Although the measurements of ΔpCO_2 (pCO_2 waterpCO₂air) represent snapshots during the annual variations of the Equatorial Pacific, the inverse correlation which is observed between the CO₂ fluxes (Lefèvre and Dandonneau, 1992) and the $\partial^{13}C$ values of the ΣCO_2 of surface waters is rather conspicuous (Fig. 3). In fact, the outgassing of CO₂-rich waters should induce an increase of the $\partial^{13}C$ values of the ΣCO_2 . The inverse correlation between CO₂ fluxes and $\partial^{13}C$ values indicates that the upwelling of ^{13}C depleted waters rich in CO₂ due to organic matter remineralization is the prevailing factor which influences the $\partial^{13}C$ values in surface waters of that region therefore masking the isotope enrichment due to CO₂ degassing.

The carbon isotope budget

The chemical carbon budget could not be calculated directly because no measurements of ΣCO_2 concentrations were made during the cruise. The ΣCO_2 concentrations were thus deduced from nitrate concentrations using Redfield stoechiometry in order to establish the isotopic mass balance calculations between 165°E and 95°W and to estimate the respective parts of biological processes (the production-regeneration budget) and of CO₂ outgassing. The stations at 165°E and 95°W are considered as the two end members of the surficial Equatorial Pacific system, where turbulent meridional advection is assumed to be small. The

Table 3

Salinity, temperature, $\partial^{13}C$ values of $\sum CO_2$, of the surface waters from the submeridional transect between 140°-150°W in the Equatorial Pacific collected during the Alize 2 cruise (January-March 1991).

Salinité, température et valeurs de ∂^{13} C du \sum CO₂ des eaux de surface prélevées le long d'une radiale subméridienne entre 140° et 150°W dans le Pacifique équatorial au cours de la campagne Alizé 2 (janvier-mars 1991).

N° station	latitude	longitude	S ‰	T ℃	∂ ¹³ C ‰
52	2,50N	140,00W	37,847	26,897	1,28
53	2,00N	140,00W	34,880	26,943	1,26
54	1,50N	140,00W	34,827	26,028	1,21
55	1,00N	140,00W	34,922	25,804	1,01
56	0,50N	140,00W	35,069	26,143	1,05
57	0,02 N	140,00W	35,213	26,398	1,16
58	0,508	140,00W	35,238	26,426	1,03
59	1,005	140,00W	35,260	26,512	1,17
60	1,50S	140,00W	35,250	26,484	1,16
61	2,00S	140,00W	35,165	26,489	1,05
62	2,50S	140,00W	35,207	26,657	1,14
63	5,67S	142,20W	35,380	26,932	1,07
64	7,098	143,17W	35,733	27,905	1,28
65	8,79S	144,37W	35,786	28,316	1,45
66	10,52S	145,55W	37,776	28,855	1,52
67	12,205	146,73W	35,958	28,814	1,57
68	13,30S	147,50W	35,953	29,164	1,38
69	15,10S	148,63W	35,929	29,046	1,56
70	16,00S	148,90W	35,959	29,620	1,38

Figure 2

a) Variations along the equator of temperature (open squares) and of $\partial^{13}C$ values of $\sum CO_2$ in the surface waters of the Pacific ocean (filled rhombs).

Variations le long de l'équateur de la température (carrés blancs) et des valeurs de $\partial^{13}C$ du ΣCO_2 des eaux de surface dans l'océan Pacifique (losanges noirs).

b) Relationship between temperature and $\partial^{13}C$ of $\sum CO_2$ in surface ocean waters from the Equatorial Pacific.

Relation température- $\partial^{13}C$ du $\sum CO_2$ dans les eaux de surface du Pacifique le long de l'équateur.

 ΣCO_2 of East Pacific surface waters (with an isotopic composition labelled as $\partial^{13}C_{east}$) is thus considered resulting from the simple mixing of the ΣCO_2 of oligotrophic West Pacific surface waters (with an isotopic composition labelled as $\partial^{13}C_{west}$) and of the CO₂ added by upwelled waters (with an isotopic composition labelled as $\partial^{13}C_{o.m.}$). The fraction x of CO₂ which comes from organic matter oxidation is calculated assuming an average ΣCO_2 concentration of 2040 µmol kg⁻¹ in the oligotrophic surface waters at 165°E (Inoue and Sugimura, 1992), a Redfield ratio C/N = 106/16, and nitrate concentrations of 0 µmol kg⁻¹ at 165°E and of 11 µmol kg⁻¹ at 95°W (Reverdin *et al.*, 1991). The mixing equation (2) thus becomes :

$$\partial^{13}C_{\text{east}} = [\partial^{13}C_{\text{west}} * (1-x)] + [(\partial^{13}C_{\text{o.m.}}) * x]$$
 (2)

The difference between the calculated and measured $\partial^{13}C$ values ($\Delta^{13}C_{c.m}$) is equal to 0.4‰ at 95°W and should correspond to the overall isotopic effect due to the CO₂ evasion from the ocean to the atmosphere. The carbon enrichment factor ε at equilibrium between ΣCO_2 and gaseous CO_2 is equal to 8.15% at 23°C (Mook *et al.*, 1974). The fraction f of ΣCO_2 remaining in the sea surface after outgassing may be estimated by the Rayleigh equation: $\Delta^{13}C_{0,m} = -\varepsilon$ lnf; it is equal to 0.95 which means that about 5% of the aqueous ΣCO_2 escapes as gas toward the atmosphere at 95°W in the zone of active upwelling.

The $\partial^{13}C$ -Nitrate relationship

In the westernmost Pacific at 165°W the nitrate concentration of oligotrophic surface waters is below detection. The injection of nutrients from underlying waters increases progressively toward the east so that the nitrate concentrations against ∂^{13} C values (Fig. 4) clearly shows the linear relationship between these two parameters. This suggests that surface water nutrients are contributed by an unique source which is organic matter oxidation, a process which also adds ¹³C-depleted CO₂ to the Σ CO₂ reservoir. The relationship between ∂^{13} C values and [NO₃] concentrations in the Pacific surface waters (3) may be defined as Broecker and Maier-Raimer (1992) proposed for the ∂^{13} C-[PO₄] relationship.

$$\partial^{13}$$
Csurf – ∂^{13} Cm.s.o. = [Δ photo/ Σ CO₂m.s.o. * C/Norg]
[(NO₃)surf – (NO₃)m.s.o.] (3)

where surf and m.s.o. refer respectively to surface and mean surface ocean, photo is the carbon isotope fractionation during marine photosynthesis, and C/Norg is the Redfield ratio. Taking the following parameters for the Equatorial Pacific (Δ photo= -22 ‰, C/N org = 106/16, Σ CO₂m.s.o.= 2040 µmol kg⁻¹), the equation becomes : ∂_{13} Csurf - ∂_{13} Cm.s.o. = -0.0714 [(NO₃)surf - (NO₃)m.s.o.] (4) For the mean surface ocean values measured in the Pacific (∂_{13} C =1.16‰, (NO₃) = 4.81 µmol kg⁻¹) the productionremineralization line is given by the following equation : ∂_{13} Csurf = -0.0714 (NO₃) + 1.50 (5)

Figure 3

Relationship between $\partial^{13}C$ of $\sum CO_2$ and ΔpCO_2 in surface ocean waters from the Equatorial Pacific.

Relation $\partial^{13}C$ du $\sum CO_2 - \Delta pCO_2$ dans les eaux de surface du Pacifique le long de l'équateur.

Figure 4

Relationship between $\partial^{13}C$ of $\sum CO_2$ and NO_3 in the ocean waters from the Equatorial Pacific. The line represents the evolution followed by surface waters to which products of organic matter remineralization are added.

Relation $\partial^{13}C$ du $\sum CO_2$ - NO₃ dans les eaux de surface du Pacifique le long de l'équateur. La droite représente l'évolution suivie par les eaux de surface auxquelles sont ajoutés les produits de la reminéra-lisation de la matière organique.

The West Pacific surface waters are well grouped along this line while the central and East Pacific surface waters are shifted to ∂^{13} C values which are higher than those expected for a simple mixing between oligotrophic waters and eutrophic waters. The ∂^{13} C-deviation of about +0.4‰ from the production-remineralization line is thus attributed to the CO₂-outgassing effect in the Central and East Pacific where upwelling is active.

The anthropogenic CO₂ uptake by surface ocean waters

The only available $\partial^{13}C$ measurements of $\sum CO_2$ in surface waters in the Equatorial Pacific are those provided by the Hudson expedition in 1970 which crossed the equator on a meridional section along 150°W (Kroopnick et al., 1977). The $\partial^{13}C$ values of surface water $\sum CO_2$ measured by Kroopnick during this cruise, showed ∂¹³C values increasing from 1.7% at the equator to 2.3% at 15°S. A similar trend was observed from a sub-meridional transect between 140° and 150° W during the Alize 2 cruise, with ∂^{13} C values increasing from 1.16‰ at the equator to 1.56‰ at 15°S (Tab. 3). The overall ¹³C depletion in ocean surface ΣCO_2 after this 20 years period may be explained by the anthropogenic input of ¹³C-depleted CO₂; it represents a gradual $\partial^{13}C$ decrease by 0.025% yr⁻¹, a value which agrees well with that of 0.020% yr-1 found by Quay et al., (1992) in other locations of the Pacific Ocean for the same time interval.

The vertical $\partial^{13}C$ distribution

It is generally admitted that the biological productivity of the Equatorial Pacific decreases westward (Chavez and Barber, 1987; Dugdale *et al.*, 1992; Dandonneau, 1992), but during the Alize 2 cruise, no longitudinal gradient of the chlorophyll-*a* concentration was detected. The vertical distribution

of the whole chemical tracers indicates that the thermocline is a major dynamic boundary and that it corresponds to very sharp gradients of all chemical parameters. The depth of the upper thermocline which coincides with the isotherm 20°C increases from about 45 m at 95°W to 180 m at 165°E.

The distribution of $\partial^{13}C$ at depth through the Pacific Ocean

The concentration of the oxygen minimum increased westward from 0.3 ml l-1 at 95°W to 1.2 ml l-1 at 165°E. Similarly, the ∂^{13} C values of Σ CO₂ at the oxygen minimum level change from -0.17% at 95°W to 0.35% at 165°E, confirm that the highest regeneration rates in the water column were located in the East Pacific (Fig. 5).

The $\partial^{13}C$ depth variations from the surface down to 1000 m along the equator, shows clearly the input of ^{13}C -depleted CO₂ by ascending deeper waters. Waters with $\partial^{13}C$ value of $\approx 0\%_0$ are lying at about 250-350 metres in the East Pacific and at 1000 metres in the West Pacific. This pattern fits remarkably well with the variations with depth of dissolved oxygen and nutrient concentrations (Reverdin *et al.*, 1991).

The $\partial^{13}C$ -nitrate relationship at depth

The ∂_{13} C-(NO₃) pairs corresponding to the upper thermocline level, follow the linear trend of organic matter oxidation (Fig. 4). Below this level, the ∂_{13} C-(NO₃) pairs are generally grouped outside this trend with significant relative enrichments in ¹³C and (NO₃). This means that in waters below the oxygen minimum, the anthropogenic CO₂ contamination is very weak. Furthermore, the ∂_{13} C and (NO₃) variations occur mostly between the upper thermocline and the oxygen minimum levels. These levels may thus be considered as major geochemical boundaries which delineate a water layer where most of the organic matter remineralization occurs.

Figure 5

Equatorial distribution of $\partial^{13}C$ values of ΣCO_2 at depth in the Pacific Ocean. The upper and lower dashed lines represent respectively the isotherm 20°C (upper thermocline) and the oxygen minimum level.

Distribution verticale des valeurs de $\partial^{13}C$ du ΣCO_2 des eaux du Pacifique le long de l'équateur. Les lignes en pointillés représentent l'isotherme 20°C (thermocline supérieure) et le niveau du minimum d'oxygène.

The carbon isotope budget in the water column

For a better understanding of the zonal $\partial^{13}C$ variations in the water column, we have calculated the depth-integrated $\partial^{13}C$ values for the ten equatorial profiles. These values represent the integrated areas from 0 m to 940 m comprised between the $\partial^{13}C$ depth profiles and the vertical line which corresponds to the $\partial^{13}C$ value of the deeper water; they would give the global ¹³C balance in the 0-940 m layer related to the production-regeneration plus outgassing budget at each station.

The 0-940 m integrated ∂^{13} C values are low in the East Pacific, increase progressively westward and are doubled in the Western Pacific (Tab. 4). This means that in the East Pacific the amounts of CO₂ coming from organic matter regeneration are at least twice more important than in the West Pacific.

CONCLUSION

The dominant factor affecting the horizontal and vertical distributions of ∂^{13} C in Σ CO₂ of the Equatorial Pacific waters is the physical circulation, especially the upwelling of waters originating from relatively shallow depths which spread over the East and Central Pacific ocean. During the Alize 2 cruise from 95°W to 165°E, the advection from depth of cold waters caused the temperature drop by 7°C and the ∂^{13} C decrease by 0.64‰ in the surface waters. The combined effects of CO₂ evasion and of high biological productivity levels in the zone of active upwelling caused

the increase of ∂^{13} C values in the surface ocean waters. This increase is superimposed to the major ∂^{13} C depletion due to massive CO₂ inputs from underlying waters. Therefore, in the central and eastern equatorial Pacific, it is the deep-CO₂ input from upwelled waters, depleted in ¹³C, which mostly controls the carbon isotope variations of Σ CO₂.

The upper thermocline and the oxygen minimum level correspond to major boundaries between which a large part of the carbon remineralization occurs. Variability of the position of these levels induced by climatic and/or biological constraints would thus have direct implications on chan-

Table 4

Integrated $\partial^{13}C$ values of $\sum CO_2$ from 0 to 940 m calculated at ten hydrological sections from the Equatorial Pacific.

Valeurs de ∂^{13} C du Σ CO₂ intégrées de 0 à 940 m pour dix stations hydrologiques du Pacifique équatorial.

N° sta	tion	integral	°/°°m	
1	1	239	,1	
2	0	215,2		
3	6	278	,6	
4	9	230	,8	
7	1	255	6	
7	6	352,7		
8	5	281	,0	
9	5	337	,2	
9	9	340	,5	
10	8	496	,9	

ging the carbon budget and the $\partial^{13}C$ signature of the equatorial upwelling.

For a more global point of view, the ∂^{13} C value of $\sum CO_2$ of surface ocean in this part of the Equatorial Pacific has decreased by $\approx 0.025\%$ yr⁻¹ during the last twenty years due to the introduction of anthropogenic CO₂ into the atmosphere by burning fossil fuels and deforestation. This result demonstrates the sensitivity of the ∂^{13} C value of $\sum CO_2$ as a tracer to quantify the ability of the different portions of the oceans for atmospheric CO₂ absorption.

REFERENCES

Broecker W.S. and E. Maier-Raimer (1992). The influence of air and sea exchange on the carbon isotope distribution in the sea. *Glo*bal Biogeochemical Cycles, 6, 3, 315-320.

Broecker W.S. and T.H. Peng (1982). *Tracers in the Sea*. Lamont-Doherty Geological Observatory, Palisades, New York, 690 p.

Chavez F.P. and R.T. Barber (1987). An estimate of new production in the equatorial Pacific. *Deep Sea Research*, **35**, 5, 839-853.

Dandonneau Y. (1992). Surface chlorophyll concentration in the tropical Pacific ocean: an analysis of data collected by merchant ships from 1978 to 1989. *Journal of Geophysical Research*, **97**, C3, 3581-3591.

Deuser W.G., E.T. Degens and R.R.L. Guillard (1968). Carbon isotope relationships between plankton and sea water. *Geochimica et Cosmochimica Acta*, **32**, 657-660.

Dugdale R.C., F.P. Wilkerson, R.T. Barber and F.P. Chavez (1992). Estimating new production in the equatorial Pacific ocean at 150°W. *Journal of Geophysical Research*, **97**, 681-686.

Eldin G., A. Morlière and G. Reverdin (1992). Acoustic doppler current profiling along the Pacific equator from 95°W to 165°E. *Geophysical Research Letters*, **19**, 913-916.

Goericke R. and B. Fry (1994). Variations of marine plankton $\partial^{13}C$ with latitude, temperature and dissolved CO₂ in the world ocean. Global Biogeochemical Cycles, 8, 1, 85-90.

Inoue H.Y. and Y. Sugimura (1985). Carbon isotopic fractionation during the CO_2 exchange process between air and sea water under equilibrium and kinetic conditions. *Geochimica et Cosmochimica Acta*, **49**, 2453-2460.

Inoue H.Y. and Y. Sugimura (1992). Variations and distributions of CO_2 in and over the equatorial Pacific during the period from the 1986/88 El Niño event to the 1988/89 La Niña event. *Tellus*, 44B, 1-22.

Keeling C.D. (1992). Global observations of atmospheric CO_2 . *in* : NATO Advanced Study Institute on the Global Carbon Cycle. (unpublished report)

Kroopnick P.M. (1985). The distribution of 13 C of Σ CO₂ in the world ocean. *Deep Sea Research*, **32**, 1, 57-84.

Kroopnick P., S.V. Margolis and C.S. Wong (1977). $\partial^{13}C$ variations in marine carbonate sediments as indicators of the CO₂ balance between the atmosphere and oceans. *in*: The Fate of Fossil Fuel CO₂

Acknowledgements

We are particularly indebted to our colleagues who have participated to the Alize 2 cruise, with a special mention to the chief scientists G. Reverdin and A. Morlière for encouraging the inclusion of this isotopic study in the Alize 2 project, a part of the TOGA programme. We thank also Y. Dandonneau and M. Rodier who made the pCO_2 and nutrients measurements and gave us facilities to use their data.

in the Oceans (Eds. N.R. Andersen and A. Malahoff), Plenum, New-York, p. 295-321.

Lefèvre N. and Y. Dandonneau (1992). CO_2 fluxes in the equatorial Pacific in January-March 1991. Geophysical Research Letters, 19, 22, 2223-2226.

Lefèvre N., C. Andrié, Y. Dandonneau, G. Reverdin and M. Rodier (1994). New production constrained by air-sea exchange, temperature effects, the CO_2 distribution in the equatorial Pacific in January-March 1991. Journal of Geophysical Research, 99, C6, 12639-12654.

Mook W.G., J.C. Bommerson and W.H. Staverman (1974). Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. *Earth Planetary Science Letters*, **22**, 169-176.

Murnane R.J. and J.L. Sarmiento (1993). On the relative importance of biology and air-sea exchange for surface ocean $\partial^{13}C$ in: 4th International Conference CO₂, World Meteorological Organization Global Atmospheric Watch (Carquairanne, France, 13-17 September 1993), 208-211.

Philander G.S. (1990). El Niño, La Niña and the Southern Oscillation. Academic Press, San Diego, California, 289 p.

Quay P.D., B. Tilbrook and C.S. Wong (1992). Oceanic uptake of fossil fuel CO₂ : carbon-13 evidence. *Science*, **256**, 74-78.

Rau G.H., R.E. Sweeney and I.R. Kaplan (1982). Plankton ${}^{13}C/{}^{12}C$ ratio changes with latitude: differences between northern and southern oceans. *Deep Sea Research*, **29**, 1035-1039.

Rau G.H., T. Takahashi and D.J.D. Marais (1989). Latitudinal variations in plankton $\partial^{13}C$: implications for CO₂ and productivity in past oceans. *Nature*, **341**, 516-518.

Reverdin G., A. Morlière and G. Eldin (1991). Alizé 2, campagne océanographique trans-Pacifique (janvier-mars 1991). Recueil des données. Rapport interne LODYC 91/13, 341 p.

Tans P.P., J.A. Berry, R.F. Keeling (1993). Oceanic ${}^{13}C/{}^{12}C$ observations : a new window on ocean CO₂ uptake. *Global Biogeochemical Cycles*, 7, 2, 353-368.

Tans P.P., T.J. Conway and T. Nakazawa (1989). Latitudinal distribution of the sources and sinks of atmospheric carbon dioxide derived from surface observation and an atmospheric transport model. *Journal of Geophysical Research*, 94, D4, 5151-5172.

Wyrtki K. (1981). An estimate of Equatorial Upwelling in the Pacific. Journal of Physical Oceanography, 11, 1205-1214.