Summer frontal contribution to the fertilization of oceanic waters off the northeast coast of Spain

Jordi FLOS *, Joaquin TINTORÉ *

* Departament d’Ecologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
* Departament de Fisica, Universitat de Les Illes Balears, 07071 Palma de Mallorca, Spain.

Received 11/4/88, in revised form 30/5/89, accepted 7/6/89.

ABSTRACT

The physical, biological and chemical structures detected in July 1983 between the northeast coast of the Iberian peninsula and the Balearic Islands are analysed and discussed in this paper. Principal component analysis and cluster analysis are used to summarize the information. Evidence of the contribution of the cross-frontal circulation to the biological fertilization of the offshore regions is presented and discussed. It is also suggested that offshore jets or filaments of low-salinity coastal water strongly enhance the diapycnal mixing that is responsible for the upward transport of nutrients on the offshore side of the shelf/slope front.


INTRODUCTION

Biologically, the Mediterranean is known for its oligotrophic character, but the relatively high abundance of a variety of animals in the higher trophic levels prompted Sournia (1973) to talk about the paradox of the Mediterranean. Seeking the missing production that could explain this paradoxical situation, biologists have focused their attention on the ratio of new and regenerated production (Dugdale and Goering, 1967) to total production.

Classical works on the geostrophic circulation of the Western Mediterranean (Alain, 1960; Ovchinnikov, 1966) introduced the idea of a central upward lift of isopycnals (often called central dome or divergence) extending from the Ligurian Sea to the southern part of the Balearic Sea. This widely accepted idea of central divergence with its associated cyclonic circulation was thought to be the main enrichment mechanism of the region, responsible for all new production that had not been previously accounted for (Jacques et al., 1973; 1976).

A new picture of the circulation of the Balearic Sea has recently emerged. Font et al. (1988) discuss the existence of this permanent doming structure but relate it to the existence of two density fronts, one over the continental slope region and the other northwest of the Balearic Islands. La Violette et al. (1990), in an extensive analysis of satellite imagery, showed the importance of these two frontal features to the surface circulation in the Balearic Sea.

The fertilizing mechanisms supplying nutrients to the photic zone were discussed by Estrada and Margalef...
(1988), who distinguished the following mechanisms: 1) local mixing due to the breakdown of the thermocline; 2) wind-induced upwelling at the slope region; 3) surface influx of modified Atlantic water; 4) river runoff; and 5) frontal contribution. It is important to note that Estrada and Margalef (1988) defined frontal contribution as the upward motion of nutrients in the central, almost permanent, doming structure.

In this paper we present evidence of summer enrichment associated with the shelf/slope front off the northeast Spanish coast. We discuss the vertical motions induced by the different physical features and their biological implications.

DATA AND METHODS

Data were collected on board the R/V Garcia del Cid from 30 June to 16 July 1983 in a region between Barcelona and Mallorca (Fig. 1). An intense survey of the shelf/slope region off Barcelona was carried out between 30 June and 3 July. The data included CTD casts and Niskin bottles, from which chlorophyll, coulter counter seston, nitrate, nitrite, oxygen, reactive phosphate and silicate were analysed (Grup PEPS, 1986). Principal component analysis (i.e. Legendre and Legendre, 1983) is used to summarize hydrographic data (Flos, 1979; 1980) and particle size spectra (Kitchen et al., 1975; Flos, 1976). A cluster analysis of the samples was applied using the values from the first two PCA as descriptors.

![Figure 1](image)

**Figure 1**
Map distribution of stations. On the left, enlargement of the 36 coastal stations with indication of the transects shown in other figures.

Situation des stations. En cartouche : les 36 stations côtières, avec indication des coupes transversales présentées dans les autres figures.

![Figure 2](image)

**Figure 2**
Principal component analysis of hydrographical data. Distributions of variables are shown in the two first principal axes. Percentage of explained variance is also shown.

Analyse en composantes principales des données hydrologiques. Distribution des variables dans le plan des deux premiers axes. Le pourcentage de la variance exprimée par chaque axe est indiqué entre parenthèses.

Principal component analysis of hydrographic data

In the principal component analysis we used temperature, salinity, sigma-t, nitrate, nitrite, phosphate, silicate and chlorophyll \( a \) (logarithmic transformation). Oxygen was not included because of insufficient data. The correlation matrix was computed using 793 samples, one-third of which belonged to the coastal grid (Fig. 1). Only two eigen vectors were greater than unity (3.81 and 1.40), accounting for 65% of the variance (47.5 and 17.5% respectively). The first component was well correlated with temperature, salinity, sigma-t and nutrients and reflects the importance of stratification and vertical segregation of nutrients. The second component was mainly due to the coincidence of chlorophyll and nitrite maxima at intermediate levels (Fig. 2 and 7). It reflects the biological activity at depths where vertical density and nutrient gradients are present and where irradiance permits the persistence and/or growth of phytoplankton (Fig. 3). This result is typical for Mediterranean waters in the stratified season (Flos, 1980). The same analysis performed without sigma-t as a variable shows no difference for the second component, and reduces by 12% the variance calculated for the first one.

Principal component analysis of seston data

In this study, we used particulate volumes measured in 14 size intervals (from 3.5 to 70.6 \( \mu \)m mean equivalent particle diameters, corresponding to coulter counter channels, see e.g. Sheldon and Parsons, 1967). Three eigen values greater than unity were obtained, accounting for 82.8% of the variance (58.3, 15.3 and 9.2% respectively). Positive scores for the first component
are equivalent to high total volume of seston, being particles with an equivalent diameter around 10 μm highly correlated with the first component. The other two factors combined indicate the size frequency distribution. Positive scores for the second factor are related to particles between 20 and 35 μm; negative values are related to smaller particles (less than 7 μm). Positive values for the third factor are related to particles greater than 35 μm, and negative values to particles around 15 μm.

**Cluster analysis**

We clustered the 164 samples of the first 36 stations using as descriptors the scores issued from the former PCA of hydrographic and seston data (2 and 3 scores respectively). The Euclidean distance was used and the aggregation algorithm was that of Ward (1963). We obtained 7 groups of samples by cutting the dendrogram at an arbitrary level of similarity (which gave us a sizeable number of clusters). A discriminant analysis (SPSSX package) was used to assess the clustering procedure (resulting 92.7% of the samples well classified) and to classify samples from other stations that had not entered the cluster analysis.

Means and standard deviations of original hydrographic and seston variables were computed for every group (Table). We also computed, for each group, the correlation between chlorophyll and the volume of seston of the different size intervals (Fig. 3).
Table

Group means and standard deviations for depth, temperature, salinity, sigma-t, oxygen (ml/l), ammonium, nitrite, nitrate, silicate, phosphate (µM), chlorophyll a (µg/l), total number of particles (in thousands per millilitre) and total volum of seston (ppm). Number of samples in each group is indicated on the top.

Pour chaque groupe, moyenne et écarts-type des variables : profondeur, température, salinité, sigma-t, oxygène (ml/l), ammonium, nitrite, nitrate, silicate, phosphate (µM), chlorophylle a (µg/l), nombre total de particules (milliers par millitre) et volume total de seston (ppm). Le nombre d’échantillons dans chaque groupe est indiqué en haut.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples</td>
<td>59</td>
<td>26</td>
<td>177</td>
<td>92</td>
<td>25</td>
<td>92</td>
<td>119</td>
</tr>
<tr>
<td>Depth</td>
<td>63.6 ± 18.7</td>
<td>45.2 ± 16.5</td>
<td>152.7 ± 139.1</td>
<td>75.4 ± 15.9</td>
<td>24.2 ± 17.6</td>
<td>8.9 ± 9.0</td>
<td>45.6 ± 15.1</td>
</tr>
<tr>
<td>Temperature</td>
<td>14.2 ± 1.3</td>
<td>15.8 ± 1.9</td>
<td>13.1 ± 0.2</td>
<td>13.7 ± 1.0</td>
<td>18.7 ± 1.8</td>
<td>21.9 ± 2.2</td>
<td>15.9 ± 1.7</td>
</tr>
<tr>
<td>Salinity</td>
<td>37.97 ± 0.26</td>
<td>37.87 ± 0.31</td>
<td>38.29 ± 0.12</td>
<td>38.11 ± 0.16</td>
<td>37.55 ± 0.36</td>
<td>37.61 ± 0.33</td>
<td>37.94 ± 0.26</td>
</tr>
<tr>
<td>Sig-t</td>
<td>28.47 ± 0.46</td>
<td>28.02 ± 0.63</td>
<td>28.95 ± 0.12</td>
<td>28.68 ± 0.34</td>
<td>27.07 ± 0.62</td>
<td>26.22 ± 0.60</td>
<td>28.05 ± 0.53</td>
</tr>
<tr>
<td>Oxygen</td>
<td>5.5± 0.38</td>
<td>5.50 ± 0.22</td>
<td>4.91 ± 0.33</td>
<td>5.27 ± 0.28</td>
<td>5.33 ± 0.31</td>
<td>5.17 ± 0.34</td>
<td>5.68 ± 0.35</td>
</tr>
<tr>
<td>Ammonium</td>
<td>0.11 ± 0.07</td>
<td>0.16 ± 0.11</td>
<td>0.10 ± 0.07</td>
<td>0.10 ± 0.06</td>
<td>0.11 ± 0.07</td>
<td>0.13 ± 0.09</td>
<td>0.11 ± 0.08</td>
</tr>
<tr>
<td>Nitrite</td>
<td>0.04 ± 0.06</td>
<td>0.03 ± 0.04</td>
<td>0.04 ± 0.04</td>
<td>0.18 ± 0.09</td>
<td>0.02 ± 0.04</td>
<td>0.01 ± 0.01</td>
<td>0.02 ± 0.03</td>
</tr>
<tr>
<td>Nitrate</td>
<td>0.65 ± 1.15</td>
<td>0.13 ± 0.17</td>
<td>5.09 ± 1.31</td>
<td>1.54 ± 0.88</td>
<td>0.12 ± 0.13</td>
<td>0.06 ± 0.10</td>
<td>0.07 ± 0.11</td>
</tr>
<tr>
<td>Silicate</td>
<td>1.00 ± 0.81</td>
<td>0.70 ± 0.51</td>
<td>3.28 ± 1.40</td>
<td>1.54 ± 0.77</td>
<td>0.52 ± 0.49</td>
<td>0.21 ± 0.28</td>
<td>0.83 ± 0.71</td>
</tr>
<tr>
<td>Phosphate</td>
<td>0.11 ± 0.16</td>
<td>0.10 ± 0.07</td>
<td>0.28 ± 0.15</td>
<td>0.10 ± 0.09</td>
<td>0.13 ± 0.11</td>
<td>0.06 ± 0.08</td>
<td>0.06 ± 0.07</td>
</tr>
<tr>
<td>Chlorophyll</td>
<td>0.77 ± 0.94</td>
<td>0.52 ± 0.43</td>
<td>0.30 ± 0.69</td>
<td>0.84 ± 0.78</td>
<td>0.54 ± 0.70</td>
<td>0.15 ± 0.08</td>
<td>0.46 ± 0.38</td>
</tr>
<tr>
<td>N. part</td>
<td>2.22 ± 1.25</td>
<td>2.52 ± 0.74</td>
<td>0.96 ± 0.48</td>
<td>1.87 ± 0.95</td>
<td>3.31 ± 1.37</td>
<td>2.10 ± 0.78</td>
<td>2.22 ± 0.79</td>
</tr>
<tr>
<td>V. part</td>
<td>0.54 ± 0.32</td>
<td>0.99 ± 0.16</td>
<td>0.23 ± 0.11</td>
<td>0.33 ± 0.13</td>
<td>0.73 ± 0.34</td>
<td>0.34 ± 0.13</td>
<td>0.35 ± 0.10</td>
</tr>
</tbody>
</table>

OBSERVATIONS AND RESULTS

Description of the shelf/slope region

An in-depth analysis of the physical characteristics of the shelf/slope region can be found in Tintoré et al. (1989). However, a brief description is given here for the sake of completeness. In the first part of the cruise (stations 1 through 36), a body of low-salinity water was found over the shelf (Fig. 4). The core of the low-salinity water (< 37.2) occupied the upper layer, from the surface to 40 m (station 22). In the slope region, the density front was detected (isopycnals deepening 40 m over a distance of 25 km), while near the coast, an even steeper upward lift of isopycnals was observed.

Figure 5
Spatial distribution of scores for the first component of the PCA on hydrographical data between stations 13 and 18 (see Fig. 1).

Répartition spatiale sur la radiale de stations 13 à 18 (voir fig. 1) des valeurs de la première composante (« scores ») de l'analyse des données hydrologiques.

Figure 6
Distribution of samples from stations 16, 19, 18, 21, 38, 39, 40 and 41 on the first plane of the PCA of hydrographical data. The first couple of numbers indicate the station, the second the depth.

Distribution d'échantillons des stations 16, 19, 18, 21, 38, 39, 40 et 41 sur le plan des deux premiers axes de l'analyse en composantes principales des données hydrologiques. Les deux premiers numéros indiquent la station; les suivants la profondeur.
In the core of the less saline water, in the vicinity of stations 14, 15, 26 and 27, isohalines and isopycnals were almost parallel, suggesting that no significant shear stresses were present. Between this zone of low-salinity water and the slope front, frequent salinity inversions were found (e.g. stations 16, 17 and 28), suggesting that significant horizontal and vertical mixing occurred. This complex structure of interleaving layers was also detected in the vertical distributions of the first component of the PCA performed on the hydrographic data (Fig. 5).

Tintoré et al. (1989) showed that the low-salinity water found over the shelf was part of an anticyclonic eddy. This eddy, formed as a tongue of low-salinity cold water, originated in the northern Gulf of Lions and, moving southward in the slope region, turned anticyclonically off Barcelona.

Some of the samples were plotted on the first plane of the PCA of hydrographical data (Fig. 6). The relative distribution of the samples belonging to the same levels in the photic zone indicates that significant upwelling occurred at station 19 (highest positive correlation with the first component and negative correlation with the second). PCA scores and the depth levels reached by...
Figure 9

T-S diagram for stations 16, 17 and 18 (see text).
Diagrame T-S pour les stations 16, 17 et 18 (voir le texte).

Figure 10

Distribution of the scores for the second component of the PCA of hydrographical data on two sections from the coastal grid of stations. Higher positive values are indication of chlorophyll and nitrite maxima.
Répartition de la deuxième composante de l'analyse des données hydrologiques sur deux radiales du réseau côtier de stations. Les maximums indiquent des valeurs relativement hautes de chlorophylle et de nitrites.

The 1 μM isolines of silicate and nitrate, as well as the depth of the 15°C isotherm, are shown for stations 21 and 19 in Figure 7. The horizontal distributions of the same first component at 20, 40 and 50 m (Fig. 8) suggest an onshore intrusion of waters from stations 18 and 19 to stations 17 and 16, and from stations 30 and 31 to stations 29 and 28, while the low-salinity water remains wedged between the two. On the shore side, uplifted water was found to extend from station 24 to station 26. Associated with the frontal intrusions, strong surface convergence had to occur. This is confirmed by TS diagrams that indicate that water from 20 m at station 18 deepened to 30 m at station 17 and was detected at 40 m at station 16 (Fig. 9).

The second component issued from the PCA of hydrographical data is a good indicator of biological activity, since positive values are associated with high values of chlorophyll or nitrite. The vertical distribution of this component (Fig. 10) shows two separate maxima (onshore and offshore), at points where the nutricline reaches the highest levels. Another maximum observed in surface waters off Barcelona (station 24) is due to local enrichment by coastal runoff.

Silicate distribution (Fig. 11) also shows the two upwelling areas, one at the frontal edge, the other near the coast. Upwelled water mixes with the core of less saline water, producing a complex three-dimensional structure. The distribution of seston reflects the same overall hydrographical structures with an even greater spatial heterogeneity. Aphotic waters are characterized by low concentrations of particles and of chlorophyll and by high concentrations of nutrients. Samples well inside the photic zone, with low concentrations of both particles and chlorophyll (similar numbers to those found in the aphotic waters) and a relatively high concentration of silicate, reflect the presence of recently upwelled waters. On the other hand, low chlorophyll but high seston values are indicative of nutrient-depleted surface waters or of aphotic waters with a high input of sedimented material. In Figure 12 we show the distribution of seston concentration with an indication of points where chlorophyll is higher than 0.75 μg/l and points (marked A in the figure) where low seston concentration goes with very low values of chlorophyll (less than 0.1 μg/l) and relatively high silicate concentration (around 1 μM). Maxima of oxygen were found in the photic layer coinciding with silicate relative maxima at stations 17, 18 and 29, well above the chlorophyll maxima (Estrada and Salat, in press).

The main characteristics of the 7 groups of samples defined through the cluster analysis are shown in Table 1 and Figure 3. Groups 6 and 5 are surface waters. Groups 2 and 7 are found around 45 m. Groups 1 and 4 are near or belong to the deep chlorophyll maximum (DCM). Group 3 comprises samples from below the pycnocline.

A high heterogeneity is found between 20 and 80 m depth. Differences in the size spectra of seston suggest that the different factors involved in the shaping of the size distribution of particles play important roles in the
studied area. Among these factors, nutrient and light levels must be significant, but so are the origin of the mixing waters, chance for the biological seeds and elapsed time (Margalef, 1969). Groups 2 and 7, for example, correspond to samples from the same depth, with similar temperatures and salinities, but the samples from group 7 are in all likelihood more productive (higher oxygen) than those in group 2. Seston particles in group 7 are smaller, and their mean chlorophyll content per particle or per unit seston volume is higher than for group 2. The correlation between size-class volumes and chlorophyll (Fig. 3) suggests that samples from group 2 have a population of phytoplankton cells around 10 \( \mu \text{m} \) equivalent diameter, which is absent from group 7 samples. Thus, it is likely that significant ecophysiological and taxonomic differences exist between the two sets of populations (the slight differences in nutrient concentrations may also reflect this).

All the size spectra (Fig. 3) show a higher proportion of seston volume around channel 8 (15-20 \( \mu \text{m} \) equivalent diameter). The lack of positive correlation between seston volume in these central size intervals and chlorophyll, as well as the negative correlation found between these channels and the particulate organic carbon to nitrogen ratio (unpublished data), show that the central peak of the spectra is mainly detritic.

The central region of the Balearic Sea

From 4 to 16 July, two cross-sections were carried out between Barcelona and the Menorca Channel (station numbers higher than 36, Fig. 1). The two transects (stations 37 to 45, section A, and 86 to 75, section B) show a similar structure. Two regions where an uplift of nutrient-rich waters was detected were observed at the outer edges of the density fronts located near stations 39 and 42 (Fig. 13 and 14).

Section A shows that the low-salinity shelf waters have moved offshore (Fig. 13a). The 30 m sample taken at station 39 had a salinity of 37.58 and no detectable
silicate. T-S diagrams from stations 38, 39 and 40 (Fig. 15) suggest that a wedge of low-salinity water had subducted offshore, sinking from 15 m (at station 38) to 25 m (at station 39). Figure 13 indicates that there was vertical mixing at station 40, between waters raised under station 39 that upwelled offshore, and surface waters moving onshore from station 40 to station 39. Note that the 28.5 isopycnal found at 50 m at station 39 is found around 35 m at station 40 (Fig. 15). Thus, the uplift of isopycnals that was closer to station 18 some days earlier, moved offshore to station 40 and was substituted by a surface convergence.

Figure 16 shows the distribution of seston volume in the offshore stations. It can be seen that the concentration of particulate matter on 4 July (section A) is in general higher than twelve days later (section B), and its spatial distribution looks rather different. In the first leg, a relative maximum (centered at station 40) is found above the deep seston and chlorophyll maxima. Samples here were classified as belonging to group 1 (Table, Fig. 3). The relative seston maxima found in the DCM (Fig. 16) correspond to group 2 at station 38 and to group 4 at station 41. These two groups have in common a relative maximum of particles around 10 μm, positively correlated with chlorophyll. The DCM maxima were produced by diatoms, while the maximum above the DCM at station 40 is characterized by flagellate and dinoflagellate taxa (Estrada and Salat, in press). It is likely that the upwelled water enhanced the production of particles. The seaward spreading (at around 30 m) of this body of water represents an effective mechanism exporting nutrients and newly produced organic particulate matter towards the open ocean. Twelve days later (section B), the relative maximum of seston is centered on the island side, extending to the central zone of the Balearic Sea; but it is poorer and clearly disconnected from the coastal processes in front of Barcelona.

DISCUSSION

We have shown that in July 1983, nutrient-rich regions were detected near the coast, and in the phsyic layer on the deep ocean side of the two density fronts present in the Balearic Sea. Over the shelf, the low-salinity eddy was trapped against the coast and rotating, therefore inducing the observed coastal upwelling (Tintoré et al., 1990). On the open ocean side, nutrient-rich regions have been also detected in other frontal studies (Boucher et al., 1987) and are induced by the cross-
SUMMER CROSS-FRONTAL FERTILIZATION

Figure 15
*T-S* diagram for stations 38, 39 and 40 (see text).
Diagrame T-S pour les stations 38, 39 et 40 (voir le texte).

**CONCLUSION**

The presence of two highly dynamic, permanent density fronts suggests that the enrichment of the central part of the Balearic Sea in summer may be much more important than previously thought. This enrichment occurs in association with the cross-frontal ageostrophic circulation and with transient but very energetic instabilities (eddies or filaments) that are themselves associated with the fronts. A fresh estimation of the new production in the Western Mediterranean should be based on an accurate characterization of the spatial and temporal scales of these two physical mechanisms.

**Acknowledgements**

The authors wish to thank Dr. J. Romero who was in charge of the Coulter counter measurements during the first leg of the cruise. Thanks are also due to A. Domingo for assistance with the drawings. This work was supported by CAICYT grant 2311308 and CICYT 87087-CSIC.
REFERENCES


Flos J. (1979). Interpretación de varios análisis de las componentes principales aplicados a un conjunto de datos oceanográficos de una zona nertica del Golfo de Vizcaya. *Investigación pesq.*., Barcelona, 43, 611-635.


