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Resumé

Le moment de démarrage de la fonte sur la glace de mer (Snow Melt Onset, SMO)

a un impact sur la fonte intégrale de la glace de mer au cours de l’été et sur le volume

résiduel de la glace à la fin de l’été polaire. La variabilité interannuelle et régionale de

la SMO est régulée par des flux de chaleur sur la glace. Une SMO précoce (retardé) est

seulement et entièrement conditionnée par une accumulation de chaleur intense/hâtive

(lente/tardive). Des observations satellitaires (SSM/I) démontrent que le démarrage

de la fonte apparente (Melt Onset, MO) varie de 20-30 jours sur une distance de 25-50

km et d’une année à l’autre. Notre analyse des séries temporelles MO a révélé que

ces données constituent une combinaison de la SMO (sur la glace) avec l’ouverture

divergente dans les champs de glace (sans aucune fonte préalable). Pour extraire la

SMO à partir de la MO il a fallu prendre en compte les concentrations de glace de mer.

Les séries temporelles des flux de chaleur radiatifs et turbulents (ERA Interim) ont été

appliqués pour examiner si elles peuvent expliquer les variations dans la SMO. Nous

avons établis que les anomalies de bilan de flux (avant la fonte) expliquent une part

importante de la variabilité interannuelle et régionale dans SMO en Arctique centrale.

Le flux thermique radiatif a représenté/restitué les variations dans SMO mieux que

d’autres termes de flux. Le rôle de la chaleur latente et sensible dans la fonte précoce

(tardive) s’est manifesté par la perte réduite (renforcée) de la chaleur. Le rayonnement

solaire n’a pas eu d’effet sur la variabilité de la SMO. Les anomalies des flux ont ensuite

été examinées en relation avec les conditions météorologiques.
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Abstract

Timing of spring Snow Melt Onset (SMO) on Arctic sea ice strongly affects the

heat accumulation in snow and ice during the short melt season. This summertime heat

uptake is quasi-linearly and inversely proportional to the remnant ice volume by the end

of the melt season. On top of sea ice SMO timing, as well as its interannual and regional

variations are controlled by surface heat fluxes. Anomalously early (delayed) SMO is

due to large and early (weak and retarded) heat accumulation within the snowpack.

Satellite passive microwave (SSM/I) observations show that the apparent Melt Onset

(MO) varies by 20-30 days interannually and over 25-50 km distance. These apparent

MO records appear to be a complex blend of SMO on sea ice and sea ice opening due

to divergent ice drift. We extracted SMO out of the apparent MO record using sea ice

concentration data. Applying 20-year ERA Interim reanalysis of radiative and turbulent

surface heat fluxes we examined how well the heat fluxes reflect the variations in SMO.

Anomalies of heat fluxes in the pre-melt period explained a significant portion of the

interannual and spatial variations in SMO within the central Arctic. The main term

was the downward longwave radiation locally accounting for up to 90% of the temporal

SMO variations. The role of the latent and sensible heat fluxes in earlier/later SMO

was not to bring more/less heat to the surface but to reduce/enhance the surface heat

loss. Solar radiation alone was not an important factor for SMO timing. Anomalies in

surface fluxes were examined also in relation to meteorological conditions. 20-year MO

and SMO trends are towards earlier spring melt in the central Arctic Ocean.
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Le Treut who devoted their time and energy to comment my work.

My thankfulness to the IPLS data-treatment and data-storage group, and in par-
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Hervé LeGoff, Dany, Pascaline, Luigi, Anastase, Hugo, Manu, Marion, Gaelle, Pierre

C., Yannis, Adrien, Carlos, Simon, Jean Festy, Agathe, Alexis B., Julien B., Soukeye

and many others, whom I did not mention here.

There is no word to express my gratefulness to my family for all the support I had

while working on this PhD, and first of all to my husband Simon and my son Roman.

They demonstrated a lot of patience and comprehension, and a great organization. I

could dedicate all my thoughts and energy to my work because there were sincerity,

joy and smiles at home.

Now, with the accomplished manuscript in my hands, I feel that it is just a beginning

of something.

x



Preface

Complete 30-year satellite record made a good deal in documenting the seasonal

and interannual evolution in the Arctic sea ice cover. These illustrative and credible

images demonstrate a spectacular reduction in summer ice extent, accelerating during

the course of recent 5 years [Comiso, 2006; Stroeve et al., 2007; Deser and Teng, 2008;

Parkinson and Cavalieri, 2008; Liu et al., 2009]. Since 1979 both September minimum

and March maximum ice extents were reducing (at about -9% and -3% per decade

respectively), with the annual average trend around 4% per decade [Stroeve et al., 2007;

Comiso et al., 2008]. Thus the summer ice extents in 2005-2011 were the lowest since

1979, characterized by a pronounced ice retreat within the East-Siberian, Chukchi and

Beaufort Seas [Lindsay and Zhang, 2005; Comiso, 2006; Cuzzone and Vavrus, 2011].

Arctic sea ice thinning was less well documented. However there is a good agree-

ment between different data sources that ice is shrinking throughout the Arctic Ocean

[Comiso et al., 2008; Kwok et al., 2009]. These changes occur primarily at the expense

of the perennial sea ice and thinning of ridged ice, while the thickness changes within

the seasonal ice zone are negligible [Bitz and Roe, 2004; Rothrock and Zhang, 2005;

Comiso, 2006; Nghiem et. al., 2007; Kwok et al., 2009]. In the period between 2004 and

2008 the perennial ice area reduced by more than 1.5 million km2, which means that

at least 42% of the perennial ice area has been replaced by the seasonal ice. In terms of

ice thickness, in 2003-2004 the mean ice thickness of the perennial ice zone was about

3-3.4 m during fall-winter season, and approximately 2.3-2.8 m during 2007-2008 [Kwok

et al., 2009b].

Uncertainties in forcing mechanisms and the complexity of interactions between the

sea ice, ocean and the atmosphere have received much attention. If the ice is thinning

and the ice extent reduces: what is the relative contribution of the summer ice melt,

wintertime ice accumulation, and the ice export - to the ice volume changes? How

sensitive the ice is to different perturbations [Holland et al., 1993; Makshtas et al.,

2003]? What could have caused this rapid loss of Arctic summer sea ice cover [Francis

and Hunter, 2006; Overland, 2006]? And whether there exist a ”tipping point” for

Arctic sea ice when changes in sea ice cover become irreversible [Lindsay and Zhang,

2005; Winton, 2006; Notz, 2009; Eisenman and Wettlaufer, 2009; Armour et al., 2011;

Tietsche et al., 2011]?

Satellite retrievals on sea ice thickness and velocity showed that in the period 1999-

2008 the overall melt during summer played a more significant role, rather than the

ice export [Kwok et al., 2009]. This result was supported by several numerical experi-

ments [Lindsay and Zhang, 2005; Rothrock and Zhang, 2005]. However, some alterna-

tive estimates with the satellite data in higher spatial resolution doubt this conclusion
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[Smedsrud et al., 2011].

Numerous studies addressed the question on the relative role of the summer ice melt

versus winter ice growth. These agree that the amount of the remnant summer sea ice

cover is controlled primarily by the summer surface heating and the duration of the

melt season, rather than winter ice accumulation and freezing conditions [Deser et al.,

2000; Makshtas et al., 2003; Rothrock and Zhang, 2005; Drobot et al., 2006; Perovich et

al., 2007a,b; Perovich et al., 2008; Vihma et al., 2008; Notz, 2009; Kwok et al., 2009;

Graversen et al., 2011]. This finding has been explained by the fact that the ice floe

in winter is always covered by snow, damping the cooling effect of the atmosphere

and slowing down the basal sea ice growth. Thus with the snow cover the wintertime

ice growth is quite inertial despite the intensity of the atmospheric cooling and is

pretty slow, less than 15 cm per month for the ice thickness above 1 meter [Maykut,

1986]. This hypothesis is consistent with the observations showing that the snow cover

builds-up rapidly already in September-October [Warren et al., 1999; Strum et al.,

2002b; Richter-Menge et al., 2006; Kwok et al., 2009]. In contrast, during the melt

season the surface radiative heating of snow and sea ice is a cumulative process: where

all the supplementary heat works to warm and melt the snowpack and sea ice without

any retarding and damping obstacles. To note, over the ice covered areas this heating

process cannot be seen in the near-surface air temperatures since all the extra heat at

the surface is rapidly used for melting [Vihma et al., 2008]. Thus the near-surface air

temperatures in both seasons are not an appropriate indicator for the changes occurring

in sea ice.

Regarding the sources of summer heating, several parallel hypotheses could be sug-

gested. The most classic one is called ”the ice-albedo feedback” [Kellogg, 1973; Lindsay

and Zhang, 2005; Serreze and Francis, 2006]. This feedback turns on with the reduc-

tion in sea ice concentration, and due to additional absorption of solar radiation the

ice melt amplifies and the ice concentrations reduce further. However, it is obvious:

to initiate this positive feedback cycle (less ice − more solar heat absorption − addi-

tional ice melt − enhancing solar heat absorption − less ice) there should exist some

primary (dynamic/thermodynamic) perturbation in sea ice fraction. On one hand, the

recent acceleration of transpolar ice drift [Hakkinen et al., 2008] could have caused

some changes in the dynamic stress on sea ice and provoke these initial/first perturba-

tions in spring. According to our knowledge, there was no study yet investigating the

relationship between the accelerating ice drift and the timing of summer ice break-up.

On the other hand, a very interesting, brief and logic result was performed by Francis

et al. [2005]. Based on satellite retrievals of the downwelling longwave (LWd) radiation

Francis et al. [2005] demonstrated that the anomalies in LWd during spring-summer

2



period (10-80 days prior to the maximum ice retreat) account for approximately 40-60%

of the interannual variability in the following summer ice extent anomalies. However

this finding has not received much attention yet. Curiously simultaneous studies e.g. by

Schweiger [2004], Francis et al. [2007] and Wang and Key [2003, 2005b] have detected

significant positive 20-year trends in springtime (March-May) cloudiness, total-column

precipitable water and LWd, the strongest within the central Arctic. At this stage one

may pose an eligible question: how these LWd anomalies, the sea ice melt rates and

summer ice edge are related one with other? What is the physical mechanism? It seems

that this subject has not been documented yet neither.
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Introduction

In this study we continue the reasoning by Francis et al. [2005, 2007], Perovich

et al. [2007a] and Notz [2009] who evidenced that summer heating and ice melt rates

strongly depend on the atmospheric heat supply during spring-summer season.

We hypothesize that the downward longwave (LWd) radiation anomaly controls

the spring snow melt onset on sea ice. In turn, the snow melt serves as the initial

(first) perturbation for sea ice melt and sea ice fraction changes. Thus the entire mech-

anism likely looks as followed. A positive (negative) LWd anomaly in spring triggers a

larger (weaker) heat accumulation within the dry snowpack, earlier (later) snow melt,

and then - in combination with the ice-albedo feedback - a reduced (increased) summer

ice extent. Terms initial and first refer here only to the chain of spring-summertime

processes/interactions, without any pretension on being the primary cause of the over-

all sea ice changes. It is of evidence that LWd anomalies itself are triggered by some

specific weather conditions.

The first part of this chain: LWd anomaly versus heat accumulation within the dry

snowpack is quite obvious, but has not been evidenced yet. Prior to snowmelt (typically

occurring in May-June) the daily mean LWd and SWd fluxes are of the same magnitude,

but only 10-20% of the downward solar radiation (SWd) is absorbed in the snowpack

[Frolov et al., 2005; Perovich et al., 2007b]. Thus in the pre-melt period (April-May)

LWd is a dominant source of heat for the snow and ice surface [Zhang et al., 1996].

And a larger/faster heat accumulation means faster/earlier warming of the snowpack

from the typical wintertime temperatures up to the melting point, and as a result −
earlier snow melt onset (MO) on top of sea ice.

The second part of the chain: relationship between snow MO and the intensity

of summer melt has been quantified with the radiation measurements. About 55-80

cm of surface ice melt (reaching locally 90 cm) have been observed during summer

1994, 1998 (SHEBA camp) and 2007 within the Beaufort Sea [Richter-Menge et al.,

2006; Perovich et al. 1999 and 2008], where the surface melt was either the only or the

dominant mechanism to thin the ice before the ice started to break-up, typically in early

July. Parallel study by Perovich et al. [2007b] with the same SHEBA observational data

conducted a numerical experiment and quantified that one day earlier snow MO on top

of the sea ice increases the melt season cumulative absorbed solar energy at the sea ice

- ocean surface by approximately 8.7 MJ/m2, corresponding to the additional 3 cm of

summer ice melt [Perovich et al., 2007b]. For comparison, a 1-day delay in fall freeze-up

resulted in an increase by only 1.5 MJ/m2, or less than 0.5 cm of additional cumulative

ice melt. One of the pioneer observations of summer ice ablation by Langleben [1972]

established about 110 cm of top ice melt already during the first four week period after
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the snow was gone (around 20 May - 18 June). This experiment was carried out within

the Canadian Archipelago in 1965 and started with the initial spring ice thickness of

2.5 m. Thus already in early July the ice floe was less than 1.5 m thick.

Based on energy balance thermodynamic sea ice model more recent studies by Ebert

et al. [1995] and Notz [2009] came-up to an interesting conclusion. Both suggested that

all the sea ice that has thinned to about 1.2-1.5 m thickness by July − early August

may completely melt in the same season.

Thus the spring weather conditions and the snow MO timing on sea ice strongly

affect the initial snow and ice top thinning in early melt season, and contribute the

total summer ice ablation. To add, with earlier ice thinning there should be more solar

heat storage in the upper ocean, and with a larger ocean heat content, naturally it

takes more time in autumn to cool warmer water masses down to the freezing point

[Perovich et al., 2007a,b]. As a result, the freeze-up can be retarded [Armstrong et al.,

2003; Gerdes, 2006; Steele et al., 2010], which may contribute to sea ice thinning in

the following year [Laxon et al., 2003; Serreze and Francis, 2006; Lindsay et al., 2009;

Wang et al., 2010].

In fact, over the past three decades, in line with the extinction of the summer sea

ice cover and sea ice thinning [Giles et al., 2008; Kwok and Rothrock, 2009], a tendency

towards earlier MO has been revealed in the Arctic as well [Anderson and Drobot., 2001;

Belchansky et al., 2004; Stroeve et al., 2006; Markus et al., 2009]. These changes are

the essential elements in the recent Arctic warming but, according to our knowledge,

reasons for the statistically significant 30-year trends in MO have not been explained

yet.

Before attributing trends in MO, some effort is needed to understand existing MO

data sets. First step in this direction and the primary objective of this work was

the evaluation on whether the spatial and interannual variations in apparent

MO are physical, meaningful and reasonable?

To argue and judge how physical and reasonable are these remote sensed MO re-

trievals one should either go and measure the surface and internal snowpack tempera-

ture within the same 25 km area (comparable to MO pixel) every day two times daily

during April-June period. Otherwise one should search for some alternative solution.

As we will discuss later the near-surface air temperatures are not really applicable for

the validation of the remote sensed snow MO retrievals.

If addressing the physical mechanisms, on top of the snow covered compact sea ice,

the timing of SMO, its interannual and regional variations, and trends are controlled

by the surface heat fluxes. An early (late) snow MO on top of sea ice is only due to

an early and fast (late and retarded) net heat flux accumulation. In turn surface heat

5



fluxes themselves are affected by the air temperature and humidity, wind speed, clouds,

ice thickness, and presence or absence of the snow cover on top of the sea ice [Yackel

et al., 2007].

In this study we argue: if both data (1) meteorological reanalysis and (2) the

remote sensed MO are realistic and credible, than the year-to-year (temporal) and

regional (spatial) differences in the MO on top of compact sea ice (= SMO) should

be explained/justified by the year-to-year and regional differences in the surface heat

fluxes (on top of compact sea ice) and corresponding meteorological conditions.

Specifically, we addressed the following questions:

1. what is regarded for apparent MO in SSM/I-based record?

2. what is the relative importance of the individual surface fluxes in SMO timing?

SWd and LWd radiation, as well as the turbulent fluxes of sensible and latent

heat, and various combinations of these fluxes were considered.

3. which surface heat fluxes in ERA Interim best reflect/reproduce the spatial and

temporal variations in SSM/I-based SMO?

4. what is the length of the relevant pre-melt period when surface heat flux anomalies

are crucial for further timing of SMO?

5. which meteorological state variables (ERA Interim) best reflect/explain the spa-

tial and temporal variations in surface heat fluxes (ERA Interim) and SSM/I-

based SMO?

6. whether ERA Interim surface heat fluxes may explain the long-term trends in

apparent MO and SMO?

Our independent data sets are (a) the Snow Melt Onset on top of compact Arctic sea ice

and (b) the surface heat fluxes and weather conditions from meteorological reanalysis.

Vast Arctic Ocean and a 20-year period (1989-2008) were our initial frame.

Previous studies on the factors controlling the spring snow MO on sea ice have ad-

dressed either the role of a large-scale atmospheric circulation on the regional annual

average apparent MO timing [Drobot and Anderson, 2001; Belchansky et al., 2004], or

the local effect of surface heat fluxes on local snow melt processes during field cam-

paigns [Andreas and Akley, 1982 ; Granskog et al., 2006; Yackel et al., 2007; Cheng et

al., 2008; Vihma et al., 2009]. It seems that in former (regional) studies there was no

specific distinction between two totally different processes blended within the same ap-

parent MO time series: (1) MO on top of sea ice (Snow Melt Onset) and (2) dynamically

driven sea ice opening without any melt. And without this distinction the understand-

ing/attribution/interpretation of MO changes is impossible and non-physical. In turn,

studies that dealt with the measured fluxes were often limited to a very small domain
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(less than hundred of meters) and addressed only temporal changes in fluxes and snow

melt, without any simultaneous quantification of snow melt process on top of distant

ice floes with different ice thickness and different snow properties.

To summarize, little attention has been paid to small-scale spatial differences and

interannual variations in the snow MO and surface heat fluxes, both on top of sea

ice. And, as we just said: understanding and validation of these spatial and interan-

nual variations is the basis for any argumentation (justification) for the long-term MO

trends. None of the existing papers considered modern reanalysis data for a snow melt

onset study. And very few papers questioned the reliability of reanalysis surface fluxes

in the Arctic Ocean, and even lees - during spring seasonal transition and within the

central Arctic.

We did not pretend to fill in all these gaps, moreover - our study would not see life

without all these existing results and ideas. We acknowledge all the huge effort that

has been done to produce meteorological reanalysis and the apparent MO time series

- both of high complexity. And also all our appreciation to the field scientists who

managed to carry out interesting and unique measurements in hard polar conditions,

creating the basis of our nowadays knowledge.
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Chapter 1

Arctic Environment: Meteorology,

Sea Ice, Snow Cover and Surface Heat Fluxes

This Chapter introduces the general overview on meteorological, cloud cover, sea ice

and snow conditions and their seasonal cycle in the Arctic Ocean. These components

are tightly related one with the other, controlling together and all affected by the

radiative and turbulent heat exchange at the air-sea interface. In Section 1.1 we discuss

the seasonal cycle in the classic meteorological variables: sea level pressure, cyclonic

activity, near surface temperatures and humidity, and near-surface winds. In Section

1.2 we pay attention to some specifics of Arctic clouds. In Section 1.3 we outline a

short summary on Arctic sea ice properties and some feedbacks between the sea ice

and meteorological conditions. Section 1.4 is dedicated to the snow properties on top

of Arctic sea ice, which is of special interest for understanding the spring Snow Melt

Onset study developed during this work. In Section 1.5 we describe the seasonal cycle

and particularities of the surface radiative and turbulent heat fluxes in the maritime

Arctic based on (a) previous studies and (b) our calculations with three meteorological

reanalysis products (ERA Interim, ERA-40 and NCEP/NCAR). At this stage we short-

cut the typical features and highlight some differences between these three widely used

meteorological data sets in terms of surface heat fluxes. A particularity of this Section

is that the comparison of surface heat fluxes between three reanalysis is done for the

common 13-year period (1989-2001). The rest of this manuscript is built on the data

for the period 1989-2008.

To be specific, Arctic Ocean domain is defined here as the area bounded by the

Bering Strait, the Canadian Archipelago, Greenland, Fram Strait, northern Barents Sea

and the Siberian coast. Within these boundaries, the Arctic Ocean covers the area of

approximately 7.2 million km2. Polar night and polar day are divided here schematically

into four seasons: winter (DJF), spring (MAM), summer (JJA) and fall (SON). Under

the term ”surface” we further consider either the interface between the open sea and

the atmosphere (when the study area is ice free), or the interface between the snow

covered sea ice and the atmosphere (when sea ice is present).

8



1.1 General meteorological conditions

Atmospheric energy budget of the polar cap (70-90oN)

Atmospheric thermal advection is the major source of heat for the total Arctic

energy budget year-round, injecting about 80-110 W/m2 of heat (vertically integrated

at 70oN) throughout the year [Nakamura and Oort, 1988; Overland and Guest, 1991;

Semmler et al., 2005; Serreze and Barry, 2005; Serreze et al., 2007]. For comparison,

the atmospheric advection of moisture is an equivalent of 10-25 W/m2 [Serreze et al.,

2007], and the annual mean horizontal ocean heat convergence via Atlantic and Pacific

inflows is about 15 and 40 TW [Rudels et al., 2008], corresponding to the under-ice

(upward, wintertime) ocean heat flux of 1-4 W/m2 [Perovich and Elder, 2002].

Atmospheric thermal and moisture transports are both strongest within the lower

troposphere around 850-990 mb pressure level in all seasons [Nakamura and Oort, 1988;

Serreze et al., 1995b; Jakobson and Vihma, 2010]. And both atmospheric thermal

and moisture transports are governed by the cyclonic activity in all seasons [Oort,

1973; Overland and Guest, 1991; Zhang et al., 2004; Jakobson and Vihma, 2010].

Thermal advection northward is intensified during winter [Serreze and Barry, 2005].

This is because of the large horizontal surface thermal gradients during polar night,

primarily localized in the North Atlantic and North Pacific. In contrast the moisture

transport across 70oN is the largest in summer [Groves and Francis, 2002; Serreze et al.,

2007; Jakobson and Vihma, 2010; Cullather and Bosilovich, 2011]. Accordingly, summer

moisture convergence accounts for about 35% of the annual moisture transport across

70oN, and, as in winter, occurs mostly within the maritime areas, in particular in the

Norwegian and Chukchi Seas [Sorteberg and Walsh, 2008; Jakobson and Vihma, 2010].

However, the estimates of the total moisture transport into the Arctic are challenging

and strongly diverge between different data sets, ranging within 50-205 mm per year

[Sellers, 1965; Sorteberg and Walsh, 2008].

Thermal and moisture convergence in the Arctic atmosphere increases the air tem-

perature and atmospheric moisture content, and these largely affect the surface energy

budget via the longwave (thermal) radiative emission of the atmosphere and clouds,

and via the turbulent heat exchange between the air masses and the sea ice - open sea

surface [Gerding et al., 2004]. Yet, a large portion of the advected atmospheric heat

never reaches the surface and is emitted as longwave radiation in space.
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Seasonal features: atmospheric circulation (SLP), near-surface

air temperatures and winds

The atmospheric heat convergence, depth of cyclones and the frontal activity are

the most intense during Arctic winter [Zhang et al., 2004; Sorteberg and Walsh,

2008; Simmonds et al., 2008; Sepp and Jaagus, 2010]. In this period the stratospheric

circulation (polar vortex) is well developed, and due to sea ice formation large surface

thermal gradients build-up on the Atlantic side (within Greenland, Norwegian and Bar-

ents Seas) and on the Pacific side (across Chukchi and Bering Seas) of the Arctic. Thus,

during December-February (Fig 1.1a) the typical near-surface air temperatures

(SAT) are within -20-40oC over the sea ice and near the freezing point (about -2oC)

over the open sea (Greenland, Norwegian, Barents and Bering Seas), with a huge ther-

mal difference across the narrow boundary between the sea ice and open sea. 20-year

mean (1989-2008) sea level pressure (SLP) averaged for December-February months

(Fig 1.1a) reflects the typical circulation structure: with a low-pressure trough over

the Greenland-Norwegian-Barents Seas (Icelandic Low) and the broad high-pressure

core extending over the Arctic Ocean, centred on the East-Siberian - Beaufort Seas

(Beaufort High). On the Atlantic side within the zone of the sharp thermal gradients

the extra-tropical cyclones shape and advance along [Tsukernik et al., 2007], tracing

this low pressure trough on the time-average SLP maps. In contrast, very homogeneous

thermal conditions (with intense surface cooling) within a vast sea ice domain of several

millions of square kilometres build-up and maintain the Beaufort High. Winter cyclones

are also common in the Bering Sea (Aleutian Low), but relatively few of them migrate

into the Arctic [Serreze and Barret, 2008]. The day-to-day fluctuations in SAT can

be large during the polar night, with the warmest near-surface temperatures of -20oC

occurring under the overcast skies and strong winds, and the coldest air temperatures

of -40-45oC observed under the clear skies and weak winds [Overland and Guest, 1991;

Lindsay and Rothrock, 1994; Lindsay 1998; Walsh and Chapman, 1998].

In spring (March-May) in presence of the extensive sea ice cover with a highly

insulating snowpack on top, the surface radiative cooling continues to dominate the in-

creasing downward solar heating. Spatially uniform cold surface temperatures continue

to maintain the Beaufort High (Fig 1.1b). With higher solar elevation and increasing

moisture advection (increasing atmospheric thermal emission) the snow and air tem-

peratures gradually rise to 10-20oC in April, and already in May the snow melt starts

[Serreze and Barry, 2005].

Throughout the melt season, typically lasting 2-4 months (June - August) the

snow-ice surface temperatures are tightly kept near the melting point -2-0oC (Fig 1.1c),
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where all the heat received at the surface is spent on snow and sea ice melt, and evap-

oration. In contrast to Antarctic melt season, the surface (snow and ice) melt largely

dominates evaporation in the Arctic [Andreas and Akley, 1982; Nicolaus et al., 2009].

The departure of SAT is within ±2oC during summer, both over the sea ice and open

water areas [Persson et al., 2002; Serreze and Barry, 2005]. During this period the

horizontal thermal gradients develop across the Eurasian and North-American coast.

Thus in summer the major frontal zone is located over the land areas, roughly be-

tween 65-70oN and 140-270oE [Serreze and Barret 2008]. Roughly a half of the total

number of summer cyclones observed in the Arctic Ocean develop over the Eurasian

continent, with the North Pacific, North Atlantic and North American continent ac-

counting together for another half [Serreze and Barret, 2008]. Cyclone tracks shift

northward during summer following the retreat in sea ice edge. Number of cyclones

within 70oN appears to be larger in summer compared to winter [Serreze and Barret,

2008]. However, the number of cyclones entering the Arctic was found to be largest in

winter [Sorteberg and Walsh, 2008; Simmonds et al., 2008].

Already in August, one month before the solar heat source vanishes, the freeze-up

starts. First, the melt ponds freeze in the central Arctic and then freezing conditions

advance southward. By October-November sea ice establishes all around the Arctic

Ocean. In consequence, the horizontal thermal gradients in the Greenland, Barents

and Chukchi Seas sharpen and the cyclonic activity intensifies in these areas. SAT

stay around -5-10oC within the open sea areas and drop fast to -25-30oC over the sea

ice domain. By November the wintertime atmospheric circulation structure settles

down with two low pressure cores in the North Atlantic and North Pacific and the

Beaufort High stretching from the Canadian Archipelago across the central Arctic into

the eastern Siberia.

North of 70oN precipitation peaks its maximum of 95-105 mm (3 month average)

during summer and autumn, and is about 30-60 mm during winter and spring seasons

[Frolov et al., 2005; Serreze and Barry, 2005; Serreze and Barret, 2008; Jakobson and

Vihma, 2010]. The relative contribution of the moisture advection into the Arctic (70-

90N) and the evaporation within the region were found to be of equal importance in the

seasonal amounts of precipitation during summer, with a relatively larger role of the

horizontal moisture advection during winter [Walsh et al., 1994; Jakobson and Vihma,

2010]. A recent study by Sorteberg and Walsh [2008] with NCEP/NCAR reanalysis 1

evaluated that the moisture transport across 70N accounts for about 79% of summer

precipitation and 72% of the annual precipitation within 70-90oN. Alternative study

1. NCEP/NCAR reanalyses [Kalnay et al., 1996] is discussed in Chapter 2
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with ERA-40 reanalysis 1 by Jakobson and Vihma [2010] evaluated that the moisture

flux across 70oN accounts for about 59% of the annual Arctic precipitation. Although

these estimates diverge, there is however a general agreement on the relative impor-

tance of processes controlling precipitation amounts and its seasonal cycle. To note

that precipitation is a very challenging quantity, both for direct measurements and for

numerical modelling.

Winds have the major effect on the ice drift velocities, turbulent water mixing in

leads and the turbulent heat exchange (condensation, evaporation) between the snow-

ice-open sea surface and the atmosphere. Monthly means of the near-surface winds

within the sea ice covered Arctic are about 5-7 m/sec [Andreas and Akley, 1982; Nilsson

et al., 2001; Curry et al., 2002; Persson et al., 2002; Frolov et al., 2005; Vihma et al.,

2008]. The strongest winds were observed in winter when the largest spatial surface

thermal gradients emerge and the atmospheric fronts are the most violent [Frolov et

al., 2005].

Vertical thermal stratification in the lowermost 2-3 km:

seasonal features

During winter the snow-sea ice radiative cooling is intense and larger than the atmo-

spheric radiative cooling. In such conditions the sharp surface-based inversion prevails,

reaching heights of 500-2000 m above the sea surface, with the occurrence (mostly on

the Atlantic side) of strong elevated (capping) inversions above the shallow (30-180 m)

mixed boundary layer [Overland and Guest, 1991; Tjernstrom and Graversen, 2009].

Vertical temperature difference within the inversion depth is of the order of 10-15oC

during winter [Chiacchio et al., 2002; Overland, 2009; Pavelsky et al., 2011]. Formation

of these wintertime elevated inversions have been explained by the presence (passage) of

stratus and stratocumulus cloud-types and the related radiative and dynamic processes

[Tjernstrom and Graversen, 2009].

In spring, as the sun rises the surface heating rate starts to compete with the surface

radiative heat loss. As a result, snow temperatures gradually increase. Observations

show that near-surface inversions are still present in April [Pinto et al., 1997]. Further

on, the horizontal thermal gradients loosen on the Atlantic and Pacific sides of the

Arctic, and the atmospheric thermal advection into the Arctic slightly weakens [Serreze

and Barry, 2005]. By the month of May and during the rest of summer infirm near-

surface inversions alternate with the unstable stratification capped by the thermal and

moisture inversions [Persson et al., 2002; Vihma et al., 2008; Tjernstrom and Graversen,

1. ERA-40 reanalysis [Uppala et al., 2005] is discussed in Chapter 2
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Figure 1.1: Mean Sea Level Pressure, 10m wind field, 2m air temperature and 80% SIC
edge averaged during (a) DecJanFeb, (b) MarAprMay, (c) JunJulAug, (d) SepOctNov.
White contour localizes the sea ice covered area with the seasonal ice concentration
of 80-100%. Data: ERA Interim reanalysis (see Chapter 2, Section 2.2), mean for the
period 1989-2008.

2009; Overland, 2009; Graversen et al., 2011].

By August the surface radiative cooling again starts to prevail the surface heat sink.

During some period, even under the intense cooling, the open sea surface stays relatively

warm compared to the air aloft, and the unstable vertical stratification builds-up over

the open sea (below 850 hPa level) during August-September. These conditions favour

intense atmospheric convection and cloud formation during early freezing season, until

the growing sea ice thickness and snow deposition on top of sea ice do not cancel

the huge ocean heat loss to the atmosphere [Schweiger et al., 2008]. By November-

December the sea ice thickens and spreads over the marginal seas. Under the intense

surface radiative cooling and increased horizontal thermal advection, stable vertical

stratification (near surface inversion) develops again over the vast ice covered domain

for the rest of the freezing season. Episodically, the intrusion of atmospheric fronts and

sea ice cracks perturb these stable conditions.
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Near-surface air temperature: diurnal cycle

Over the Arctic sea ice the diurnal cycle in SAT is the largest in spring [Richter-

Menge et al., 2006] and early fall, with the greatest amplitudes (of about 3-5oC) ob-

served in April [Goddard, 1973; Persson et al., 2002], both field campaigns in the

Beaufort Sea. Mast measurements show that this largest diurnal cycle in SAT occurs

within the lowermost well mixed 10-20 m layer capped by temperature inversion. In

April SAT is around -10-30oC over the sea ice covered Arctic, the daily mean surface

energy budget is still negative, and the diurnal amplitude in solar radiation can be

already about 200-250 W/m2 [Rigor et al., 2000; Martin and Munoz 1997; Persson et

al., 2002]. Capped by stable stratification (best with some clouds and no wind), solar

radiation and the atmospheric thermal emission both tend to increase the snow and

near-surface air temperatures. In the meantime the stable near-surface stratification

prohibits the immediate turbulent mixing between the shallow near-surface layer and

the air above. In the nigh-time the solar elevation is low and the radiative heat loss

again dominates the solar heating at the surface. And since the heat content of snow

and the atmospheric moisture content are low, snow and near-surface air cool fast in

the night.

During the melt season the diurnal fluctuations in SAT stay tightly within -2-0oC

imposed by snow and sea ice melting [Rigor et al., 2000; Nilsson et al., 2001; Persson et

al., 2002; Tjernstrom, 2005; Inoue et al., 2005; Vihma et al., 2008]. Thus, on midday, all

the additional solar heat is pumped for the snow and ice melt, preventing the surface

and near-surface air temperatures from rising above the melting point (0oC). And on

the midnight, when the solar heating reduces, the latent heat releases due to freeze-up,

maintaining SAT and snow surface temperatures at the freezing point about -1.5-2oC.

Near-surface air humidity

Atmospheric moisture exists in a form of water vapour, liquid droplets, and ice crys-

tals. In polar regions, on average, the water vapour accounts for approximately 99% of

the total moisture content in the atmosphere [Tietvinen and Vihma, 2008]. The specific

humidity of the polar air masses is very low, with the near-surface specific humidity

generally below 3 g/kg. However the relative humidity with respect to ice is almost

always at the saturation level both in winter and summer [Persson et al., 2002; Vihma

et al., 2008]. Detailed analysis of field observations suggests that the extremely high

near-surface relative humidity values are primarily due to leads that moist the near-

surface air [Andreas et al., 2002], enclosed at the surface by thermal inversions. This

relatively moist air from leads is further cooled by radiative and turbulent exchange at
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the air-snow interface, however, this surface heat exchange is not fast enough to equili-

brate the supersaturated near-surface air with the snow moisture content [Andreas et

al., 2002].

1.2 Cloud cover

Seasonal cycle

Cloudiness over the Arctic Ocean is ample, on average, about 60% in winter and

80-90% in summer [Curry and Ebert, 1992; Intrieri et al., 2002; Wang and Key, 2005a].

Wintertime clouds are represented by middle and high-level clouds, associated with

the large-scale atmospheric circulation, cyclonic activity, convection and evaporation

over the open sea [Xin Lin, 2008]. Around April low-level mixed phase stratus clouds

build-up very near the surface. Summertime field observations documented the con-

tinuous multi-layer stratus clouds with the cloud base within the lowest 100 m above

the ice surface, frequently overlapping (co-existing) with fog and the high-level clouds

[Tjernstrom, 2005; Xin Lin, 2008].

Evaporation versus horizontal Moisture Advection

Interestingly, while the evaporation and horizontal moisture advection largely con-

tribute to the Arctic atmospheric moisture and heat budget year-round, they do not

control the seasonality of stratiform clouds in the Arctic Ocean. As demonstrated by

Beesley and Moritz [1999] in spring the low-level cloud cover develops already one

month before the horizontal moisture advection and evaporation intensify. The forma-

tion and persistent nature of these stratiform clouds during spring and summer was

explained by the particularities of the dissipative mechanisms (such as precipitation),

solar heating and the convective mixing, which are relatively weak over the Arctic

Ocean compared to mid-latitudes [Beesley and Moritz, 1999; Intrieri et al., 2002; Dong

and Mace, 2003]. Water phase transitions (liquid water ice) and the water droplet / ice

crystal size were found to be crucial for initialization and life-cycle of Arctic stratiform

clouds [Beesley and Moritz, 1999].

Cloud radiative forcing

The impact of clouds on radiative fluxes (cloud radiative forcing, CRF) largely

depends on cloud fraction, cloud height and depth, the phase of cloud particles (liquid

or ice), the amount of liquid water, and the size and shape of the cloud particles [Curry

and Ebert, 1992; Intrieri et al., 2002; Gorodetskaya et al., 2008]. Yet, conventionally

15



CRF is mostly attributed to the total cloud fraction and is often defined as the difference

in the radiative flux under the overcast and the clear skies [Walsh and Chapman, 1998;

Intrieri et al., 2002]. In the Arctic over the course of the year clouds have a net warming

effect on the surface, except for a few weeks in mid-summer (around July) when the

incident solar radiation and its absorption at the surface are at their maximum. During

this relatively short period the attenuation of solar rays by clouds generates smaller

solar heating of the surface, compared to the green-house effect of clouds [Curry and

Ebert, 1992; Schweiger and Key, 1994; Intrieri et al, 2002].

Clouds and, in particular low-level clouds, backscatter at the cloud bottom in solar

spectrum. This effect becomes particularly important over a highly reflective snow-ice

surface, producing multiple reflections between the clouds and the snow-ice, in turn

increasing the resulting downward solar radiation at the surface on cloudy days [Curry

and Ebert, 1992; Shine, 1984; Wendler et al., 2004]. This effect of clouds is particularly

pronounced in the Arctic where a vast ”white” surface persists until late June July. The

accuracy of existing cloud products and the related CRF estimates remains uncertain.

Recent comparison of several high resolution cloud products in the period 2006-2008

was done by Liu et al. [2010]. Accordingly, errors in the surface net CRF of about

9% were detected, which corresponds to approximately ±2-6 W/m2 uncertainty in the

surface net flux. Alternative study by Sedlar et al. [2010] suggested ±10-15 W/m2

uncertainty in the observed net CRF.

Atmospheric aerosols, clouds and radiative fluxes

Atmospheric aerosols affect the shortwave (SW) and longwave (LW) radiative

transfer trough the atmospheric column. They act as the cloud condensation nuclei

(CCN), affecting the cloud microphysical and radiative properties as well as the persis-

tence (life-time) of clouds in time [Boucher and Lohmann, 1995; Curry, 1995; Garrett

et al., 2002]. The higher concentration of CCN, increases the cloud droplet concen-

tration, reduces the droplet size, thus weakening the precipitation process and, as a

result, increasing the total liquid water content within the atmospheric column [Gar-

rett et al., 2009]. In turn, larger atmospheric moisture content (larger optical depth)

modifies the radiative fluxes at the surface: decreases the direct SW rays, enhances

the diffused (scattered) SW radiation, and strengthens the atmospheric thermal (LW)

emission [Garrett et al., 2002]. To mention, the anthropogenic pollution advected to

the Arctic from lower latitudes was found to be the greatest during winter and spring

[Barrie, 1986; Sirois and Barrie, 1999; Garrett et al., 2002]. This indicates that atmo-

spheric aerosols might have an indirect effect on spring Snow Melt Onset timing on top

of sea ice by means of surface fluxes.
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1.3 Sea ice

Extended Arctic winters generate an intense surface radiative cooling and sea ice

formation during most of the year. Only during 2-4 months (May-August) the incoming

radiation (solar and atmospheric thermal radiation together) dominates the surface

heat loss, allowing the snow and sea ice melt. While the melt season is short, the ice

melt rates are typically much higher than the sea ice growth rates in winter. Thus the

characteristic surface ice melt rate (for unponded ice) is of the order of 1-2 cm/day

[Langleben, 1972; Eicken et al., 2001a; Luthje et al., 2006; Perovich et al., 2008], 23

times larger in presence of the melt ponds [Fetterer and Untersteiner, 1998], and the

basal ice melt is about 0.2-0.3 cm/day [Perovich et al., 1999]. In terms of the total

(surface and bottom) ice melt this is an equivalent of 50-120 cm melt during the melt

season [Persson et al., 2002], reaching 270 cm of the total ice melt, or 4-11 cm/day melt

rates within the marginal seas [Perovich et al., 2008]. For comparison the typical (total

= basal) wintertime ice accretion rate is less than 1 cm/day for the ice floe thicker

than 60-100 cm or just a snow covered ice floe [Maykut, 1986; Wadhams, 2000]. In

consequence, even during short polar summer a large sea ice volume melts every year,

and first of all, the young and thin sea ice within the marginal Arctic seas. Satellite

images nicely illustrate the seasonal retreat of the sea ice edge northwards each summer.

Sea ice extent, area and concentrations

Conventionally in the remote sensing the sea ice extent accounts for all ice covered

pixels with at least 15% ice concentration. Thus the size of any grid cell covered by

more ice than the defined threshold contributes fully to total sea ice extent. For sea ice

area only the truly ice-covered fraction of each pixel is considered. Estimates of total

sea ice extent are generally more reliable than the estimates of sea ice area [Meier and

Notz, 2010].

Annual cycle of the sea ice extent in the Arctic Ocean (within the limits determined

at the beginning of this Chapter) varies between 4 and 7.2 mln km2 [Kwok et al., 2009],

with the maximum ice edge advance in February-March and the strongest ice retreat

during August-September. Yet, some areas stay ice-free even during the winter season.

The inflow of the warm Atlantic current prevents the sea ice formation within the

vast areas in the Barents, Norwegian and Greenland Seas. Divergent ice drift under

the effect of ocean currents, waves, tides and the wind stress generate and maintain

the areas of open water (leads and polynyas) in the middle of the continuous ice field,

occurring all over the Arctic Ocean. In these ice-free areas the intense water cooling

generates a rapid sea ice production.
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Sea ice thickness and ice age

Arctic sea ice is composed schematically of the multi-year (perennial) and the first-

year (seasonal) ice types. Sea ice thickness depends on the age and the degree of

deformation. The largest undeformed ice floe thickness estimates attain 1.5-2 m for

the first-year ice, 3-3.4 m for 7-9 year old ice-types, and the pressure ridges can be

as high as 20 m [Bourke and Garrett, 1987; Ebert et al., 1995; Maslanik et al., 2007].

Regional average sea ice thickness throughout the year is approximately 2-3 m [Kwok

and Cunningham, 2008; McLaren et al., 1994; Kwok et al., 2009].

Evaluation of the sea ice thickness is a challenging task. Satellite-based altimeters

estimate the free-board that is the height of the ice floe above the sea level [Kwok et al.,

2009b; Laxon et al., 2003; Giles et al., 2008]. This free-board estimate and empirical

equations are then used to evaluate the total sea ice thickness. However, there is a

large uncertainty in satellite retrievals of sea ice thickness, reaching 40-70 cm [Laxon,

2003; Kwok and Cunningham, 2008]. Arctic sea ice thickness was also measured locally

with a help of drifting buoys deployed into the ice floes [Perovich and Richter-Menge,

2006], submarine sonars [Bourke and Garrett, 1987; McLaren et al., 1992; Wadhams

and Davis, 2000; Tucker et al., 2001; Yu et al., 2004; Rothrock et al., 1999 and 2008;

Melling et al. 2005], upward looking sonars deployed on moorings fixed at the sea-

floor [Proshutinsky et al., 2004], aerial laser measurements of the freeboard [Bourke

and Garrett, 1987], and aerial electromagnetic induction soundings [Haas et al., 2009;

Rabenstein et al., 2010].

Sea ice drift

Arctic sea ice cover is constantly in motion under the effect of winds, tides and the

other ocean currents. Under the stress sea ice floes crush, diverge and build-up to the

pressure ridges. Ice divergence and upwelling of ocean heat create the open sea areas

specifically called: leads and polynyas [Wadhams, 2000]. Arctic sea ice motion mirrors

closely the major atmospheric circulation patterns [Inoue and Kikouchi, 2007].

In winter a well developed Beaufort High in the western Arctic, and frequent and

intense cyclonic motion in the eastern Arctic remove sea ice from the Siberian coast

(Laptev, Kara and East-Siberian Seas) towards Greenland and the Fram Strait [Pfir-

man, 2004]. Fig 1.2 illustrates the averaged ice velocities and trajectories for December-

March period during 1988-2003. In summer these transpolar winds and related ice drift

speeds weaken (not shown).
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From year-to-year and day-to-day the at-

mospheric circulation evolves in strength,

modulating the ice drift trajectories and

velocities. Ice drift velocities range within

0-25 km per day [Thorndike, 1986; Zhao

and Liu, 2007].

Figure 1.2: Mean sea ice motion for 15
winter seasons (Dec-March), 1988-2003.
Reprint from Zhao and Liu [2007].

1.4 Snow cover on top of sea ice

Snow depth

The snow depth varies around 0-100 cm on the distances of 10-100 meters, with no

relationship to the ice type and ice thickness [Walsh and Chapman, 1998; Perovich et

al., 2002; Perovich and Richter-Menge, 2006; Gerland and Haas, 2011].

Heat fluxes and temperature within the snowpack Two important thermodynamic

properties of the snow are the thermal conductivity (λ) and the specific heat capacity

(cp). The thermal conductivity is the intensity of the heat flux through the snowpack in

response to temperature gradients. Thermal conductivity in pure snow is about 0.1-0.4

[W m−1 K−1], increasing with denser and decreasing for saltier snow [Strum et al.,

2002a; Steffen and DeMaria, 1996]. A specific heat capacity (cp) represents the amount

of energy required to rise the snow temperature by 1oK, is about 2 kJ kg−1 K−1.

λ = kcpρ (1.1)

Here ρ is the snow density, ranging within 100-500 kg/m3 and k is thermal diffusivity

of snow is about 10−6 m2 s−1. Low thermal conductivity and high heat capacity of the

snow explain the fact that snowpack acts as a good insulator for the sea ice. In presence

of snow the response of the sea ice temperature to atmospheric perturbations in tem-

perature is largely weakened, and with a 20 cm snowpack the temperature contrasts

within the ice are practically absent [Kondratyev, 1996].
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Snow temperatures

From November to March snow temperatures on Arctic sea ice vary within 10oC and

40oC at the snow surface and within 16oC and 6oC at the snow-ice interface [Overland

and Guest, 1991; Persson et al., 2002]. In winter period the snow temperatures tend

to be warmer during cloudy days, compared to clear sky days. Observations show that

the largest variations in temperature occur in the uppermost snow layer, attenuating

in deeper layers. In winter at about 5-15 cm depth the temperature amplitude within

a few consecutive days may reach 20oC, but less than 5oC below 35 cm depth [Jordan

et al., 1999]. The largest diurnal cycle within the snowpack was found in spring (April)

before the snow melt starts [Yackel, 1999]. In this period the snow and near-surface

air temperatures are still below zero (-10-20oC), but with a large diurnal cycle in solar

radiation the punctual heating of snow and the near-surface air may take place in the

afternoon (the strongest under stable vertical stratification without vertical mixing).

In nature, the near-surface air temperature (SAT at 2 m) does not depart from

the upper snowpack temperature by more than 2oC, except for vary calm clear sky

days with no wind [Overland and Guest, 1991; Lindsay, 1998; Persson et al., 2002].

During the melt season, although there is a large SW diurnal cycle and episodic stable

stratification, a diurnal cycle in the snow temperature cannot occur. In this period snow

temperatures and SAT both and tightly constrained at about -2-0oC by the melting of

snow and re-freezing of the melt water.

Aerosols within the snowpack

Atmospheric aerosols (dust and soot) deposited on the highly reflective snow and

bare ice surface reduce snow albedo. In presence of soot the absorption of solar radiation

is more efficient and the internal heat storage is bigger, favouring the earlier and faster

snow melt [Clarke et al., 1985; Grenfell et al., 2002; Hansen and Nazarenko, 2004].

1.5 Surface radiative and turbulent heat fluxes

Downward Shortwave Radiation

Seasonal cycle in the downward solar shortwave radiative flux (SWd) over the mar-

itime Arctic northward from 70oN (plain curve) and along 85oN (dashed curve) are

illustrated in Fig 1.3a. SWd is the most intense during May-July months, with the

daily mean flux about 250-300 W/m2 and the midday values reaching 450-500 W/m2

under clear skies [Walsh and Chapman, 1998; Jordan et al., 1999; Persson et al., 2002;

Wang et al., 2007; Sorteberg, 2007a; Vihma et al., 2008; Overland, 2009].
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Regionally, on average (13-year mean during 1989-2001, ERA-40 and ERA In-

terim 1), the smallest SWd during summer solstice is found on the Atlantic side of the

Arctic Ocean (220±60 W/m2), and the strongest SWd (270±50 W/m2) takes place in

the East-Siberian - Chukchi Beaufort Sea sector (not shown).

In reality SWd cloud radiative forcing is the most pronounced in June-July when the

solar radiation is the most intense and the optically thick liquid multi-layer stratiform

clouds attenuate efficiently this strong SWd flux [Intrieri et al., 2002; Wang and Key,

2005a; Sedlar et al., 2010]. Field and numerical experiments suggest that, on average

SWd cloud radiative forcing is about 20-60 W/m2 in early and late summer (April and

August months) and 100-160 W/m2 in July, with non-linear relationship between the

cloud fraction and SWd reduction [Intrieri et al., 2002; Shupe and Intrieri et al., 2004;

Gorodetskaya et al., 2008].

We found a huge difference in SWd values between NCEP/NCAR reanalysis and

two ECMWF reanalysis products (ERA-40 and ERA Interim), see Fig 1.3a. This in-

consistency has been noted already by Serreze et al. [1998], Serreze and Hurst [2002],

Semmler et al. [2005], Liu et al. [2005] and Sorteberg [2007a,b]. Thus, the compari-

son of different reanalyses with the SWd observations at SHEBA 2 field camp [Curry

et al., 2002; Liu et al., 2005] and at the North Pole drifting camps [Serreze et al.,

1998] evidenced that both NCEP/NCAR overestimated SWd, whereas ERA-40 repro-

duced SWd better. Our comparison suggested the bias between NCEP/NCAR and

both ECMWF reanalyses by up to 70-100 W/m2 in the daily mean SWd flux (May-

July), the largest during the summer solstice. So far the difference in SWd between

NCEP/NCAR and ERA products is not localised (much stronger) within some par-

ticular area of the Arctic Ocean, but it is found within the entire polar cap within

70-90oN. Although, there was no study published yet on the accuracy of surface fluxes

in the most recent ERA Interim reanalysis, apparently, it is closer in respect to SWd

to its predecessor ERA-40, rather than NCEP/NCAR SWd product (Fig 1.3a).

This difference in SWd between NCEP/NCAR and ERA-40 reanalysis had been

linked to a large underestimation in the cloud cover in NCEP/NCAR [Walsh and Chap-

man, 1998; Liu et al., 2005; Bromwich et al., 2007]. Comparison of NCEP/NCAR with

ERA-40 reanalysis and observations at Point Barrow by Bromwich et al. [2007] estab-

lished that ERA-40 captures the day-to-day variability in the total cloud cover (and

seasonality) much better than NCEP/NCAR, although itself producing too optically

thin clouds for SWd. In the other words, ERA-40 better represents SWd (the diurnal

amplitude and values) on the clear sky days, whereas SWd diurnal maximum is much

1. ERA Interim reanalysis [Uppala et al., 2008] is discussed in Chapter 2
2. Surface Heat Budget of the Arctic Ocean (SHEBA) field campaign in 1998-1999 [Uttal et al.,

2002]
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too high in ERA-40 on cloudy days during summer (with the error in the diurnal am-

plitude reaching 150-300 W/m2 on cloudy days in June). NCEP/NCAR total cloud

fractions were very small compared to observations in June at Point Barrow, with the

corresponding diurnal minimum in SWd about 50 W/m2 to high and the diurnal max-

imum in SWd about 100-400 W/m2 too intense in NCEP/NCAR [Bromwich et al.,

2007].

We just made a quick test for the total cloud cover easily available for three reanal-

ysis. We compared the mean total cloud fraction during 3 summer months (May-July),

average during the common 13-year period (1989-2001). There is in fact a striking differ-

ence between NCEP/NCAR and both ECMWF reanalysis (ERA Interim and ERA-40)

within the entire Arctic Ocean. Summertime Arctic cloud cover in NCEP/NCAR is

about 40-50% with a large year-to-year variability, whereas in both ECMWF reanalysis

there is 80-90% cloud cover (overcast) with very few year-to-year variability.

The observational error for SWd term depends on the absolute magnitude of the

observed flux, is approximately ±5-10 W/m2 [Serreze et al., 1998; Intrieri et al., 2002].

Absorbed Shortwave Radiation

The amount of solar energy absorbed by the snow-ice-open sea (SWnet) increases

with the solar incident angle and reduces with larger surface albedo and atmospheric

optical depth. In early spring (April) solar elevation is low and with a dry snow albedo

of 0.8-0.9 [Walsh and Chapman, 1998; Vihma et al., 2008] only about 40-50 W/m2

of SWd is absorbed in the snowpack [Ebert et al., 1995; Walsh and Chapman, 1998].

With the onset of snow melt in May-June surface albedo starts to weaken and SWnet

increases to 80-150 W/m2 in May-July (daily means) following the diurnal cycle and the

day-to-day changes in SWd [Walsh and Chapman, 1998; Intrieri et al., 2002]. Further as

melt season progresses, the highly reflective snow-ice surface transforms into a patchy

mixture of blue melting ice floes and the dark highly absorptive melt ponds and leads.

This pronounced albedo evolution explains the largest SWnet occurring not in June,

but in July (Fig 1.3b), when the concurrent roles of the surface albedo and solar

inclination produce the best surface heating with smaller albedo and still high solar

elevation. On average, the monthly mean in July SWnet is within 70±30 W/m2 in the

central ice covered Arctic and 120±50 W/m2 within the marginal seas.

All three reanalysis agree that SWnet is smaller within the sea ice covered central

Arctic (85oN), compared to the regional average SWnet (Fig 1.3b). Where the regional

average takes into account the vast open sea area with much smaller albedo. Yet, the

absolute SWnet values are much larger in NCEP/NCAR, compared to ERA-40 and

ERA Interim: with the difference (in daily mean values) reaching 60 W/m2 at 85oN,
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Figure 1.3: Seasonal cycle in (a) downward shortwave (SWd) radiative flux, (b) ab-
sorbed shortwave (SWnet) radiative flux, (c) downward longwave (LWd) radiative flux,
(d) net longwave (LWnet) radiative flux, (e) latent heat flux, (f) sensible heat flux.
Fluxes are the regional average over the maritime Arctic northward from 72.5oN (plain
curves) and over the 85oN (dashed curves).Three reanalysis: ERA Interim, ERA-40
and NCEP/NCAR are compared in the same period 1989-2001.
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and with the regional mean difference about 30-50 W/m2. Earlier Walsh and Chapman

[1998] compared NCEP/NCAR against measured SWnet at the North Pole drifting

stations. They also found that NCEP values were larger than the observations: by

approximately 25 W/m2 in May, June and August under clear skies, and 30-50 W/m2

in May-June under cloudy skies.

The larger SWnet in NCEP might be due to (a) a greater SWd, (b) smaller albedo,

(c) either both: greater SWd and smaller albedo in NCEP compared to both ERA

reanalysis. Our comparison of Sea Ice Concentrations (SIC) between NCEP/NCAR,

ERA Interim and ERA-40 (not shown here) did not evoke the negative bias in the

seasonal mean (May-July) climatology (1989-2001) in NCEP, compared to both ERA

products. In contrast, we find even larger SIC in NCEP/NCAR, compared to both

ERA reanalysis: in particular within the Kara, Laptev, East-Siberian Seas and Baffin

Bay. It seems that the positive bias in SWnet found in NCEP/NCAR (compared to

ERA products) is primarily due to the huge overestimation of SWd in NCEP/NCAR.

Regarding the error-bars, the observational error for SWnet term depends on the

absolute magnitude of the flux, being is approximately 5-7 W/m2 in summer months

[Intrieri et al., 2002].

Downward Longwave Radiation

Downward longwave radiative flux (LWd) is a major source of energy for the Arctic

surface all year round. Seasonal cycle of LWd in the Arctic Ocean (Fig 1.3c) is shifted

towards later seasonal maximum compared to SWd and SWnet, with the seasonal

amplitude in LWd being much smaller as well. The daily mean values are about 250-

300 W/m2 in May-September and 100-220 W/m2 during November-April [Overland

and Guest, 1991; Bjrk and Sderkvist, 2002; Curry et al., 2002; Francis et al., 2003;

Sorteberg, 2007a; Vihma et al., 2008].

The 30-40 W/m2 difference in the seasonal cycle between both ECMWF reanalysis

and NCEP/NCAR is apparent in Fig 1.3c and has been documented earlier by Curry

et al. [2002], Liu et al. [2005] and Sorteberg [2007b]. Compared to the observations it

seems that ERA-40 reproduces LWd very well, while NCEP/NCAR has a large negative

bias, for example in June of the order 50-75 W/m2 [Serreze et al., 1998; Liu et al., 2005;

Bromwich et al., 2007 ]. This bias in LWd in NCEP/NCAR is most likely due to errors

in cloud representation [Liu et al., 2005; Bromwich et al., 2007; NCEP/NCAR problem

list].

Meridional gradients in LWd flux are the most prominent during the cold season

(from August to May): few LWd radiation further to the North and large LWd sink in

the North Atlantic Barents Sea region. In summer, on average, LWd flux is very uniform
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regionally (not shown). Strange (patchy) spatial structure in the monthly mean LWd is

apparent in winter (March) LWd in NCEP/NCAR (not shown). This might be related

to the spectral noise problems in NCEP/NCAR reanalysis mentioned by Rogers et al.

[2001]. Yet, this is an open issue.

Day-to-day and year-to-year variations and the seasonal cycle in LWd are tightly

related to the atmospheric moisture content and cloud radiative properties. In con-

trast to SWd, the larger atmospheric moisture and thicker cloud cover intensify LWd

[Overland and Guest, 1991; Wang and Key, 2005a; Pinto et al., 1997]. The atmospheric

moisture content has the strongest (exponential) effect when varying within the low

values, within 0-30 kg/m2 for the total water vapour content [Zhang et al., 1997]. To

mention, the typical total water vapor content values during Arctic summer are those

within 10-20 kg/m2. Cloud LWd radiative forcing is mainly a function of the cloud base

temperature (cloud base height) and the cloud thickness, rather than the cloud frac-

tion [Chiacchio et al., 2002; Shupe and Intrieri, 2004; Tjernstrom et al., 2008]. Cloud

LWd radiative forcing is of the order of 10-40 W/m2 during November-April and 40-80

W/m2 during the melt season from May to October [Beesley, 2000a; Intrieri et al., 2001;

Wang and Key, 2005a; Sedlar et al., 2010]. The explanation for this seasonal cycle in

LW radiative forcing is the following. In winter the Arctic clouds are fewer, ice-phase,

higher and generally thinner, and the atmospheric total water vapour content is very

small. In these conditions the atmospheric column and clouds emit relatively few LWd

towards the surface and in the meantime - are nearly transparent for the LW radiation

emitted upward by the surface. In contrast, during summer the persistent low-level liq-

uid thick multi-layer stratiform clouds constitute a large thermal heat storage, which

increases LWd efficiently.

For the surface-based measurements the inaccuracy in LWd flux estimate is of the

order of 5 W/m2 [Chiacchio et al., 2002; Intrieri et al., 2001; Vihma et al., 2008; Sedlar

et al., 2010].

Net Longwave Radiation

Net longwave radiative flux (LWnet) at the snow-ice-open sea surface is the dif-

ference between the incoming atmospheric LWd (downward flux) and the surface LW

emission (upward) that depends on the surface temperature. Naturally, LWup is larger

for a warmer open sea surface, compared to the snow covered sea ice. During the polar

winter there is no SWd term and the LWup heat loss at the snow-ice-open sea surface

largely dominates LWd heat sink, producing large negative LWnet. On clear-sky winter

days with weaker LWd the radiative deficit in LWnet is the most pronounced. Dur-

ing summer, starting already in April-May, the increasing surface heating (SWd plus
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LWd) competes with the increasing surface cooling (by LWup). Radiative heating first

increases the surface (snow) temperature to the melting point and then the additional

heat is stored in a form of latent heat of fusion. Thus within the ice-covered areas LWup

stays still during the melt period (because the temperature cannot increase above 0C)

and LWnet deficit reduces. However, even during the melt season LWnet stays upward

(negative) in the Arctic Ocean, both over sea ice and open sea areas.

Field observations over the thick ice floes far away from leads indicate that LWnet

varies within 0-80 W/m2 along the year [Walsh and Chapman , 1998; Persson et al.,

2002, Jordan et al., 1999]. The smallest (near zero) LWnet loss have been measured

under low-level clouds and large LWd emission - in all seasons.

If comparing different meteorological reanalysis and remote-sensing estimates in

terms of the seasonal cycle in LWnet, the results diverge [Sorteberg, 2007a] showing the

largest LWnet deficit (regional mean) either in July-September (POLAR ISCCP-based

estimates 1), either in November-May (ERA-40 and ERA Interim), either in April-May

(NCEP/NCAR and AVHRR-based APP-X estimates 2), with quite different seasonal

cycle between data sets [Sorteberg, 2007a]. Our comparison of the regionally average

seasonal cycle in LWnet between NCEP/NCAR, ERA-40 and ERA Interim reanalysis

products, during the common period 1989-2001 (Fig 1.3d) shows a good agreement

with the earlier results by Walsh and Chapman [1998], Sorteberg [2007a] and Serreze

et al. [2007], thought being evaluated for different years.

Interestingly, Walsh and Chapman [1998] noted that LWnet seasonal cycle in NCEP

agrees well with the LWnet estimations at the North Pole drifting camps, although

they indicate that negative peak occurs too early in NCEP (in April). If following

their illustrations, the seasonal cycles fit well between LWnet in NCEP/NCAR and

the observed LWnet, however LWnet in NCEP is 10-20 W/m2 stronger (larger heat

loss) compared to the North Pole field observations.

We speculate that the negative peak in NCEP LWnet in May (Fig 1.3d) could

be related to that fact that LWd is not large enough and, in the meantime, SWd,

SWnet and the resulting surface heating are already too large in May in NCEP. In this

situation, it is logic that the surface warms by means of SW absorption and the LWup

enhances. And with the relatively weak LWd, the net LW radiative balance drops in

May to larger negative values.

LWnet in March, May and July in three reanalysis were compared. Similar to LWd

flux we found a physically inconsistent patchy structure in the monthly mean LWnet

1. Surface radiation budget estimate based on the International Satellite Cloud Climatology Project
(ISCCP POLAR), Rossow and Schiffer [1999], and Key et al. [1999]

2. AVHRR-based APP-X is the Version 1 of the Extended Advanced Very High Resolution Ra-
diometer (AVHRR) Polar Pathfinder dataset (APP-X), spanning the period 1985-1993
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in NCEP/NCAR during March, May and July (not shown). This doesnt seem to be

related to the sea ice cover changes in NCEP/NCAR. The only possible explanation

that we dispose is the spectral noise of the model used for NCEP/NCAR reanalysis

[Rogers et al., 2001].

However, even with this unphysical patchy structure in LWnet in NCEP, the result-

ing ”monthly mean regional average” in March is within -45-50 W/m2, which is very

close to both ERA products (!), see Fig 1.3d. This example shows that with the same

regional climatology, the local values are totally different in these three reanalysis data!

Another issue appears: in May LWnet is surprisingly uniform within 70-90N in NCEP

(not shown), with almost no distinction between the open sea and the sea ice domain

(!), although it is not yet the melting season and there should be some difference in

surface (skin) temperatures and LWnet across the ice margin!?

In July-August the difference in the monthly mean LWnet between NCEP and both

ERA reanalysis is the largest of all months: about 20-30 W/m2 all around the Arctic

Ocean (Fig 1.3d). Although LWd continues to increase as summer progresses, the

excessive SWnet in July foresters large LWup throughout the melt season and with the

insufficient LWd, the resulting LWnet (heat loss) is much larger in NCEP, compared

to both ERA products. Yet, it is of a question, whether ERA-40 and ERA Interim

produce better LWnet, than NCEP/NCAR? If following the LWnet cycle deduced

from the Russian North Pole drifting stations by Walsh and Chapman [1998, their

Figure 12], the shape of the observed seasonal cycle in LWnet is compares well with

the NCEP, rather than both ECMWF reanalyses. Yet the magnitudes of the heat fluxes

in NCEP/NCAR are questionable.

Latent heat flux

Turbulent latent heat flux (LE) is the energy spent on evaporation, sublimation of

the snow into the water vapor, or the energy released with the near-surface condensa-

tion. In the Arctic, on average, the net LE heat flux at the air/snow or air/ice interface

is upward year round, complementing the radiative LW heat loss, and together - in-

ducing the cooling of the sea water, ice and snowpack [Nilsson et al., 2001; Serreze et

al., 2007]. Thus the evaporation and sublimation dominate the near-surface conden-

sation. Monthly mean LE over the sea ice field is of the order of -5-0 W/m2 during

winter and -10-20 W/m2 during April-September. The largest day-to-day and seasonal

variations in LE occur within the marginal Arctic seas, Greenland and Barents Seas.

In these areas the large horizontal and vertical near surface thermal gradients build-

up over the vast open sea domain in early winter (September-November), generating

stronger winds, convection, turbulent mixing and evaporation, with LE reaching on
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certain years/areas/days 100 W/m2 within the Chukchi, Laptev, northern Kara and

Barents Seas. Measurements of the latent heat flux over Arctic leads documented the

daily LE values reaching 130 W/m2 [Shaw et al., 1991; Hartman et al., 1994]. Episod-

ically when condensation occurs within the near-surface layer over sea ice, the daily

latent heat flux can be downward, up to 10-15 W/m2.

Regional-mean 13-year average monthly climatology of LE northward from 70oN

(Fig 1.3e) illustrates that over the sea ice the strongest evaporation occurs in summer.

Regional mean climatology evokes two peaks in the seasonal LE heat loss one in May-

July, another in October, having different origin. The first peak is due to the large sea

ice and snow heating rate (under the combined effect of increasing SWd and LWd)

favouring the stronger evaporation and surface melt on top of the vast sea ice field.

The second peak in fall is due to the intense turbulent near-surface mixing over the

open sea before the fall freeze-up.

We find a large difference in LE between NCEP/NCAR and both ECMWF reanal-

yses in all months (Fig 1.3e). Interestingly, the climatology in the monthly mean re-

gional average LE is exactly the same in ERAI and ERA-40. Our results for NCEP/NCAR

are consistent with the excessive evaporation in NCEP/NCAR reported by Cullather

et al. [2000] and Jakobson and Vihma [2010]. According to Cullather et al., [2000] north

of 70oN the evaporation is at least 40% too large in NCEP/NCAR compared to the

Russian North Pole drifting stations. Naturally the model suggesting the excess in SWd

and SWnet should be warmer with larger evaporation [Serreze et al., 1998]. And this

is the case of NCEP/NCAR that has a warm bias in SAT (within 5oC) on cloudy days

during at least September-April period [Walsh and Chapman, 1998]. However, ERAI

and ERA-40 turbulent fluxes are likely neither free of errors. As shown by [Cuxart et

al. 2006] the atmospheric model used for ERAI tends to overestimate turbulent fluxes

under stable stratification conditions.

Sensible heat flux

Turbulent sensible heat flux (H) over the snow-sea ice covered surface has an overall

warming effect during October-April period, with the monthly mean (positive) values

of 10-15 W/m2, and weak cooling effect (negative H values) of about 0-5 W/m2 during

the melt season from May to September [Lindsay and Rothrock, 1994; Lindsay, 1998;

Nilsson et al., 2001; Persson et al., 2002; Makshtas et al., 2003] and Fig 1.3f (dashed

curves for ERA-40 and ERA Interim). Field measurements during fall-winter period

showed that the presence of clouds, and in particular the low-level stratiform clouds,

was often associated with a slight snow warming (by a few degrees), disturbing the near-

surface stable stratification and promoting sensible heat loss at the snow surface, with
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the instantaneous H flux values reaching 25 W/m2 over the thick (2-3 m) compacted

ice floe [Overland and Guest, 1991; Beesley, 2000a].

Over open water areas: leads, coastal polynyas and the warm Greenland, Barents

and Chukchi Seas, huge sensible heat loss takes place during the cold season, where H

may reach 600 W/m2 [Alam and Curry, 1997, 1998; Serreze and Barry, 2005]. Over these

open sea areas the strong unstable vertical stratification builds-up, with the sea surface

temperatures being at the freezing point and the cold (-40oC) polar air sliding from

the surrounding ice floes and generating the efficient atmospheric turbulent mixing,

intense sensible heat loss, evaporation and convective cloud formation.

Seasonal cycle in sensible heat flux averaged within the entire maritime Arctic

northward from 70oN (Fig 1.3f, plain curves) shows slightly negative H (heat loss) in

winter and positive in summer. This indicates that the regional average H is largely

affected by the open sea areas, where large wintertime H loss within the Greenland,

Barents and Chukchi Seas is accounted in the regional averaging.

As for LE flux component, ERAI tends to overestimate H turbulent flux under

stable stratification conditions [Cuxart et al., 2006; Graversen et al., 2011].

Conductive heat flux

Heat conduction (Qc) within the snow and ice is proportional to the thermal gra-

dient (dT/dz) within the snow or ice, and the thermal conductivity of the material

(λ, W m−1 K−1). In the most simple formulation the thermal gradient (dT/dz) is the

difference between the upper and lower boundaries (negative dT/dz in winter), and

the thermal conductivity is a function of the snow and ice density, salinity, age and

temperature. Thus first-year ice containing more brine (dissolved salt) has a smaller

conductivity than relatively fresh multi-year ice [Maykut, 1986]. Minus in the equation

indicates that the positive conductive flux is directed upwards within the ice floe and

the snowpack (ocean heat loss and atmospheric heat gain).

Qc = −λdT
dz

(1.2)

During polar winter the underside of sea ice is warmer than the snow and the air

aloft, which maintains the upward conductive flux at the snow-ice interface. In this

situation the amount of heat conducted upward to the ice-snow interface is the sum of

the sensible heat input from the ocean and the latent heat released by bottom accretion

and brine freezing within the ice floe [Maykut, 1986].

In spring and summer when snowpack becomes isothermal, the conductive (upward)

heat flux within the sea ice weakens. To notice, the ocean heat loss does not have a

direct effect on the snow and ice surface temperatures. If the ocean-ice heat flux at the
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ice bottom exceeds the conductive heat flux through the ice, the bottom ice melt takes

place. If the conductive heat flux through the ice exceeds the ocean-ice heat flux, there

is bottom growth of ice.

During the course of the year the conductive heat flux in sea ice can be as large as

130-200 W/m2 in 20-40 cm ice [Steffen and DeMaria, 1996] and +15-(-2) W/m2 for a

snow covered 1.5-3 meter thick sea ice [Nilsson et al., 2001; Maykut, 1986; Untersteiner,

1961; Perovich and Elder, 2001]. Thus the snowpack reduces ice surface cooling, and,

in consequence, reduces the bottom sea-ice growth rates [Maykut, 1986; Yackel et

al., 2007]. The average ocean heat flux at the ice bottom is of the order of 2-5 W/m2

[Maykut, 1986; Barry, 1986; Maykut and McPhee, 1995; Krishfield and Perovich, 2005],

the largest in late melt season when SWnet accumulation is large in the ice free areas.

Conductive heat within the snowpack is of the order of 5-20 W/m2 during winter

(November-March), 2-5 W/m2 during April-May and naturally near zero during the

melt season on top of 1-3 m sea ice [Persson et al., 2002].

Net heat flux

Surface net flux (NF) is defined here as the sum of the net radiation and the

turbulent heat fluxes, similar to Beesley [2000a], Adams et al. [2000] and Serreze et al.

[2007].

NF = LWnet+ SWnet+H + LE (1.3)

NF is largely dominated by the radiative terms, following closely the seasonal cycle in

absorbed SW radiation. In sea ice covered Arctic, on average, NF is positive during May

- early August and negative during the rest of the year, Fig 1.4. Episodic upward and

downward NF fluctuations occur in all seasons depending on the sea ice concentrations,

heat advection and the cloud cover. The annual regional (70-90oN) average NF is

negative (heat loss) of about 11 W/m2 according to ERA-40 [Serreze et al., 2007].

During the freezing season (roughly September-April) NF is the energy eliminated

from the snowpack and sea ice. Regarding the entire ice depth, this snow/ice surface

cooling (negative NF flux on top) is balanced by the conductive flux through the ice

and the latent heat released due to ice growth at the bottom of the ice floe. Consistent

with Serreze et al. (2007) and Persson et al. (2002), the regional average monthly mean

NF heat loss is the largest during October-February: within -50 W/m2 and +10 W/m2,

Fig 1.4. On top of the snow covered thick ice slab positive NF in winter occurs during

overcast days when LWnet is near zero and the sensible heat flux is downward in a

shallow mixing layer [Persson et al., 2002]. Thus during winter the net cloud radiative

forcing is positive of 60 W/m2 over the sea ice [Schweiger and Key, 1994]. Over the
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open sea areas in winter NF is negative reaching -400 W/m2 within the Greenland

Norwegian - Barents Seas and over leads and polynyas.

In spring when the heat absorption starts to dominate the heat loss at the snow and

sea ice surface, NF becomes positive (around May), Fig 1.4. During this period the

net cloud radiative forcing is positive of the order of 25 W/m2: where the cloud cover

increases NF heat gain [Schweiger and Key, 1994]. By definition, positive NF induces

warming of the snowpack from the initial winter temperatures, and the vertical thermal

profile within the snowpack gradually smooth. With a large enough accumulated NF

the melting point is reached, typically first within the sub-surface (2-5 cm) snow layer

[Cheng et al., 2008].

When the snow and sea ice melt start, roughly a half of received heat is released

for melting, another half is transmitted to the neighbouring snow and sea ice layers

and the minor part (a particularity of the Arctic region) is lost with evaporation and

sensible heat loss [Ebert et al., 1995; Lindsay, 1998].

The energy available for melting experiences a strong diurnal cycle, following the

diurnal cycle in SWd and SWnet, though there is almost no diurnal cycle in snow

and near-surface air temperature during the melt season [Lindsay, 1998; Tjernstrom,

2005]. The regional average monthly mean NF heat gain is the largest in July, about

80 W/m2, with the daily means of 35-130 W/m2. During several weeks in July the

net cloud radiative forcing shifts from positive to negative values, of the order of 25

W/m2 [Schweiger and Key, 1994]. In this short period the shading effect of clouds for

the incident solar radiation dominates the green-house effect.

Already in early August NF becomes negative and shortly the freeze-up starts.

During September-October NF is about -25-50 W/m2 over the sea ice areas and 50-150

W/m2 in the seasonal ice zone. The strongest NF heat loss occurs within the open sea

areas of the Chukchi, Barents and Greenland Seas, reaching 200-400 W/m2. Net cloud

radiative forcing is positive of the order of 40-70 W/m2 in fall [Schweiger and Key,

1994; Sedlar et al., 2010].

Figure 1.4: Seasonal cycle in net flux
(NF). The regional average over the
maritime Arctic northward from 72.5oN
(plain curves) and over the 85oN
(dashed curves).Three reanalysis: ERA
Interim, ERA-40 and NCEP/NCAR are
compared in the same period 1989-2001.
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Chapter 2

Data

This Chapter describes five data sets used in our study. The original SMMR-SSM/I

Melt Onset data set is described in Section 2.1. Sea ice concentration data are outlined

in Section 2.2. Three meteorological reanalysis products (ERA Interim, ERA-40 and

NCEP/NCAR) are summarized in Sections 2.3-2.5.

2.1 SMMR-SSM/I Melt Onset time series

Recently updated Arctic-wide Melt Onset (MO) record by Markus et al. [2009]

is derived from the Scanning Multichannel Microwave radiometer and Special Sensor

Microwave Imager (SMMR-SSM/I) passive microwave measurements of the brightness

temperature. The spatial resolution (pixel size) is approximately 25 km with the north-

ward limit around 87oN.

MO is defined as the first day of the continuous melt, e.i. when the liquid water

stays continuously present within the snowpack and/or on top of bare sea ice. If no

clear snow melt can be detected on top of sea ice, then the day when the sea ice

concentration drops below 80% for the last time before the area becomes ice-free is

”seen” as MO [Markus et al., 2009]. This means that formation of open water areas

(leads and polynyas) is considered for MO.

MO distinction varied between two ice types : the multi-year ice (MYI) and the

first-year ice (FYI). The spectral gradient ratio (GR) and a quantity P=V19+0.8*V37

were used to determine the MYI versus FYI. Here V denotes the vertical polarization.

If both GR and P overcome the pre-defined thresholds on April 1st the ice pixel is

marked as either MYI or FYI.

The defined thresholds are:

for MYI: P increases at the onset of melt, no matter GR values;

for FYI: GR > -0.03 , P drops at the onset of melt.

Fig 2.1 illustrates the emissivity signature as a function of the wave frequency,

which is the basis for ice type distinction.

This MO retrieval has been compared by Markus et al., [2009] with the near-

surface air temperature (SAT) from buoy observations and the reanalysis of the Na-

tional Center for Environmental Prediction / National Center for Atmospheric Research

(NCEP/NCAR). At two locations (one with MYI and another with FYI) SSM/I-based
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Figure 2.1: Dependence of the microwave
emissivity on surface properties: sea ice
or open water. Two sea ice types are the
multi-year (MY) and first-year (FY) sea
ice type. Late summer emissivity of the
FY ice represents the effect of desalina-
tion on sea ice emissivity. H and V denote
the horizontal and vertical polarization.
A, B,C and are the emissivity differences
Reprint from Spreen et al., 2008.

and SAT-based snow MO agree within less than 8 days (better over FYI). Over the

entire Arctic Ocean three MO estimates (SSM/I, buoy SAT and reanalysis SAT) were

compared during one particular year in terms of their spatial distribution statistics.

While spatial distribution curves do not perfectly mirror one another, they are in very

good agreement. This comparison, however, does not provide the conclusive quantita-

tive validation for the SSM/I-based MO retrievals. First, because SAT data themselves

have unknown errors. Second, because melt within the snowpack does not necessarily

coincide with 0oC, -1oC or positive air temperatures at 2 m height [Andreas and Ackley,

1982; Richter-Menge et al., 2006; Hanesiak et al., 1999]. Third, because when varying

the threshold applied to SAT data by ±2oC, the resulting SAT-based MO ranges by

as much as ±50 days [Markus et al., 2009].

Compared to the other SMMR-SSM/I MO time series, the major advantage of this

record is that until recently it was the only one to cover the complete 30-year period

of 1979-2008, and both MYI and FYI areas. We say ”until recently” because in early

2011 the MO data by Drobot and Anderson [2001] was updated for the recent years,

now also spanning the same period 1979-2008. According to our knowledge, there is no

complete 20-year region-wide time series of MO based on the active microwave remote

sensing, though it has great potential performing a better spatial resolution.

2.2 SMMR-SSM/I sea ice concentration

We applied a daily Arctic sea ice concentration (SIC) data set produced by Cav-

alieri et al. [1996], which is based on the same SMMR-SSM/I brightness temperature

measurements with the same spatial resolution as MO data of approximately 25 km.

This SIC data were produced with NASA Team Algorithm and obtained from the

National Snow Ice Data Center website http://nsidc.org/data/nsidc-0051.html. To no-
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tice, in the algorithm for MO detection developed by Markus et al. [2009] the same

NASA Team Algorithm was applied for SIC estimation. These SIC time series have

been widely used in Arctic climate research, e.g. Drobot et al. [2007].

Meteorological reanalysis

Meteorological reanalysis produces a global data set that is as close as possible

to reality [Tjernstrom and Graversen, 2009]. Based on the initial weather analysis

the numerical weather model produces a short forecast (first-guess), typically for a

6-hour time step. Thereafter the first-guess is adjusted according to the observations

available for the valid time of the forecast. Thus the reanalysis is a result of an optimum

combination of the model-generated meteorological fields and sparse observations. It

is considered that current global reanalysis data are most reliable in quantities that

are constrained by the observations (e.g., atmospheric pressure, air temperature and

winds), and least reliable for the sub-grid processes such as evaporation, precipitation,

refreeze-thaw, water phase transitions and cloud-related quantities [Arkin and Kalnay,

2008].

Advantages of the modern meteorological reanalysis are:

1. reanalysis incorporates all available observational data received too late for in-

clusion in the operational weather forecast [Walsh and Chapman, 1998];

2. the use of the same (”frozen”) model with the same physical parametrizations

prevents from the discontinuities associated with any model changes [Walsh and

Chapman, 1998];

3. data are dynamically consistent, three dimensional (global coverage) and contin-

uous in time [Tjernstrom and Graversen, 2009].

Although an extensive validation of different reanalysis in polar regions has not been

done yet, the individual focused studies progressed in this direction quite well. One of

the most comprehensive summaries on the reanalysis performance in high latitudes

(both Arctic and Antarctic) appeared after the workshop organized by the British

Antarctic Survey in 2006. This workshop report is available online at

http://ipo.npolar.no/reports/archive/reanalWS−apr2006.pdf.

2.3 NCEP/NCAR reanalysis

NCEP/NCAR reanalysis [Kalnay et al., 1996; Kistler et al., 2001] is a cooperative

project of the National Center for Environmental Prediction and the National Center
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for Atmospheric Research (NCEP/NCAR). It covers the period from January 1948 with

a horizontal resolution of 2.5o latitude by 2.5o longitude and 28 vertical sigma levels.

NCEP/NCAR assimilates an extensive observation data on the atmospheric pressure,

temperature, humidity and winds from radiosondes, aircraft, buoys, ship reports. It

does not assimilate 2m SAT and precipitation observations at the land meteorological

stations [Simmons et al., 2004].

Sea ice has a constant thickness of 3 m. Sea ice concentrations in each grid cell are

either 1 or 0. Thus if satellite microwave data suggest the ice concentrations exceeding

0.55, the model ice concentration is set to 1 [Cheng et al., 2008]. Snow accumula-

tion is allowed. Snow depth is determined prognostically from a budget equation that

accounts for accumulation and melting. The water equivalent of snow thickness is a

model variable, generating variations in the conductive heat flux through the snow.

Precipitation falls as snow if the air temperature at 0.85 sigma level is below 0oC. Sub-

limation of snow contributes to surface evaporation. Kwok and Cunningham, [2008]

have examined the net precipitation (precipitation minus evaporation), indicating the

snow depth, and found ”unphysical spatial patterns” likely associated with numerical

discontinuities near the North Pole. Surface albedo is 0.85 for snow and 0.75 for ice

[Cheng et al. 2008].

Skin (surface) temperature responds to the heat flux balance at the surface. 2m near-

surface air temperature (SAT) is then interpolated between the skin temperature and

the lowest model sigma-layer. Following Walsh and Chapman [1998] the seasonal cycle

of 2m SAT was very well captured, compared against the Russian North Pole drifting

stations. Yet NCEP/NCAR SAT was warmer on cloudy days during September-April

period, generally by less than 5oC [Walsh and Chapman, 1998]. Curry et al. [2002]

and Cheng et al. [2008] found that NCEP/NCAR 2m SAT over the sea ice was more

accurate than ECMWF products (within Beaufort-Chukchi Seas). This was attributed

to the fact that NCEP/NCAR assimilates ship observation, unlike ECMWF. However,

the skin temperatures and 2m SAT were announced to be significantly warmer at some

polar locations in the period 1998-2004 [NCEP/NCAR problem list].

Cloud cover is entirely computed with a cloud parameterization scheme [Kanamitsu

et al., 1991; Walsh and Chapman, 1998]. Compared to the North Pole drifting station

reports 1, NCEP/NCAR has too few clouds, with the cloud fractions unrealistically

nearly identical in summer and winter [Walsh and Chapman, 1998]. Low, middle and

high level clouds appeared to be erroneous in NCEP/NCAR [NCEP/NCAR problem

list].

NCEP/NCAR showed larger SWnet values compared to those measured at the Rus-

1. Russian North Pole drifting stations (1950-1991)
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sian North Pole stations, on both cloudy and clear sky days, with the largest error in

July under clear skies [Walsh and Chapman, 1998]. This is partly due to excessive SWd

[Serreze et al., 1998], errors in clouds, and also due to errors in albedo [NCEP/NCAR

problem list]. Sensible heat flux (H) strongly depends on winds in NCEP/NCAR. Thus

under weak near surface winds of less than 0.75 m/s H cancels, which produces unre-

alistic H, LWup, LWd and wrong skin temperatures [NCEP/NCAR problem list]

Daily error in LWd was up to 20 W/m2 compared to the North Pole drifting stations

reports [Walsh and Chapman, 1998]. Latent and sensible heat fluxes over sea ice were

shown to be too small over the Arctic sea ice [Adams et al., 2000].

NCEP/NCAR overestimates annual total precipitation over the central Arctic Ocean

and underestimates the precipitation on the Atlantic side of the Arctic Ocean, perform-

ing better during winter and the worst during summer [Serreze and Hurst, 2000]. At

SHEBA 1 site it did not capture the day-to-day variations in precipitation [Curry et

al., 2002]. Compared to the observations at the Russian North Pole drifting stations

and the land observations north of 60oN over the period 1986-1993, NCEP/NCAR

shows the annual maximum in precipitation in July, which is one month too early

[Serreze and Maslanik, 1997]. Moreover during August-December NCEP/NCAR has

too few precipitation [Serreze and Maslanik, 1997]. NCEP/NCAR evaporation is two

time larger compared to the North Pole drifting stations [Cullather et al., 2000]. How-

ever, NCEP/NCAR agrees well with the radiosonde observations of the moisture flux

convergence at 70oN [Cullather et al., 2000].

Seasonal cycle in SLP was shown to be reasonable compared to the Russian North

Pole drifting stations [Walsh and Chapman, 1998].

2.4 ERA-40 reanalysis

ERA-40 reanalysis is a predecessor of ERAI, both produced by ECMWF [Uppala

et al., 2005]. It covers the period from September 1957 to August 2002 with the global

resolution of about 1.125o latitude by 1.125o longitude. ERA-40 is based on the spectral

T-159 model with 60 coordinate (model) levels extending from about 10 m height - up

to 0.1 hPa. The lowest 10 layers are located below 850 hPa. ERA-40 is an improved

reanalysis with better vertical and horizontal resolution, relative to NCEP/NCAR (de-

scribed in the following Section 2.4). It assimilates the land station measurements of

2m SAT, snow depth and air humidity [Simmons et al., 2004; Wang et al., 2006]. Un-

like NCEP/NCAR, ERA-40 includes increasing greenhouse gases in the atmosphere

[Uppala et al., 2005].

1. Surface Heat Budget of the Arctic Ocean (SHEBA)
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Sea ice concentrations and the sea surface temperatures come from the weekly

NCEP analysis in the period 1981-2002, based on in situ observations from ships,

buoys and satellite data [Fiorino, 2004]. Sea ice thickness is prescribed as 1.5 m and

there are four model levels within the ice slab at the depth of 0.07, 0.21, 0.7 and 1.2 m

[Cheng et al., 2008]. Sea ice scheme allows a fractional ice cover for each grid cell. The

ice fraction is kept constant during the forecast. Ice bottom temperature is a seawater

freezing temperature of 271.2oK. Thus the ice heat conduction is primarily a function

of the net heat flux at the ice top. There is no snow on top of the sea ice, and the

albedo is prescribed as 0.85 in winter and 0.5 in summer.

Simmons et al. [2004] compared SAT from NCEP/NCAR, ERA-40 reanalysis with

observations and concluded that ERA-40 performed better. Another study by Bromwich

et al. [2007] found that ERA-40 captures the day-to-day variability in the total cloud

cover much better than NCEP/NCAR (in June at Point Barrow).

Seasonal cycle in the LWd and SWd is more realistic in ERA-40 than NCEP/NCAR

[Sorteberg, 2007]. Thus Liu et al. [2005] demonstrated that ERA-40 SWd is in a very

good agreement with SHEBA observations. However ERA-40 clouds were too optically

thin for SWd, except when the cloud fraction is very large, of 95-100% [Bromwich et

al., 2007].

ERA-40 appeared to have a reasonably adequate description of the lower tropo-

spheric thermal structure, where the assimilation of SHEBA soundings had a notable,

but not drastic effect on ERA-40 thermal profiles [Tjernstrom and Graversen, 2009].

However, the vertical thermal structure in ERA-40 showed a random error in the

boundary layer compared to SHEBA 1 soundings, reaching 2.5oC at the lowest levels,

with a systematic warm bias reaching 1oC [Tjernstrom and Graversen, 2009]. SHEBA

profiles revealed the presence of multiple inversion layers at the same time. ERA-40 typ-

ically had fewer inversions in each profile: capturing the main inversion, but rarely the

secondary and third inversion. Compared to SHEBA, the winter period when surface-

based inversions dominate is too short in ERA-40, and the inversion bases are too

high in late summer and fall. Bromwich et al. [2002 and 2007] noted the cold bias in

the low and middle troposphere over the central Arctic Ocean (until 1996). Compared

to the radiosonde vertical thermal profiles over the land north of 65oN during 1979-

1996, the vertical profiles produced by ERA-40 showed a smaller error compared to

NCEP/NCAR [Graversen et al., 2008].

One of the most recent studies by Screen and Simmonds [2011b] focused on the

regional mean (70-90oN) seasonal and annual averages in NCEP/NCAR, JRA and

ERA-40. They manifested that all reanalysis products are ”poorly suited for the study

1. several hundred of soundings during Oct 1997-Oct 1998
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of thermal trends, particularly below 600 hPa”. Thus in ERA-40 there is a clear shift in

the temperature bias from negative to slightly positive in 1997 due to data assimilation

changes.

Comparison with the rawinsonde archives done by Bromwich and Wang [2005]

demonstrated that ERA-40 and NCEP/NCAR performed reliably the geopotential

height, wind speed and direction and the tropospheric temperatures. In turn it was sug-

gested that ERA-40 had a more realistic representation of winds than NCEP/NCAR.

Crochet [2007] established the realistic Islandic precipitation in ERA-40 in all seasons

along the entire reanalysis period 1958-2002.

Wang et al. [2006] investigated the cyclones in NCEP/NCAR and ERA-40, and

found that ERA-40 has more strong cyclones and fewer weak cyclones over the Arctic

(44-year mean), in particular over the western Arctic during October-March season.

Similarly, a larger number of intense cyclones and fewer weak cyclones were found

in ERA-40 within the North Atlantic during Jan-September months [Wang et al.,

2006]. Alternative comparison by Bromwich et al., [2007] evoked a very good agree-

ment between NCEP/NCAR and ERA-40 in terms of cyclonic activity in the Northern

Hemisphere during 1979-2002: with a discrepancy only in some weak cyclones in the

Northern Hemisphere.

2.5 ERA Interim reanalysis

ERA Interim reanalysis [Uppala et al., 2008], called here further ERAI, is an im-

proved product upon the previous ERA-40 and ERA-15 reanalysis created by the

European Centre for Medium-Range Weather Forecast (ECMWF). ERAI has a global

coverage with a spatial resolution of 0.72o latitude by 0.72o longitude, 60 vertical model

levels, and since recently covering the period from 1979 onwards. ERAI benefits from

the previous reanalysis experience, with major improvements: higher spatial resolu-

tion, assimilation of more extensive and diverse observational data with a more so-

phisticated technique (four-dimensional variational data assimilation), revised model

physics, better radiative transfer model, a more detailed hydrological cycle and a vari-

ational bias correction of satellite radiance data [Dee and Uppala, 2009; Cuzzone and

Vavrus, 2011]. Compared to ERA-40, ERAI demonstrated a better vertical consistence

of the air temperature in Arctic [Uppala et al., 2008; Dee and Uppala, 2009]. Thus with

the implementation of the variational bias correction in ERAI, the vertical structure is

now more efficiently constrained by radiosonde observations.

Sea-ice fraction and sea-surface temperatures are prescribed in ERAI in the same

way as for ERA-40 prior to Jan 2002 [Fiorino, 2004; ECMWF IFS Part II, 2008; Dee

38



et al., 2011]. From 1 Jan 2002 − to 31 Jan 2009 ERAI follows ECMWF operational

forecasting system using the National Center for Environmental Prediction real-time

global SST analysis, called NCEP RTG SST [Thibaux et al., 2003; Stark et al., 2007].

SIC north of 82.5oN are set to 100% [ECMWF IFS Part II, 2008]. South of 82.5oN the

sea ice concentrations are based on SMMR-SSM/I passive microwave measurements.

Sea ice concentrations below 20% are set to 0% . Sea ice thickness is 1.5 m without snow

accumulation or melt. No data on snow or ice surface temperature were assimilated

in ERAI. Sea ice temperature and conductive heat flux are resolved at 4 model levels,

with the bottom ice temperature at the freezing point. In this formulation, the vari-

ability (both in space and in time) of the conductive heat flux through the ice depends

primarily on the atmospheric fluxes and near surface air temperature and humidity.

Sea surface (skin) temperatures from individual ships and buoys are assimilated in

ERAI. The monthly albedo of sea ice and open water are prescribed in ERAI in a way as

determined by Ebert and Curry [1993], Fig 2.2 . The bare sea ice albedo value in Ebert

and Curry [1993] is taken as a representative value for summer from July to August,

and the dry snow albedo value is used for the winter months from September to May

[ECMWF IFS Part IV, 2008]. In ERAI, the sea ice albedo does not vary along the

day with the solar zenith angle. Dry snow albedo is about 0.98 in the visible spectrum

(0.25-0.69 m) and decreasing to 0.03-0.05 in 2.38-4.00 m (near and short-wave infrared

spectrum), with the spectral integrated albedo of approximately 0.77. Bare ice albedo

is about 0.77 in the visible spectrum, about 0.04 in the near and short-wave infrared

spectrum, with the spectral integrated albedo of 0.51 [Screen and Simmonds, 2011a].

The open water albedo is approximately 0.06 [Ebert and Curry, 1993; ECMWF IFS

Part IV, 2008].

Figure 2.2: Seasonal evolution of
the spectral integrated albedo on
Arctic sea ice in ERA Interim.
Reprint from Screen and Sim-
monds., [2011b].

Liquid/ice water content, cloud fraction, precipitation and evaporation are com-

puted by the model at all levels (6-h forecast). Clouds types are defined as followed:

low-level clouds occur in the lowest troposphere, roughly within 1000-800 hPa, medium-

level clouds are comprised within about 800-450 hPa, and the high-level clouds occur

above 450 hPa. Cloud scheme is described in detail by Tiedtke [1993]. Water vapour
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data are assimilated: humidity profiles from radiosondes and raw radiances from a

number of satellite instruments.

Annual monthly mean cycle of the aerosol distribution in space with various aerosol

types (maritime, continental, urban and desert) developed by Tegen et al. [1997] has

been implemented in ERAI. Carbon dioxide, methane, nitrous oxide, CFC-11 and CFC-

12 are prescribed with the constant volume concentrations [ECMWF IFS Part IV,

2008].

The shortwave radiation (SWd) scheme originates from Fouquart and Bonnel [1980],

and the longwave radiation (LWd) rapid radiation transfer model (RRTM) is described

by Morcrette [1991] and Mlawer et al. [1997]. Description of the schemes for calculating

the radiative and turbulent fluxes are given in ECMWF IFS Part IV, 2008. Cloud SW

radiative properties in ERAI are a function of solar zenith angle, cloud liquid water

amount and the effective radius of the cloud water droplets and ice crystals [ECMWF

IFS Part IV, 2008]. ERAI LW radiative fluxes depend primarily upon surface and air

temperature, water vapour profile and the cloud cover [ECMWF IFS Part IV, 2008].

The greenhouse gases: carbon dioxide, methane, nitrous oxide, CFC-11 and CFC-

12 are assumed to be globally well-mixed. The concentrations for these gases are set

to observed 1990 values plus a linear trend as specified in the IPCC 2nd Assessment

Report 1996 [Dee et al., 2011].

Previous studies with ERAI data for the Arctic Basin

Over Arctic sea ice, ERAI vertical profiles of air temperature, humidity and wind

have been compared against observations from three ship campaigns by Lupkes et

al. [2010]. It was found that ERAI overestimates the near-surface humidity and air

temperature during summer, whereas the near-surface winds in ERAI are represented

more accurately, with the differences increasing at higher altitudes but remaining less

than 1 m s−1. According to our knowledge, the accuracy of ERAI surface fluxes on top

of Arctic sea ice is yet to be validated.

ERAI total cloud cover is generally larger over the areas with higher sea ice concen-

trations, the most pronounced during fall-winter-spring period [Cuzzone and Vavrus,

2011]. This relationship is explained that over higher SIC the air temperature and spe-

cific humidity are lower throughout the column, resulting in higher relative humidity,

and in consequence more clouds and in particular − low-level clouds [Cuzzone and

Vavrus, 2011].

4 years (2006-2009) of cloud data (north of 65oN) have been evaluated by Marta

Zigmuntowska et al. (in press). Accordingly, (1) ERAI monthly mean total cloud frac-
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tions are within 80-95% year trough (with a very weak seasonal cycle). (2) ERAI total

cloud fractions are much larger (year round) compared to the total cloud fractions

estimates from CALIPSO/CloudSat, (3) The seasonal cycle in the total cloud fraction

perfectly mirrors the seasonal cycle in the low level cloud fractions in ERAI in this

4 year period. (4) Monthly mean wintertime low-level cloud fractions are of 0.7-0.9

in ERAI, which does not really agree with the observed climatology of the low-level

clouds [Marta Zigmuntowska; Beesley and Moritz, 1999].

Annual average estimates of precipitation (P), evaporation (E) and net precipita-

tion (P-E) in the Arctic Ocean agree very well between MERRA 1 and ERAI reanalysis,

with the absolute values ranging within 28-30 cm/yr, 12-15 cm/yr and 13-18 cm/yr

respectively [Cullather and Bosilovich, 2011]. Compared to the observations of pre-

cipitation at the Russian North Pole drifting ice stations, a positive bias was found

in MERRA during the year (about 2% for the monthly means), reaching 60% in the

monthly mean in April-June values [Cullather and Bosilovich, 2011]. This indicates

that ERAI precipitation and evaporation are also biased.

Compared to National Climatic Data Center (NCDC) observations in the central

Arctic and over the land north of 60oN, ERAI had near-zero bias in 2m dewpoint in

July 2007 [Wilson et al., 2011].

1. Modern Era Retrospective Analysis and Applications (MERRA)
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Chapter 3

Snow Melt Onset on sea ice: climatology,

interannual and spatial variability, remote

sensing

3.1 What is the Snow Melt Onset?

Field observations of the snow recrystallization, snowpack thermal profiles and sur-

face radiative and turbulent heat fluxes are the major source of knowledge about the

Snow Melt Onset (SMO) on top of sea ice. Accordingly, before SMO the lowest temper-

atures are found at the snow-air interface, increasing in the upper 5-10 cm snow layer

and decreasing again in the deeper snow layers and at the snow-ice interface [Nicolaus

et al., 2003 and 2009]. Here within this sub-surface snow layer the ratio between the

heat accumulation and the heat loss is the largest. In comparison at the snow-air in-

terface the evaporation (latent heat loss) and turbulent sensible heat loss retard the

heating and snow melt. And deeper, at the snow-ice interface the snow is either cooled

by the colder (thick) sea ice, or is cooler just due to thermal damping effect of the

snowpack itself. In consequence, the snow melt often starts a few centimeters below

the snow surface [Colbeck, 1982; Jordan et al., 1999; Frolov et al., 2005; Cheng et al.,

2006; 2008; Nicolaus et al., 2009].

Definition of SMO

Studies on the snow metamorphism [Colbeck, 1982] determined the SMO as a tran-

sition phase starting with the wet snow metamorphism (early melt) and going on until

the snowpack is saturated throughout (advanced melt). In this transition period due

to more and more intense internal melt, liquid water occupies the pore space between

snow grains and percolates downwards. Similarly, the airborne and satellite-based mon-

itoring of the surface state, distinguish the early episodic snow melt and continuous

snow melt [Livingstone et al., 1987; Winebrenner et al., 1994; Markus et al., 2009].

Where the continuous SMO means that the water in liquid phase (free-standing water)

is present on top of the sea ice throughout the diurnal cycle and for the rest of the melt

season [Yackel et al., 2007]. Model experiment carried out by Nicolaus et al. [2003]

has determined SMO as the instance when the first meltwater reaches the snow-ice

interface. In this formulation SMO is precisely determined as an exact instance [Julian
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day], yet this snow melt might be a temporary event and doesn’t require snow satura-

tion throughout the snow depth. So far the snow melt is quite a subtle and reversible

process, which complicates the comparison of different SMO estimates.

In our study we adopt the terminology utilized in the remote sensing, considering

the SMO as the moment when permanent snow melt establishes within the snowpack

[Livingstone et al., 1987 and Markus et al., 2009]. Our choice is determined and re-

stricted by the analysis that we develop. We expect that if comparing the remote sensed

data on the continuous SMO (described in Section 2.1) with the meteorological data

(described in Sections 2.2-2.4), the continuous SMO should be represented in both data

sets more accurately, rather than any episodic and short (of the order of few hours)

snow melt event.

Direct factors controlling SMO: surface heat fluxes

Absorption of the incident solar shortwave radiation (SWnet) and the balance of the

longwave radiation (LWnet) within the snowpack in combination with the atmospheric

turbulent fluxes and the heat conduction through the snow-sea ice, control together the

heat budget (net flux, hereafter NF) and the temperature of each snow layer. Positive

NF within some snow layer signifies the heat gain and snow heating, and the negative

NF - the heat loss and snow cooling. Large enough accumulated NF increases the

snow temperature from the initial winter values up to the melting point. Then after an

additional amount of heat is needed for the phase change from frozen to liquid state.

Radiative measurements established that radiative fluxes at the air-snow interface

have a dominant influence on snowpack properties including snow temperature, snow

grain metamorphism and water phase transitions [Barber et al., 1994]. During the pre-

melt April-May months both SWd and LWd (daily mean) are both about 180-250

W/m2 on top of the snow covered sea ice at 70-90N [Beesley, 2000a; Francis et al.,

2003; Perovich et al., 2007b; Schweiger and Key, 1994], see also Fig 1.3a,c). Prior

to SMO the snowpack is dry with the surface shortwave albedo of 0.8-0.9 [Maykut

and Church, 1973), reflecting most part of SWd. With a higher solar elevation SW

absorption within the dry snow increases to about 50 W/m2 in April and 110 W/m2

in May, which are the daily mean estimates for all sky weather conditions north of

62oN [Schweiger and Key, 1994; Intrieri et al., 2002]. A model study with and without

SWd diurnal cycle by Hanesiak et al. [1999] suggested that SWd diurnal cycle strongly

influences the snowmelt initiation, where the time resolution of the model runs (hourly

or daily SWd forcing) appeared to be an essential element in the relationship between

SWd and snow melt. Similarly Cheng et al. [2008] also showed that success in modelling

43



of the diurnal thaw-refreeze cycles strongly depends on the vertical resolution applied:

with a 15-20 layer snow model resolving the snow melt better than a 3 layer model.

Turbulent latent (LE) and sensible (H) heat fluxes are relatively weak compared

to the surface radiative fluxes. Both LE and H are within ±20 W/m2 during spring

months on top of compact sea ice [Ebert and Curry, 1993]. LE heat loss usually takes

place during the pre-melt April-May period [Persson et al., 2002], Fig 1.3e. Surface

warming during May and early June results in a slightly unstable stratification near

the surface [Persson et al., 2002]. As a result, in May-June the turbulent heat fluxes

tend to cool the snow surface (Fig 1.3f). Thus during the pre-melt period LWd is the

primary source of heat for the dry snow cover on top of the Arctic sea ice [Ambach,

1974, Beesley, 2000a, Wendler, 1986].

Indirect factors controlling SMO

At the snow surface with high shortwave albedo LWd, LWnet and NF are greater

under cloudy conditions compared to clear skies [Ambach, 1974; Barber and Thomas,

1998b; Graversen et al., 2011; Wendler, 1986]. In the other words clouds contribute to

the earlier spring SMO [Shine and Crane, 1984; Zhang et al. 1996]. Starting in April-

May the Arctic cloud cover is dominated by the liquid low-level multi-layer clouds,

which results from the increasing atmospheric vapor and liquid water content, more

intense surface evaporation and the warm air advection towards the cold snow covered

sea ice field. These relatively warm clouds have the indirect effect on snow temperatures

and SMO by shaping surface heat fluxes. Intuitively, a larger and early northward heat

advection with stronger wind speed should foster the surface heating and the early

snow melt [Graversen et al., 2011; Serreze et al., 1993; Stone et al., 2005]. This has

been observed on the Pacific side of the Arctic Ocean (East Siberian Chukchi - Beaufort

Seas) where the snow melt tends to begin earlier when the Beaufort Sea anticyclone is

weaker or shifted towards Canadian Archipelago during spring. Such an atmospheric

circulation allows the injection of warm oceanic air masses from the north Pacific

and/or the warm continental (Siberian or Canadian) air into the marginal Arctic seas

[Serreze et al., 1993; Stone et al., 2005].

The time needed to warm the snowpack up to the melting point depends on the

seasonal evolution of NF, the initial snow temperatures, snow density and thickness,

and the aerosol contamination of the snowpack. It is of evidence that with the same

meteorological forcing, the cold, light, thick and pure snowpack will take more time

to warm-up, compared to the relatively warm, dense, thin and highly contaminated

snowpack. Field observations in April-May demonstrated that thinner sea ice is 5-10oC
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warmer at the snow-ice interface compared to thick ice [Perovich and Elder, 2001;

Nicolaus et al., 2009]. This is due to a larger conductive heat flux through thinner ice.

Thus, with the same meteorological forcing and a uniform snow depth, on top of thin

ice it takes less time to heat the snowpack to the melting point. In consequence, SMO

starts earlier on top of thinner (initially warmer) ice floe, compared to thick multi-year

ice.

To summarize, there exist a multitude of factors modulating the heat fluxes on top

of sea ice. These are the indirect factors controlling SMO timing. These include various

cloud properties, atmospheric heat advection, near surface winds, snow temperatures,

snow density and contamination, snow salinity, sea ice thickness and many more.

What happens after Snow Melt Onset?

Detailed analysis during the initial stages of spring snow melt and further melt

progression has been done based on field observations [e.g. Barber et al., 1995; Perovich

et al., 1994, 2002; Richter-Menge et al., 2006; Nicolaus et al., 2006 and 2009; Granskog

et al., 2006; Vihma et al., 2009]. With SMO liquid water appears within the snowpack

and snow crystals coarsen. This decreases the shortwave albedo and triggers a better

absorption of SWd [Ehn et al., 2006; Yackel et al., 2007]. In consequence, with a larger

heat gain both the snow melt and surface evaporation intensify.

As the melt season progresses, the snowpack melts out, bare ice reveals and short-

wave albedo reduces again to about 0.6 [Perovich et al., 2002]. The duration of the

snowmelt (the period between SMO and the beginning of the melt pond formation on

the sea ice) was found to be related to the snow depth prior to SMO [Yackel et al.,

2007]. Surface melt of the bare ice maintains the further melt pond formation. De-

pending on the melt pond depth, the surface albedo drops to 0.2-0.5. Reduced albedo

of the melt ponds amplifies SW absorption within the melt ponds and accelerates sea

ice melt. Field observations and numerical experiments indicate that the timing and

change in surface albedo due to SMO has a strong effect on the further summer sea ice

ablation, ice break-up timing, summer open water duration and the minimum sea ice

extent by the end of the melt season [Eicken and Lemke, 2001; Hanesiak et al., 1999;

Perovich et al., 2007b].
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3.2 Snow Melt Onset detection with the remote

sensing

Remote sensing of the snow cover

Already in 1966 the National Oceanographic and Atmospheric Administration (NOAA)

began an operational program to map the snow extent in the Northern Hemisphere

land areas, at the beginning using only visible-band satellite data [Matson et al., 1986].

Since then numerous studies focused on the snow extent and snow depth measurements

inland, and only relatively few progress have been done in snow mapping on top of the

sea ice and uniquely over the seasonal sea ice field [Comiso et al., 2003; Barber et al.,

2003; Sturm et al., 2006; Langlois and Barber, 2007; Yakel and Barber, 2007; Kwok

and Cunningham, 2008].

Snow cover mapping using optical data enables the observations of the snow-covered

area with a relatively high spatial resolution, although impossible during the overcast

days and polar night. Microwave-based observations identify both snow extent and

snow water equivalent (SWE) regardless clouds and polar night. Empirical studies

demonstrated that the decrease in brightness temperature [increase in the backscatter)

is correlated with the thickness and density of the snow cover. The measured SWE and

prescribed snow density allow the snow depth estimate. Yet the microwave-based snow

depth detection has large limitations. (1) Active microwave snow monitoring measures

only the upper 50 cm snow layer. (2) Snow depth evaluation is applicable only for dry

snow. (3) Snowpack is visible only on top of the seasonal sea ice [Comiso et al., 2003].

Remote sensing of Snow Melt Onset

The appearance of liquid water within the snowpack makes the grains to cluster,

resulting in bigger grains with a more rounded shape. As a result, the snow emissivity

increases in the near-infrared and microwave wavelengths and the reflectivity decreases

in the visible spectrum. The initial surface melt is often followed by repeating re-

freezing and thaw episodes, each time affecting the emissivity and reflectivity of the

surface [Barber et al., 1994; Yackel et al., 2007].

If comparing different observable wave bands, the cloud cover and precipitation have

a strong effect on the electromagnetic signal in the visual and near-infrared spectrum

[Forster et al., 2001; Lubin and Massom, 2006; Yackel et al., 2007]. In the permanent

presence of multi-layer low-level clouds during May-October period, the microwave

observations have become the most compatible for SMO detection in the Arctic Ocean.
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However, the visible and near-infrared MO detection has been carried out as well, for

example, by Robinson et al. [1986], Willmes et al. [2009a] and Anderson et al. [2011].

The advantage of the remote sensing SMO detection is that the same algorithm can

be applied to a huge amount of rough satellite-based observations, with the entire Arctic

Ocean resolved several times daily with a high spatial resolution. SMO detection done

in the same way everywhere each year allows rather objective comparison of different

areas and years.

There exist several important constraints for the remote detection of SMO. The one

is that is that different algorithms should be developed and applied to different sea ice

types (roughly: multi-year and first-year ice types), where pixels with a mixture of ice

types are treated as a unique ice type. Another difficulty is that two totally different

physical processes: SMO on top of compact sea ice and divergent ice drift are blended

within one data set. Though both processes are essential for the sea ice and ocean

surface heat budget, they have totally different origin. SMO on top of the compact sea

ice is due to heat accumulation within the snowpack, while the divergent ice drift is

caused by ocean waves, winds, ocean currents or bottom ice melt.

The potential of the remote-sensed blended Melt Onset data is obvious. The MO

retrievals suggest an alternative point of view on the surface state in the Arctic Ocean.

Thus, snow melt on sea ice could be used to constrain the albedo and surface heat

fluxes in the weather forecast, for example. Moreover, the timing of spring seasonal

transition and the weather conditions during summer were found to be the essential

factors controlling the further summer sea ice conditions in the Arctic [Notz, 2009].

This means that the blended MO data may and should be adopted in seasonal sea ice

forecasting.

For clarity, we further apply the abbreviation SMO for the Snow Melt

Onset on top of the compact sea ice and reserve the abbreviation MO for

the apparent (blended) remote sensed data set. This idea to isolate the thermal

signature (SMO) from sea ice dynamics appeared briefly in the study by Nghiem et al.

[2003], yet the concrete technique and results of this work have not been described.

Microwave detection of Snow Melt Onset

In the microwave (MW) part of electromagnetic spectrum the brightness tempera-

ture (measured with radiometer) and backscattered signal (measured with the synthetic

aperture radar and scatterometer) are the function of the real surface (skin) temper-

ature and emissivity/permittivity of the material (snow, sea ice and sea water). The

later depend on the dielectric properties of the material: salinity, temperature, surface
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roughness and snow-ice granular structure. Lower temperature reduces MW emissivity

and MW absorption at the sea ice surface. Higher brine content of sea ice increases the

MW emissivity and absorption. Dry snow has a small MW emissivity and weak MW

absorption, being almost transparent to the MW emission of the sea ice and the radar

pulses sent out to the sea ice surface. With SMO the MW absorption and emissivity by

the snowpack strengthen, which manifests by a sharp increase in the measured bright-

ness temperature and a drop or increase (depending on the ice type: MYI or FYI) in

the backscattered signal [Belchansky et al., 2004a; Yackel et al., 2007].

Passive microwave detection of Snow Melt Onset

Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Mi-

crowave Imager (SSM/I) measure the brightness temperature at approximately 19, 22,

37 and 85 GHz frequencies (both in horizontal and vertical polarizations). The emis-

sivity differs the most between dry and melting snow in 37 GHz channel, whereas the

spatial resolution (pixel size) is the best at 85 GHz (about 6 km pixels). SMMR-SSM/I

records of the brightness temperature are available since October 1978 until 2008, cov-

ering the Arctic Ocean up to 84oN before 1987 (SMMR) and up to 87oN after 1987

(SSM/I). The successor of SSM/I instrument was launched in 2002. This Advanced

Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) passive

microwave radiometer measures the brightness temperature at approximately 7, 11, 18,

23, 36 and 89 GHz channels. The spatial resolution varies from 5 km at 89 GHz to 56

km at 7 GHz. For MO detection the most appropriate frequencies are 19 and 37 GHz,

corresponding to spatial resolution of 12-25 km. SMMR-SSMI/I based MO detection

has been performed by Anderson [1987], Livingstone et al. [1987], Crane and Anderson

[1989], Serreze et al. [1993] and with the large-scale long-term data - by Smith [1998],

Drobot and Anderson [2001], Belchansky et al. [2004], Stroeve et al. [2006] and Markus

et al. [2009].

Active microwave detection of Snow Melt Onset

Scatterometer and synthetic aperture radar operate by transmitting high-frequency

microwave pulses to the Earths surface and measuring the echoed radar pulses bounced

back to the satellite. Compared to the passive microwave observations, there is no hole

around the Poles. MO detection is possible with the daily observations by C-band and

Ku-band scatterometers.

C-band scatterometers (5.3 GHz) were deployed on the European Remote Sensing

satellites (ERS-1 and ERS-2) during 1991-2001. C-band pixel resolution extends from
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a few hundreds of meters to about 25 km. MO detection using C-band observations

was demonstrated, for example, in the studies by Frey et al. [2003], Kwok et al. [2003]

and Yackel et al. [2007].

Ku-band scatterometers (13.4 GHz) were deployed on the satellites launched by

the National Aeronautics and Space Administration (NASA) since 1996, resolving the

Arctic region with the pixel size also about 25 km. This sort of data with the specific

modifications is also called NSCAT, SeaWinds and QSCAT. MO detection with Ku-

band observations has been applied for example, in the studies by Yueh and Kwok

[1998], Foster et al., [2001] and Perovich et al., [2007b].

In present the longest MO records for the Arctic Ocean are those based on SMMR-

SSM/I brightness temperature measurements. Moreover, it seems that there are only

two MO data sets spanning the complete 30-year period from 1979 up to 2008: those

by Drobot and Anderson [2001] and Markus et al. [2009]. The former data set has not

been completed yet (for the recent 2002-2008) at the beginning of our study. This is

the reason why we focused on the data set by Markus et al. [2009].

Validation and inter-comparison of different Melt Onset and

Snow Melt Onset retrievals

Observations show that the near-surface air temperatures (within the lowest 2 m

height) are uniform over the areas of 10-30 km on top of the compacted sea ice field,

with the spatial differences limited to 1-2oC [Haggerty et al., 2003; Perovich and Elder,

2001; Perovich and Richter-Menge, 2006]. This feature enables the comparison between

SAT and the satellite-derived SMO (characterizing the pixel area of about 25 x 25 km

in case of SMMR-SSM/I resolution). Based on the daily SAT time series, SMO can be

determined as the day when the daily mean air temperature remains above the melting

point. However, the choice of the melting threshold appears to be quite subjective.

Different have been applied when comparing SAT and the satellite-derived SMO, for

example, 0oC [e.g. Serreze et al., 1993; Martin and Munoz, 1997; Smith, 1998b], -0.5oC

[Lindsay, 1998], -1oC [e.g. Rigor et al., 2000, Markus et al., 2009], -1.9oC [Andreas and

Ackley, 1982], -5oC [Belchansky et al., 2004], and -5oC for air temperature at 925 mb

[Anderson et al., 2011].

Comparison of MO remote sensing retrievals against SAT has been done in most

of the cited studies, e.g. by Winebrenner et al. [1994]; Yueh and Kwok [1998], Drobot

and Anderson [2001a], and Yackel et al. [2007]. Thus MO retrievals by Winebrenner et

al. [1994] and Smith [1998b] during spring 1992 agree within 2-4 days at 22 validation

sites within the perennial ice zone, while being 10-20 days later than 0oC SAT from
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NCEP/NCAR reanalysis. Alternative and similar inter-comparison of MO records pro-

duced by Winebrenner et al. [1994], Drobot and Anderson [2001a] and Smith [1998b]

at about 20 locations in the Western Arctic over perennial ice on the same year 1992,

demonstrated the general agreement within 4 days as well. MO retrievals by Belchansky

et al. [2004a] were compared against SAT from IABP/POLES , which showed that MO

detected from SMMR-SSM/I was much earlier than the SAT-based MO, in particular

over the seasonal ice. Forster et al. [2001] compared NSCAT Ku-band and SSM/I-based

MO with the SAT from IABP/POLES during the spring 1997, with both MO data sets

in 25 km resolution. Accordingly, the active microwave detection indicated 1-10 days

earlier MO, compared to the passive microwave retrievals, and the daily mean SAT

was fluctuating within -5-0oC during this transition period Forster et al. [2001]. In the

northern Canadian Archipelago the timing of the observed daily mean SAT reaching

0oC and the remote-sensed MO on top of the FYI (synthetic aperture radar) differed

by approximately 5-25 days [Yackel et al., 2007] in the period 1992-2002.

These comparisons of the remote sensed retrievals of the SMO do not mean the

conclusive quantitative validation. First, because SAT time series themselves have un-

certain errors. Second, because melt within the snowpack does not necessarily coincide

with 0oC, -1oC, -5oC or positive air temperatures at 2 m height, which is the particular-

ity of the Arctic SMO [Andreas and Akley, 1982]. Field observations showed that in the

Arctic the inner snow melt on top of sea ice is possible with the air temperatures below

freezing, of -2-4oC [Zubov, 1943; Frolov et al., 2005; Yackel et al., 2007], with SMO

mostly depending on the net LW, absorbed SW radiation and the air relative humidity

and related LE heat loss [Andreas and Ackley, 1982; Colbeck, 1982; Richter-Menge et

al., 2006; Hanesiak et al., 1999]. Third, because when varying the threshold applied to

SAT data by ±2oC, the resulting SAT-based SMO timing ranges by as much as ±50

days [Markus et al., 2009].

3.3 Melt Onset climatology

Snow Melt Onset and the stage of the surface melt vary considerably among the sub-

regions, ice types and even within 10-100 meter scale over the same ice type [Walsh

and Chapman, 1998]. Under the ”stage of the surface melt” we mean, for example,

the early and episodic melt or the advanced continuous snow melt. On average melt

conditions establish in late May-early June within the peripheral Arctic seas and then

advance rapidly northward reaching the North Pole about one month later [Robinson

et al., 1992; Martin and Munoz 1997; Rigor, 2000; Eicken et al., 2001a; Belchansky

et al., 2004a; Serreze and Barry, 2005; Richter-Menge et al., 2006; Perovich et al.,
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2007b]. The shape of melting isotherm reflects geographical position of heat sources

for the Arctic region (Fig 3.1a). The earliest MO occurs typically on the Atlantic

and Pacific sides, where warm ocean currents and warm and humid air masses inject a

large amount of heat into the Arctic Basin (Fig 3.1c). The latest MO (on average) is

located surprisingly in the eastern central Arctic at 60-120oE 80-87oN (Fig 3.1d).

The difference in the surface state is very different within the northern-western

Greenland Sea and the northern Barents Sea. Here where within relatively small dis-

tances (500 km) the warm open sea surface borders the sea ice which starts to melt

only in late June (on average). Typical year-to-year variability (one standard deviation

about the 20-year average MO date) highlights the regions with a relatively stable

MO timing (within ±10 days about the mean MO date), and the areas that have ever

experienced much earlier and much later MO (Fig 3.1b). Here we easily distinguish

the major polynyas: Laptev Sea polynya, Cape Bathurst polynya in the Beaufort Sea,

North Water polynya in the northern Baffin Bay and the NorthEast Water polynya

situated in the north-western Greenland Sea. In the central Arctic we remark a few

elongated shapes with the highly variable MO, which are suspected for the presence of

leads in these areas, rather than extremely early or late snow melt onset.
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Figure 3.1: 20-year statistics of the ’apparent’ Melt Onset (rough SSM/I-based time
series) in the period 1989-2008. (a) 20-year average MO. (b) one standard deviation of
the local MO (typical year-to-year variability). (c) the earliest local MO. (d) the latest
local MO.
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Chapter 4

Methodology

4.1 Discussion

Snow Melt Onset on sea ice occurs when a sufficient amount of heat (net energy

budget) is accumulated within the snowpack. Thus, in nature, the year-to-year and

regional variability, and tendencies in Snow Melt Onset timing [day of the year] are

controlled by the year-to-year and regional differences and tendencies in heat accumu-

lation in spring. The objective of our study was to compare independent data sets of the

surface heat fluxes on top of sea ice (ERAI) and Snow Melt Onset on sea ice (SSM/I)

in order to detect this relationship. In this Chapter we describe the methodology we

have applied.

To remind: the heat accumulation within the snow depends on the intensity of the

individual heat fluxes: incoming solar radiation (shortwave, SW), absorbed solar radi-

ation (SWnet), atmospheric thermal emission (downward longwave radiation, LWd),

proper thermal emission of the surface (upward longwave radiation, LWup), turbu-

lent exchange of heat between the atmosphere and the surface (sensible H and latent

LE fluxes) and the heat supply from underneath (conductive heat flux of snow and

ice). The heat flux components taken into account in this study are demonstrated in

Fig 4.1.
Figure 4.1: Variables taken into account
in our study: surface fluxes (ERAI in
0.75o resolution) and SSM/I-based Melt
Onset (25 km resolution). H and LE are
the sensible and latent heat fluxes at
the snow surface. Tb is the brightness
temperature measured by SSM/I twice
daily. Day-to-day behaviour (variations)
in emissivity of the surface (Tb) at sev-
eral frequencies (wave lengths) were uti-
lized to determine the day when contin-
uous melt establishes (Melt Onset) by
Markus et al. [2009].

In nature surface fluxes have specific local features, depending on the cloud cover,

surface properties, and can/should be attributed to (compared with) the Snow Melt

Onset (”seen” by SSM/I) within a relevant and common area and during the appro-

priate time period. Here further we discuss this issue in detail.
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Choice of the Melt Onset time series: continuous or episodic

Melt Onset

In Section 2.1 we briefly described the Melt Onset (MO) algorithm by Markus et

al. [2009] applied to the daily brightness temperature measurements to evaluate, as we

call, the ”apparent” MO [Julian day] at each 25 km pixel and each year (1979-2008).

”Continuous Melt Onset” is considered here. There is, however, usually some transition

period characterized by alternating melting and re-freezing events. During this period

the daily variance in brightness temperature increases until it reaches a maximum in

the beginning of the continuous melt [Markus et al., 2009]. Time-space resolution of

both data sets (SSM/I-based MO and ERAI fluxes) is limited. So it is evident that

many of the localized (of a few hundreds meters) episodic (of a few hours) snow melt

events are not captured in either data set. From this point of view, it seems to us,

that the onset of continuous snow melt is a more distinct event than any episodic melt,

and we expect that it should be better represented in both: the remote sensing and

meteorological reanalysis records.

Apparent Melt Onset: Snow Melt Onset and divergent ice drift

If following the definition of continuous MO by Markus et al. [2009], Section 3.2,

one can imagine the following situation. During some period of spring the ice field

diverges, creating a more or less persistent (from a few days to several weeks) vast

open sea area (lead) comparable to SSM/I pixel size (about 25 km). Then the wind

stress reverses and with to the sea ice convergence the pixel fills in with sea ice and sea

ice concentration (SIC) increases to 80-100%. A few day-weeks after this event either

a snow melt, either a divergent ice drift occur in the same pixel. From this instance

the snow melt establishes (continuous melt) and/or sea ice continue to reduce. In this

situation the MO algorithm determines the continuous MO at this ”last event”: either

as the last drop in SIC (below 80% threshold) before the area becomes ice free, either

as the definitive snow melt onset on sea ice. Yet, prior to this final (continuous) ”regime

change” the sea ice concentrations were free to vary in time!

This is a difficult issue for the MO detection and an essential one to discuss in

our study. Variable sea ice concentrations (SIC) prior to continuous MO increases the

absorption of solar radiation (SWnet) by the open sea, enhances the radiative thermal

emission from the surface (upward LW), that strongly affects the net flux (NF) gain

at the surface. Suppose that meteorological reanalysis successfully prescribe sea ice

concentrations. Then the variations of ice concentrations should affect the reanalysis

surface fluxes. This example illustrates that already prior to continuous MO, the surface
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fluxes might have been affected by variable sea ice concentrations. And if there is no

”guaranty” that fluxes were not modulated by ice concentrations, then all following

statements about the effect of surface fluxes on Snow Melt Onset can not hold. To

guarantee the independence of surface fluxes of sea ice reduction already prior to MO

(in the ”pre-melt period”), the sea ice concentrations should be taken into account.

To verify our hypothesis on the possible effect of SIC on surface fluxes already before

MO we focused on the daily SIC values prior to MO. MO is a day of the year (Julian

day). Since we know the MO date at each location (pixel) and each year (1989-2008),

we can evaluate the smallest daily SIC values in the ”pre-melt period” in different

years within a 20-year period (1989-2008). Fig 4.2a illustrates that already during the

40-day pre-melt period (before the exact MO date each year) the 40-day mean SIC

(SSM/I), has ever dropped to 50-80% (at least once within the 20-year record). This

map does not say anything about the frequency of such events. Similarly Fig 4.2b

reflects the lowest one day SIC ever found during a 40-day pre-melt period. In both

results (Fig 4.2 a-b) the MO day itself was not included in the pre-melt period.

Fig 4.3 a-b reflects the same result, but for the SIC taken from ERAI reanalysis.

To evaluate SIC we considered the ”reference MO date” to be the average of all ”rough”

MO pixels within a 130 km radius around each ERAI grid location. At this stage, a

130 km radius is quite a subjective choice, related to the ”typical” drift distances

within a ”40-day pre-melt period”. For reference, ERAI spatial resolution is about

83 x 20 km at 70oN. So that with a 130 km radius we tend to smoothen regional MO

differences. 130-km radius is discussed further here. Now if comparing Fig 4.3 a-b with

Fig 4.2 a-b, we get the following. ERAI cannot represent ”extreme low” SIC during

the pre-melt period in the Arctic Ocean (southward of 83oN) and does not ”feel” any

SIC changes in the 40-day pre-melt period northward of 83oN. The first conclusion:

there is a strong indication that ERAI surface fluxes southward from 83oN have ever

(at least once during the 40-day pre-melt period) been affected by the reduced SIC

already before MO.

These results manifest that the data set on the continuous MO should be treated and

interpreted deliberately, keeping in mind that the continuous MO does not represent a

definite transition from 100% sea ice covered surface (with a dry snow on top) to the

melting and progressively reducing sea ice concentrations.

4.2 Snow Melt Onset sampling

To guarantee a (one-way) effect of surface fluxes and meteorological conditions on

snow MO, the SIC during the pre-melt period should be high (100%), otherwise the
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Figure 4.2: Sea Ice Concentrations (SSM/I, 25 km resolution) before the ap-
parent MO (SSM/I-based data set, 25 km resolution), 20-year period 1989-2008.
MO [Julian day] varies spatially and from one year to another.

(a) The smallest 40-day average SIC ever found during the 40-day pre-melt period
and 20 years.
(b) The smallest 1-day SIC ever found during the 40-day pre-melt period and 20
years. MO day itself is not included in the pre-melt period. Since MO varies from
year-to-year at the same location, the pre-melt period refers to a slightly different
period of the year each year. Moreover the MO date is different at neighbouring
pixels. So far the pre-melt period is very individual for each location (pixel) and each
particular year. Only those pixels-years where MO has ever been detected are
considered here.

reduced SIC affects the surface fluxes itself. So, first we tried to distinguish those MO

cases (pixels-years) least affected by the SIC changes in the pre-melt period. Several

”SIC filters” have been tested, so that the MO pixel was considered to be a snow MO

pixel, if the daily (or time averaged) SIC values (SSM/I SIC data) prior to the MO did

not fall below some threshold (40-day average SIC of 80, 85 or 95%).

Naturally, the stronger SIC filter we apply, the smaller will be the final SMO sample,

and the study area reduces as well. Thus, for example, if we impose that a 1-day SIC

(SSM/I) prior to MO should never fall below 90-95% (see Fig 4.2b), then we work

with a very reduced MO data sample (with totally no appropriate MO data in certain

years within vast areas). In contrast, if we impose too weak SIC filter, for example,

admitting that time average (40-day mean) SIC during the 40-day pre-melt period can

reduce to 70-80% (see Fig 4.2a), then we certainly include the areas where fluxes (in

nature) have been largely affected by SIC.

In the study on the inter-annual variability the goal is to keep the time series as long
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Figure 4.3: Sea Ice Concentrations (ERAI) before the apparent Melt Onset
(MO) in the 20-year period (1989-2008). MO [Julian day] varies regionally and from
one year to another. The reference MO date (individual for each year and each ERAI
grid location) is the average of all (rough MO) pixels within 130 km radius around
each ERAI grid location (0.75 deg lat x 0.75 deg lon resolution).

(a) The smallest 40-day average SIC ever found during the 40-day pre-melt period
and 20 years.
(b) The smallest 1-day SIC ever found during the 40-day pre-melt period and 20
years. MO day itself is not included in the pre-melt period. Since MO varies from
year-to-year at the same location, the pre-melt period refers to a slightly different
period of the year each year. Moreover the MO date can be different at neighbouring
grid locations. So far the pre-melt period is very individual for each ERAI grid
location and each particular year. Those grid locations and years are considered here,
where at least one ”rough MO” observation (pixel) exists.

as possible (20 years), to exclude MO pixels largely affected by SIC changes already in

the pre-melt period, and to keep MO pixels least affected by SIC variations.

SIC reductions in the pre-melt period were not as dramatic in ERAI (Fig 4.3 a-

b) compared to SSM/I-based SIC (Fig 4.2 a-b). It means that ERAI fluxes in the

pre-melt period were weakly affected by SIC changes.

Now, before determining definitively the ”SIC filter”, another aspect should be

considered and taken into account. After removing the MO pixels largely affected by

the SIC changes already prior to MO, the resulting MO time series and surface fluxes

have to be converted to a comparable spatial resolution. A question appears: what is

the sea ice area that is affected by the surface fluxes at a fixed grid location? In fact, a

drifting sea ice floe is under the effect of the heat fluxes at a fixed grid cell only during

some limited period of time. Before and after that the ice slab is affected by the surface
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fluxes at the neighbouring grid cells.

Naturally, if focusing on the short pre-melt period (of a few days) and the spatial

scales of data of 25-80 km, than the ice drift might be roughly neglected. But if consid-

ering the monthly and seasonal history of the surface fluxes, meteorological conditions

and heat accumulation within the snowpack, then the ice drift of about 25 km per day

(typical value) is non-negligible.

A comparison of different solutions (not shown here) led to the formulation of the

following assumptions. Those ”rough” MO pixels with a 40-day average SSM/I-based

SIC = 85% during 40 pre-melt days were considered to be snow MO pixels. Several

tests with other thresholds (not shown here) suggested that 85% threshold of ”SIC

filter” works well to remove those rough MO pixels with very low SIC already in the

pre-melt period.

Snow MO timing in ERAI grid coordinates was then determined as the average MO

value of all snow MO pixels within roughly a 130 km radius around each ERAI grid

location (schema in Fig 4.4). Those rough SSM/I MO pixels that had a persistent open

water area already in the pre-melt period are not accounted in this spatial averaging

(white area in Fig 4.4). Within a radius of 130 km around each ERAI grid location

(dashed red square), about 140 SSM/I MO pixels (25 km each) can be included in the

resulting SMO sample.

Figure 4.4: Scheme for calculating
SMO in ERAI grid coordinates: which
is the average of all MO pixels the
least affected by SIC in the 40-day pre-
melt period. Black grid is ERAI grid,
blue grid are SSM/I based MO pix-
els. White zone is the area where the
40-day average SIC has dropped below
85% during the 40-day pre-melt period
in some year. Each year this ”white
zone” is located differently and has
different size, which affects the SMO
sampling. More or less MO pixels end
up in the final SMO sample each year.

The radius of 130 km is based on the following assumptions: with a typical wind

speed of 5 m/s in spring [Curry et al., 2002; Vihma et al., 2008], assuming that sea ice

drift speed is 1% of the wind speed [Thorndike and Colony, 1982; Serreze and Barry,

2005], the monthly ice displacement is approximately 130 km. Naturally, ice velocities

vary a lot in space and time, but we rather need an order of magnitude estimate for

a relevant scale for spatial averaging. For reference, buoy and satellite data on sea ice
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displacements reported 7±4 km/day ice drift velocities in the central Arctic [Frolov et

al., 2005; Nghiem et. al., 2007]. In continuation of this study, the tracking of the ice

floes with the backward trajectories is expected to give a better result.

For clarity, we introduce a new abbreviation SMO for the snow melt onset on top

of consolidated sea ice and reserve the abbreviation MO for the apparent melt onset

according to Markus et al. [2009] data set.

Fig 4.5 a-b illustrates the most extreme reduction of sea ice concentrations (ERAI

data) in a 40-day pre-melt period prior to exact SMO each year. SMO day itself is not

considered in the pre-melt period. The dark blue circle, is caller here further circum-

polar central Arctic (83.25-87oN) has a prescribed SIC of 100% in ERAI throughout

the entire pre-melt period every year. South of 83oN the daily mean SIC has ever fell

below 85% (even down to 0%) in at least one day within a 40-day pre-melt period,

see Fig 4.5b. Major polynya areas strongly manifest in Fig 4.5 a-b. We distinguish

the Laptev Sea polynya, Cape Bathurst polynya in the Beaufort Sea, North Water

polynya in the northern Baffin Bay and the NorthEast Water polynya situated in the

north-western Greenland Sea. This result was expected, since we were searching for

(extracting) those 25 km SSM/I pixels (25 km ice floes) weakly affected by local (same

pixel) SIC reductions, and we have not imposed that within a vicinity (0.75olat x

0.75olon radius for example) there should be no reduction in SIC. Thus, Fig 4.5 a-b

shows where the snow melt on sea ice (SSM/I SMO sample) has ever occurred in a

close proximity to an open sea area (lead or polynya). In this situations the open water

area should have affected: (1) in nature the local evaporation, cloud and fog properties,

surface fluxes on sea ice and SMO timing, and (2) ERAI grid-box average surface fluxes

within a mixed ice free and ice covered surface.

Depending on the sea ice conditions, different amount of rough MO pixels (in dif-

ferent years and different locations) ends-up in the resulting SMO sample. Fig 4.6

reflects the areas where the amount of included rough MO pixels varied a a lot/few

between different years. Several preliminary conclusions can be deduced already at this

stage. Vast areas in the central Arctic indicate a more or less constant amount of rough

MO data taken into account with the difference in ”good MO pixels” about 5-20 (dark

blue). It means that in these areas: (1) the MO detected by SSM/I was primarily the

snow melt onset on top of sea ice (within the entire 20-year record); (2) SIC variations

during the pre-melt period were rare/few, with the surface heat fluxes least affected

by SIC in the pre-melt period (surface fluxes in nature, we are not talking about the

reanalysis quality); (3) in consequence of (1) and (2), within the areas where snow melt

onset was a predominate process further analysis on the effect of surface fluxes on snow

melt onset becomes more robust. In contrast the red colour in Fig 4.6 highlights the

59



a b

Figure 4.5: Sea Ice Concentrations (ERAI) before Snow Melt Onset (SMO),
20-year period 1989-2008. Reference SMO date (at each ERAI grid location) is the
average of those MO pixels within 130 km radius (around given ERAI grid location),
that were more than 80% sea ice covered throughout the 40-day pre-melt period (prior
to MO). MO and SMO [Julian day] vary regionally and from one year to another.

(a) The smallest 40-day average SIC (ERAI) ever found during the 40-day pre-melt
period (prior to SMO) and 20 years.
(b) The smallest 1-day SIC ever found during the 40-day pre-melt period (prior to
SMO) and 20 years. SMO day itself is not included in the pre-melt period. Since
SMO varies from year-to-year at the same location, the pre-melt period refers to a
slightly different period of the year each year. Moreover the SMO date can be
different at neighbouring grid locations. So far the pre-melt period is very individual
for each ERAI grid location and each particular year. Those grid locations and years
are considered here, where at least one SMO observation (pixel) exists.

areas where very few MO pixels were ”snow melt onset pixels” (in any/some year),

which was certainly due to SIC reductions already in the pre-melt period.

Another issue we should notice is that SMO sampling determined in such a manner

might include also the initialization in formation of the open sea areas: leads and

polynyas. The possible solution to exclude the formation of the open water areas from

the Snow Melt Onset sample could/should be the use of a high resolution remote sensed

ice drift (divergence) data in the same period 1989-2008. Yet, this work is still to be

done in future.

Bilateral and multi-linear regression analyses were applied to those ERAI grid loca-

tions (1) where there is a complete 20-year SMO time series and (2) where a 1-day SIC

(ERAI data) during the 40-day pre-melt period (prior to SMO) has never fell below

85%, that is a circumpolar central Arctic (83.25-87oN) only.
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Figure 4.6: Variability in the number of
rough MO pixels that end-up in the final
SMO sample. Depending on SSM/I SIC
some rough MO pixels were not included
in our SMO sampling. Thus in some years
have about 150 of ”good MO pixels” and
some years less. Here ”difference” = max-
imum minus minimum number of ”good
MO pixels” out of 20 values at each grid
location.

61



4.3 Comparison: Snow Melt Onset on top of com-

pact sea ice versus surface heat fluxes

We compared the data on SMO against daily flux anomalies relative to the 20-

year climatology. Meteorological data output used in this study are the daily means.

Climatology of the seasonal cycle for each variable was computed for each ERAI grid

location individually, based on the 20-year daily record for each variable.

The flux anomalies were averaged over 1-40 days before a reference SMO date, and

then compared with the SMO anomaly at the same location and year. Here 1 .. 40 day

time lag is a first guess for the duration of the pre-melt period. Time averaging up to

40 days was used in the final study since it appeared that longer periods prior to SMO

did not improve the capability of surface fluxes to explain the SMO timing.

Three calculation methods: M1, M2 and M3

The definition of the reference SMO date and the further flux averaging were done

using three different methods, schematically illustrated in Fig 4.7.

Figure 4.7: Scheme of three meth-
ods for flux anomaly calculations.
Method M1 focuses on the pre-
melt period just before the exact
SMO date. Method M2 focuses
on the period before the local 20-
year average SMO date. Method
M3 focuses on the pre-melt pe-
riod before the earliest SMO. n-
days = 1 to 40 days before the
reference SMO date, not includ-
ing SMO date itself.

With method M1, the flux anomalies were calculated right before the exact SMO

date (different date at different locations, varying from year-to-year). Since SMO date

is different each year and varies from one location to another, the variations in the

reference date may hamper the year-to-year comparison of the flux anomalies. To fix

the reference SMO date, we chose the 20-year average SMO date (method M2), and

the 20-year earliest SMO date (method M3). Thus with M2 and M3 the timing of the

pre-melt period is always the same at each particular location, but depends on the

location. This makes the comparison of flux anomalies between different years more

eligible, but the drawback is that the period just a few days before SMO is usually

(M3) or approximately in half of the cases (M2) not included in the calculations.
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Description of the bilateral and multi-linear regression analyses

Bilateral linear regression analysis was used to compare (correlate) two 20-year

time series: the time average (between 1 and 40 days) anomaly of the predictor and

the SMO anomaly, both in the same ERAI grid. Two MATLAB functions regress(Y,X)

and corrcoef (Y,X) were used to calculate the correlation coefficient and appeared to

give the same result. For calculations Y should be a vector (time series) for Snow Melt

Onset anomalies and X is a vector for one predictor (time average anomaly of some

flux or of some meteorological variable). Over a consolidated sea ice cover, a causal

effect of the surface flux anomaly on SMO requires a negative correlation coefficient

(r): a positive flux anomaly (a larger heat gain) precedes an early SMO (negative SMO

anomaly) and vice versa. Thus in all other conditions unchanged, anomalously large

heat gain at the snow surface warms it up better (compared to the typical situation),

which, naturally, should produce anomalously early SMO (compared to an average).

Interpretation of the bilateral regressions (correlations) for the meteorological variables

(wind direction, heat advection, cloud cover) requires more attention to a ”zero” state,

that is a climatology for each variable.

Stepwise multiple linear regression analysis [Draper and Smith, 1998] was applied to

find out how well various combinations of possible predictors explain the inter-annual

variance of SMO and which combination of predictors best explains inter-annual vari-

ance of SMO. MATLAB function stepwisefit(X,Y) was applied to distinguish the best

combination of predictors and also to estimate the statistics of the resulting multi-

linear regression ”model” (equation). Here Y is a vector (time series) of Snow Melt

Onset anomalies and X is matrix (group) of predictors (flux anomalies or meteorologi-

cal variables). Stepwise regression starts with no predictors included and then adds one

predictor that is most correlated to SMO timing (bilateral linear regression). The orig-

inal SMO time series is then replaced by the residual from this linear fit, and another

predictor most correlated to the residual is added to the linear regression equation. This

is repeated until best predictors have been added. The significance (quality, applicabil-

ity) of the multi-linear regression equation is evaluated by the value of the explained

variance (squared correlation coefficient, r2) and the root mean square error (RMSE) in

[days] units. For reference, the same stepwise technique has been adopted by Lindsay

et al. [2008] for the seasonal sea ice prediction.

Statistically significant relationship with a 99% confidence level is estab-

lished when the explained variance (r2) of the bilateral / multi-linear regression ”model”

exceeds 0.31.
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Chapter 5

Results: Factors controlling the interannual

and spatial variability in Snow Melt Onset

Our major results were divided here in three Sections. First Section addresses the

direct factors controlling the Snow Melt Onset timing on top of compact sea ice, which

are the surface heat fluxes. Second Section considers the indirect and only meteorolog-

ical factors affecting Snow Melt Onset timing (by means of surface heat fluxes). Third

Section illustrates some ideas regarding the trends in the chosen Melt Onset record,

and also trends in ERA Interim surface heat fluxes, and our Snow Melt Onset sample.

Only results for the central circumpolar Arctic within 83-87oN were demonstrated in

this Chapter and Manuscript. Our choice of this region was motivated by the fact that

within this area there is a uniform 100% sea ice cover in ERA Interim. Thus within

83-87oN ERAI surface heat fluxes were not affected by sea ice changes (reductions) in

the pre-melt period. This interesting and essential issue is discussed here further.
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5.1 The effect of surface heat fluxes on Snow Melt

Onset

A brief framework

The question that we address in this Section and in this manuscript in general is

whether the surface heat fluxes (as represented in meteorological reanalysis, for example

ERAI) were anomalously weak/strong on those years and in those locations where the

Snow Melt Onset (detected by SSM/I) was anomalously late/early? In the other words

we investigate if two independent data sets (ERAI surface fluxes and SSM/I-based

Snow Melt Onset) agree in terms of the spring seasonal transition.

To successfully quantify the effect of surface fluxes on the interannual and spatial

variability of Snow Melt Onset a number of assumptions have been adopted (discussed

in Chapter 4). First we extracted those rough Melt Onset pixels-years (SSM/I data)

least affected by the sea ice reduction already in the pre-melt period. This resulting

data sample is called here further Snow Melt Onset (SMO), with a few limitations

that are mentioned below. Three alternative and complementary methods (M1, M2

and M3) were proposed then to determine the duration and timing of the relevant pre-

melt period (explained Chapter 4). At the end, at each ERAI grid location the linear

regression analysis was applied to evaluate the strength of the relationship between

two 20-year records: (1) the surface heat flux anomalies (averaged during the pre-melt

period), and (2) SMO anomaly, both in common period 1989-2008. The results from

bilateral and stepwise multi-linear regression analysis are presented and discussed in

this Section.

5.1.1 Snow Melt Onset climatology

Same as in Fig 3.1 for the apparent MO time series, the basic statistics of the SMO

sample are illustrated in Fig 5.1 SMO is determined as described in Chapter 4. Visual

comparison suggests that the regional features of SMO climatology (20-year average) in

ERAI grid resolution (Fig 5.1a) has not changed drastically compared to the 20-year

pattern in the original MO time series (Fig 3.1a). To notice, this 20-year average SMO

date is chosen as a reference moment when determining the pre-melt period with our

method M2. Thus with M2 the time-average (1-40 days) flux anomalies are calculated

prior to this local 20-year average SMO date.

Local interannual variability in SMO is illustrated in Fig 5.1b. Compared to the

interannual variability in MO (Fig 3.1b), the year-to-year variability in SMO has
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Figure 5.1: 20-year statistics of Snow Melt Onset (SMO) in the period 1989-2008: (a)
20-year average SMO; (b) one standard deviation of the local SMO (typical year-to-year
variability); (c) the earliest local SMO; (d) the latest local SMO.

reduced to 5-10 days over most of the Arctic (Fig 5.1b). The typical interannual

variability in SMO is within 15 days in the major polynya areas and up to 20-25 days

along the ice margin in the Greenland-Barents Seas (Fig 5.1b). This large interannual

variability in SMO within polynya areas may be caused by the local anomalies in surface

heat fluxes. These large values also indicates that probably we have not totally escaped

the initialization of the open water areas and polynyas when creating our SMO sample.

As discussed earlier in Chapters 2 and 4, both: snow melt initiation and divergent ice

drift are classified as apparent MO in the SSM/I-based record by Markus et al. [2009].

And possibly, SSM/I-based sea ice concentrations (SIC) on the MO day and even a

few days after MO date - both should be accounted to strengthen the filter for SMO

sampling in order to avoid the initialization of open water areas seen for MO.

The earliest and the latest ever observed SMO in 1989-2008 (Fig 5.1 c-d) also

give an idea about the reference SMO date and the timing of the pre-melt period.
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To remind, our method M3 takes for the reference moment the earliest ever observed

SMO date at each location (Fig 5.1c). And similar to M2, in M3 the pre-melt period

varies spatially but not interannually. Fig 5.1c says that with M3 the 30-40-day pre-

melt period coincides with the month of May - early June at 83-87oN and occurs

approximately in April - early May within the marginal Arctic seas. In contrast, method

M1 is defined to start 1 - 40 days prior to the exact local SMO date, which varies both

interannually and spatially. Fig 5.1 c-d indicate that in the central Arctic (83-87oN)

the exact 30-40-day pre-melt period occurs the earliest - in May, and the latest in June

- early July.

Additional assumption was adopted to better distinguish those areas where ERAI

heat fluxes were least effected by SIC changes in the pre-melt period. Only the central

circumpolar Arctic within 83-87oN is considered here, where SIC is set to 100%

in ERAI throughout the year.

5.1.2 Bilateral regression results: Snow Melt Onset versus sur-

face heat fluxes

Bilateral (first order) linear regression analysis was applied at each ERAI grid lo-

cation with two 20-year time series (a) of SMO anomalies, which is an explainable

variable, and (b) the corresponding surface heat flux anomaly averaged during 1-40

day pre-melt period (predictor). The reference date for the pre-melt period was de-

termined with methods M1, M2 and M3. The results for each time averaging period

were then compared based on the squared correlation coefficient (r2): one r2 value for

each time lag. Over a compact sea ice cover, a causal effect of the surface flux anomaly

on SMO requires a negative r: a positive flux anomaly precedes an early SMO, and

vice versa. Considering the physical interpretation, r2 represents the percentage of the

interannual variance in SMO timing explained by the interannual changes in the flux

anomaly. Statistically significant relationship with a 99% confidence level was estab-

lished when r2 exceeded 0.31.

To illustrate how we interpret the results obtained with the bilateral linear regres-

sion we chose one grid location where NF manifests a significant correlation with SMO.

For example, we found that at 57.75oW 85.5oN a 3-day average NF anomaly (method

M1) explains 65% (r2 = 0.65) of the interannual variance in SMO (Fig 5.2). At this

location SMO varied within about 10 June - 14 July during 20 years. For reference,

Julian day 150 is around 30 of May. At this location the seasonal cycle in NF increases

from 10 to 55 W/m2 during June - mid July (black curve, right axis). The grey scatter

(left axis) and tells us what was the 3-day average NF anomaly prior to SMO date on
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each particular year. Each grey dot corresponds to some particular year. This example

demonstrates that over a compact sea ice field in those years when SMO occurred early

(before the average SMO date) the time-average NF anomaly was positive (about

0-20 W/m2). In contrast, in those years when SMO was late (later than average SMO),

NF anomaly in the preceding 3 days was primarily negative (up to -25 W/m2). The

linear regression of these two 20-year time series (SMO and NF anomaly) suggests that

a 3-day average NF anomaly prior to SMO explains 65% of the interannual variance in

SMO, with RMSE of 6.2 days. This linear fit between NF anomaly and corresponding

SMO date is represented by the grey line (refers to the left axis).

Figure 5.2: Causal relationship between a
3-day average NF anomaly and the cor-
responding SMO timing at one location
(85.5oN 57.75oW). Black curve (right y-
axis) shows the 20-year mean seasonal cy-
cle of NF at this location. Gray circles and
their linear fit show the relationship be-
tween SMO (day of the year, x-axis) and
the preceding NF anomaly (left y-axis) av-
eraged during a 3-day pre-melt period prior
to SMO (method M1). The linear regres-
sion equation suggests that at given loca-
tion a 3-day average NF anomaly prior to
SMO explains 65% of the interannual vari-
ance in SMO, with RMSE of 6.2 days.

Large scatter and the explained variance (r2) much below the unit indicate us that:

(1) there are errors and limitations in our ERAI and SMO samples, and (2) that the

preferential time averaging period of 3-days is likely not the only perfect solution for

the duration of the pre-melt period. Thus, NF accumulation can be more or less fast

and more or less efficient in different years, depending on meteorological, snow and sea

ice conditions.

The year-round climatologies of surface fluxes have been revised in Chapter 1. Here

below we pay attention to the pre-melt period: the averages and the anomalies in

surface fluxes. 40-day time averaging period is utilized here for heat flux climatologies.

Longer time averaging periods did not improve the capability (r2) of surface fluxes to

explain the interannual variations in SMO.
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Downward shortwave radiation and net shortwave radiation

Within the circumpolar central Arctic the 40-day average downward shortwave

radiation (SWd) prior to SMO is around 220-300 W/m2 if determining the pre-melt

period with M1 and M2 (early (Fig 5.3 a-b). By definition the pre-melt period starts

earlier in the year when considering method M3, compared to M1 and M2. This explains

why SWd values are relatively lower in the pre-melt period defined with M3, of about

150-250 W/m2 (Fig 5.3c).

According to ERAI, the average net or absorbed solar radiation (SWnet) in the

40-day pre-melt period is about 60-70 W/m2 with M1 and M2, and 35-55 with M3

(Fig 5.3 d-f). The absorption of SWd radiation depends on the intensity of SWd.

Thus in late April-May (with M3) both SWd and SWnet are weaker compared to late

May-June period (pre-melt phase with M1 and M2).

These climatologies, or more precisely, the seasonal cycle in SWd and SWnet were

removed from the initial daily time series of surface fluxes in order to calculate the heat

flux anomalies at each ERAI grid location, each year and each day of the year.

Linear regression of SWd and SWnet anomalies against SMO time series did not

reveal the effect of solar radiation on the interannual variability in SMO. True for

the entire circumpolar central Arctic within 83-87oN. This result is quite reasonable

because there is no snowmelt and no ice melt in ERAI. So far the representation of

diurnal and day-to-day variations in surface albedo and SWnet on top of the compact

sea ice cannot be captured in ERAI, both before, during and after SMO. However

in reality already before the continuous snow melt establishes, the surface albedo and

SWnet oscillate with the diurnal cycle within totally snow- and ice-covered areas [Cheng

et al., 2008; Vihma et al., 2009]. And these diurnal and day-to-day variations in SWd

may and should contribute to the net flux accumulation within the snowpack, and

thus have an effect on SMO timing. According to our knowledge the representation of

SWd and SWnet has not been validated yet for ERAI. Three ship campaigns during

summer indicated that ERAI overestimates near-surface humidity in the Arctic [Lupkes

et al., 2010]. We speculate that this bias and/or error in atmospheric moisture content

could have an impact on SWd and SWnet in ERAI. Another source of uncertainty

may arise if multiple reflections between the clouds and a highly reflective snow-ice

surface [Curry and Ebert, 1992; Shine, 1984] are mislead in the reanalysis model. These

complex interactions between clouds and the snow surface are likely not reproduced in

ERAI, which also reduces the reliability of SWd and SWnet fluxes, and the capability

of solar flux anomalies to explain the interannual anomalies in SMO.
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Figure 5.3: 20-year average SWd (left-hand maps) and SWnet (right hand maps) in the
40-day pre-melt period (prior to SMO) as defined with method M1 (upper two maps),
method M2 (two maps in the middle), and method M3 (lower two maps).
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Downward longwave radiation

Within the circumpolar central Arctic the 40-day average LWd prior to SMO is

250-280 W/m2 if defining the pre-melt period with M1 or M2 (Fig 5.4 a-b), and

220-250 W/m2 with M3 (Fig 5.4c).

LWd alone explained up to 90% (M1, Fig 5.5a), 82% (M2, Fig 5.5c) and 57% (M3,

Fig 5.5e) of the local year-to-year SMO variance. Among different (1, 2 40-day ) time

averaging periods and methods (M1, M2 and M3), an anomalous LWd during 1-7 days

(synoptic scale) before SMO (M1) best explained the local interannual SMO variance

(Fig 5.6a). In terms of the flux anomaly magnitude, a 1-7-day average anomaly of

+28±9 W/m2 (-11±12 W/m2) in LWd was followed by 15-20 days earlier (later) SMO.

Where 28 W/m2 is the average of different LWd anomalies (at different locations and

in different years) corresponding to 15-20-day SMO anomalies (at the same location,

same year), and 9 W/m2 is the standard deviation of these LWd anomaly values. The

effect of 1-7 day average LWd anomaly on SMO appeared within 577 x 103 km2 with

M1 (34% of the circumpolar central Arctic), geographically located within the shaded

area in Fig 5.5 a-b. For comparison, the effect of 1-7 day average LWd anomaly on

SMO was found within the area of 270 x 103 with M2 (somewhere within the shaded

area in Fig 5.5 c-d) and 190 x 103 km2 with M3 (within the limits of the shaded area

in Fig 5.5 e-f).

With M2 the effect of 10-40 day LWd anomalies on SMO was most pertinent,

revealing significant r2 over the area of 723 x 103 km2 (43% of the circumpolar Arctic)

located within the shaded area in Fig 5.5 c-d. In terms of the flux anomaly magnitude,

for example, a 17-19-day average LWd anomaly of +11±6 W/m2 (-5±15 W/m2) in LWd

(M2) was followed by 15-20 days earlier (later) SMO, all occurring within the shaded

area in Fig 5.5 c-d. The 17-19-day time averaging period is chosen for the example,

showing the best capacity to explain interannual variance in SMO (Fig 5.6b).

With M3 the time averaging period of 1-20 days revealed few and relatively weak

r2 (below 0.55), with the best time averaging period of 10-17 days, Fig 5.6c. Here a

10-17-day averaging period was a common solution among different locations where

at least some significant r2 has been found. To precise, the grey curve on subplots in

Fig 5.6 refers to the right axis and indicates how many locations revealed r2 > 0.31 for

each time averaging period. If following M3, in those years when SMO occurred 15-20

days early (late) the 10-17-day average LWd anomalies were about +16±20 W/m2

(-12±14 W/m2).

Bilateral regression analysis was also applied to a composite of all maritime grid

locations within the shaded area in Fig 5.5 a-b (M1). Local 1,2,40-day average LWd

anomalies were regrouped and then compared with the corresponding SMO anomalies
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regrouped in the same way. Time averag-

ing periods for the local LWd anomalies

were always the same for the whole group

of locations. In this manner we test whether

there is some common/best solution for

the pre-melt period length, i.e. when the

effect of LWd on SMO timing is the most

pertinent. To precise, if some location re-

vealed significant bilateral r2 with only one

time lag (for example, only a 5-day lag),

this location was also included into the

group when calculating the correlation be-

tween the composite 40-day LWd anoma-

lies versus SMO. It means that the group

(composite) of locations has always the same

length, no matter the time averaging pe-

riod. This quite simple technique allowed

to compare (correlate) longer time series,

and many local data as a whole. At the

end the results for different time averag-

ing periods were compared in terms of r2.

Accordingly LWd anomalies during 6-day

pre-melt period explained 27% of

spatial and interannual variance in SMO

(Table 1, page 98), significant at 99% con-

fidence level.

And the other time lags also explained

significant, but a smaller portion of SMO

variance. The remaining (unexplained) SMO

variance (lets say 70%) results partly from

errors in ERAI heat fluxes, partly from the

original MO and our SMO sample as well.

This large unexplained variance also man-

ifests that the preferential time averaging

period of 6-days is not the only perfect so-

lution for the duration of the pre-melt pe-

riod.

Figure 5.4: 20-year average LWd in the 40-
day pre-melt period (prior to SMO) as de-
fined with: (a) method M1, (b) method
M2, and (c) method M3.
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Figure 5.5: Results for downward longwave radiative flux. Bilateral regression results
on the relationship between the LWd anomaly and the corresponding SMO anomaly
(same location, same year). The flux anomaly is averaged over various pre-melt periods
(1-40 days). Three methods M1, M2 and M3 are compared. Left-hand plots illustrate
the best r2 with thee methods. Only results with r2 > 0.31 (p < 0.01) are shown.
Right-hand plots reflect the corresponding time-averaging period.

For comparison, the composites of local LWd anomalies were regressed against

SMO, where LWd anomalies were calculated with M2 and M3. Considering method M2,
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all maritime grid locations within the shaded area in Fig 5.5 c-d were regrouped. With

M3 all maritime grid locations within the shaded area in Fig 5.5 e-f were considered.

Accordingly, LWd anomalies explained 36% and 23% of the interannual and spatial

variance in SMO with M2 and M3 respectively (Table 1, page 98). Consistent with

the local bilateral regression results, the best time averaging periods are 21 days with

M2 and 13 days with M3 (Table 1).

Figure 5.6: Downward longwave
radiation: dependence of the
squared correlation (r2) on the
length of the pre-melt period. The
black dots show all significant r2

values (p < 0.01) for each flux-
averaging period. This indicates
the largest r2 at each time lag
(independent of the location).
The grey curve shows the number
of ERAI grid locations where a
significant r2 was found with the
given flux-averaging period. It
indicates which time averaging
period is the most successful in
explaining interannual SMO vari-
ance (within the study region).
Three methods M1 (a), M2 (b)
and M3 (c) are compared.
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Net longwave radiation

Net longwave radiation (LWnet) is the

balance between the surface thermal emis-

sion (upward longwave radiation, LWup)

and atmospheric thermal emission down-

wards (downward longwave radiation, LWd).

Within the circumpolar central Arctic the

40-day average LWnet prior to SMO is neg-

ative, within -30-60 W/m2 (Fig 5.7). The

seasonal cycle of LWnet within the central

Arctic was discussed in Chapter I.

In general, results for LWnet are very

similar to those obtained for LWd. Lin-

ear regression of local LWnet anomalies

against corresponding SMO anomalies re-

vealed the causal effect of LWnet on SMO

timing: with positive LWnet anomaly in

those years when SMO occurred earlier than

average, and vice versa. There positive LWnet

anomaly means weaker LWnet deficit dur-

ing the pre-melt period. High r2 was found

with all tree methods (Fig 5.8). In re-

spect to LWnet method M2 is likely the

most appropriate of three (M1, M2 and

M3), suggesting very high and significant

r2 (up to 0.7-0.8, black scatter in Fig 5.9b)

within a vast area (Fig 5.8 c-d, and grey

curve in Fig 5.9b). Thus with M2 signif-

icant results were found within the area

of 798 x 103 km2 (47% of the circumpo-

lar central Arctic, shaded grid boxes in

Fig 5.8 c-d). In terms of the flux anomaly

magnitude, a 13-21-day LWnet anomaly of

+10±4 W/m2 (-6±10 W/m2) was followed

by 15-20 days early (late) SMO, all occur-

ring within the shaded area in Fig 5.8 c-d

(M2).

Figure 5.7: 20-year average LWnet in the
40-day pre-melt period (prior to SMO) as
defined with: (a) method M1, (b) method
M2, and (c) method M3.
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Figure 5.8: Results for the net longwave radiative flux. Bilateral regression results
on the relationship between the LWnet anomaly and the corresponding SMO anomaly
(same location, same year). The flux anomaly is averaged over various pre-melt periods
(1-40 days). Three methods M1, M2 and M3 are compared. Left-hand plots illustrate
the best r2 with thee methods. Only results with r2 > 0.31 (p < 0.01) are shown.
Right-hand plots reflect the corresponding time-averaging period.

As for LWd a 1-7 day time averaging periods were the most illustrative for the

seasonal transition (r2 up to 0.9) when applying M1, with a secondary peak in r2 up

to 0.6 at about 30-day lag (Fig 5.9a).
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Figure 5.9: Net longwave radia-
tion: dependence of the squared
correlation (r2) on the length of
the pre-melt period. The black
dots show all significant r2 val-
ues (p < 0.01) for each flux-
averaging period. This indicates
the largest r2 at each time lag (in-
dependent of the location). The
grey curve shows the number of
ERAI grid locations where a signif-
icant r2 was found with the given
flux-averaging period. It indicates
which time averaging period is the
most successful in explaining in-
terannual SMO variance (within
the study region). Three methods
M1 (a), M2 (b) and M3 (c) are
compared.

Similar to LWd, few and relatively weak r2 (below 0.5) were detected for LWnet

when presuming the pre-melt period with method M3 (Fig 5.9c). For comparison,

with M1 and M3 significant r2 was found within the area of 520 x 103 km2 (Fig 5.8

a-b) and 162 x 103 km2 (Fig 5.8 e-f), or 31% and 10% of the circumpolar central

Arctic, respectively.

This established relationship between LWnet anomalies and SMO explicitly shows

that there is a good correspondence between the surface (ice) thermal state in ERAI

and SMO timing detected by SSM/I.

Turbulent heat fluxes

Local anomalies in LE and H were positive (negative) in early (late) SMO years.

It means that either turbulent heat loss was weaker, or turbulent heat gain occurred

in those years and at those locations where SMO was earlier than average. In con-

trast, the surface turbulent heat loss was stronger than average in the pre-melt period

where/when SMO was anomalously late.
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Latent heat flux

Within the circumpolar central Arctic

the 40-day average latent heat flux (LE)

prior to SMO is negative (upwards) about

-10 - (-15) W/m2 if defining the pre-melt

period with M1 or M2, and -5 - (-10) W/m2

with M3 (Fig 5.10). The day-to-day vari-

ability in LE is regionally uniform over the

ice covered domain, below 5 W/m2 during

April-June [Persson et al., 2002].

Significant r2 was found within the area

of 370 x 103 km2 with both M1 and M2

(shaded area in Fig 5.11 a-b), and 153 x

103 km2 with M3 (shaded area in Fig 5.11c),

or 22% (M1 and M2) and 9% (M3) of the

circumpolar central Arctic area.

Seasonal 20-40 day average LE flux

anomalies explained up to 61% of the local

interannual SMO variance (Fig 5.12). On

average a 2-7 W/m2 weaker (stronger) LE

loss (evaporation) during May - June con-

tributed to the advance (delay) in SMO by

approximately 6 days.

As for LWd, the bilateral regression

analysis was applied to a composite of all

maritime grid locations where at least one

significant r2 (with any time averaging pe-

riod) had been established for LE. The lo-

cal LE anomalies prior to the exact SMO

(M1) explained 31% of the spatial and in-

terannual variance in SMO within the shaded

area in Fig 5.11 a-b (Table 1, page 98).

For comparison local LE anomalies prior

to the average (M2) and the earliest (M3)

SMO explained 29% and 22% of the spatial

and interannual variance in SMO, respec-

tively (Table 1, page 98).

Figure 5.10: 20-year average LE in the 40-
day pre-melt period (prior to SMO) as de-
fined with: (a) method M1, (b) method
M2, and (c) method M3.
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Figure 5.11: Results for the latent heat flux. Bilateral regression results on the relation-
ship between the LE anomaly and the corresponding SMO anomaly (same location,
same year). The flux anomaly is averaged over various pre-melt periods (1-40 days).
Three methods M1, M2 and M3 are compared. Left-hand plots illustrate the best r2

with thee methods. Only results with r2 > 0.31 (p < 0.01) are shown. Right-hand plots
reflect the corresponding time-averaging period.
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Figure 5.12: Latent heat flux: de-
pendence of the squared correla-
tion (r2) on the length of the pre-
melt period. The black dots show
all significant r2 values (p < 0.01)
for each flux-averaging period.
This indicates the largest r2 at
each time lag (independent of the
location). The grey curve shows
the number of ERAI grid locations
where a significant r2 was found
with the given flux-averaging pe-
riod. It indicates which time aver-
aging period is the most success-
ful in explaining interannual SMO
variance (within the study region).
Three methods M1 (a), M2 (b) and
M3 (c) are compared.
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Sensible heat flux

Within the circumpolar central Arctic

a 40-day average sensible heat flux (H) was

weak and negative (surface heat loss) in

the pre-melt period, on average only about

-2-0 W/m2 with M1 and M2 (Fig 5.13 a-

b). These values are consistent with the

field observations [Persson et al., 2002]. By

definition, with method M3 the pre-melt

period typically occurs earlier in the year

(compared to M1 and M2), and this ex-

plains positive H values (surface heat gain)

during the pre-melt period: within±4 W/m2

(Fig 5.13c). Thus M3 captures the end of

winter when H flux is directed downwards,

with the near-surface atmospheric bound-

ary layer heating the snow surface.

Significant r2 was found within the area

of 444 x 103 km2 with M1 (shaded area

in Fig 5.14 a-b), 319 x 103 km2 with

M2 (shaded area in Fig 5.14 c-d), and

200 x 103 km2 with M3 (shaded area in

Fig 5.14 e-f), or 26% (M1), 19% (M2)

and 12% (M3) of the circumpolar central

Arctic area.

H flux anomalies explained up to 73%

of the local interannual SMO variance

(Fig 5.14 and 5.15), suggesting relatively

better results (higher r2) when defining the

pre-melt period with M1.

Considering different time scales, sim-

ilar to LE results, the best r2 were de-

tected with 20-40 days time averaging pe-

riod. Thus a 2-4 W/m2 weaker (stronger)

H loss during May - June contributed to

the advance (delay) in SMO by approxi-

mately 13 days.

Figure 5.13: 20-year average H in the 40-
day pre-melt period (prior to SMO) as de-
fined with: (a) method M1, (b) method
M2, and (c) method M3.
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Figure 5.14: Results for the sensible heat flux. Bilateral regression results on the rela-
tionship between the H anomaly and the corresponding SMO anomaly (same location,
same year). The flux anomaly is averaged over various pre-melt periods (1-40 days).
Three methods M1, M2 and M3 are compared. Left-hand plots illustrate the best r2

with thee methods. Only results with r2 > 0.31 (p < 0.01) are shown. Right-hand plots
reflect the corresponding time-averaging period.
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Figure 5.15: Sensible heat flux: de-
pendence of the squared correla-
tion (r2) on the length of the pre-
melt period. The black dots show
all significant r2 values (p < 0.01)
for each flux-averaging period.
This indicates the largest r2 at
each time lag (independent of the
location). The grey curve shows
the number of ERAI grid locations
where a significant r2 was found
with the given flux-averaging pe-
riod. It indicates which time aver-
aging period is the most success-
ful in explaining interannual SMO
variance (within the study region).
Three methods M1 (a), M2 (b) and
M3 (c) are compared.

Bilateral regression analysis was also applied to a composite of all maritime grid

locations where at least one significant r2 (with any time averaging period) had been

established for H. Accordingly, the local H anomalies prior to the exact SMO (M1)

regrouped within the shaded area in Fig 5.14 a-b explained 25% of the spatial and

interannual variance in SMO (Table 1, page 98). For comparison, the local H anomalies

prior to the 20-year average SMO (M2) and the 20-year earliest SMO (M3) explained

32% and 21% of the spatial and interannual variance in SMO, respectively (Table 1).
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Downward Flux and Downward Radiation

In this study the downward radiation (DR) is defined as a sum of the downward

radiative fluxes LWd and SWd. Both LWd and SWd affect the local surface heat

balance, but are not directly influenced by local feedbacks, such as changes in albedo

and surface temperature. The downward flux (DF) is the sum of DR, H and LE.

Compared to DR, DF is more sensitive to surface properties (SIC and albedo) and

small-scale processes (wind and near-surface thermal stratification). Nevertheless, over

the sea ice the climatology of DR and DF is very similar (Fig 5.16).

Within the circumpolar central Arctic the DR and DF are very large in the pre-melt

period, with the daily means ranging within 300-600 W/m2, and the 40-day average

climatology of 400-550 W/m2 (Fig 5.16).

The effect of DF and DR anomalies on the interannual variability in SMO was

weak, see Fig 5.17 - 5.19. Although the anomalies locally explained up to 50% of the

interannual variance in SMO (Fig 5.20), a significant r2 was found only for less than

2% of the circumpolar Arctic.

Few results with relatively weak causal effect of DR and DF on SMO might be

interpreted as followed. In the pre-melt period (April - June) SWd and LWd radiative

fluxes are the dominant heat sources for the snow surface, both with the daily values

of 100-300 W/m2 depending on the cloud cover. In this period, during overcast days

the additional LWd flux (positive LWd anomaly) overlaps the simultaneous reduction

in SWd (negative anomaly in SWd). In contrast, during the clear-sky events the in-

creasing SWd heat input (positive anomaly in SWd) coincides with the smaller LWd

flux (negative LWd anomaly). Thus in both cases, under overcast and clear skies, the

resulting sum of SWd and LWd anomalies is roughly suppressed, suggesting relatively

weak day-to-day changes in DR and DF, of about ±50 W/m2 (one standard deviation

of the daily flux values during 20 years and a 40-day pre-melt period). However, the

magnitude of the anomalies does not impact the correlation strength, but the sign does.

As a matter of fact the additional (and/or reduced) DR has different origin on different

days/years. One day (year) the anomalously large DR is due to strong LWd, and an-

other day (year) it is due to anomalously intense SWd flux. Indeed anomalously large

LWd and SWd by 50 W/m2 have unequal contribution to the net flux accumulation

within the dry snowpack. And with the surface albedo of 0.77, as prescribed in ERAI

[Screen and Simmonds, 2011a], the anomalous large DR (DF) by 25-50 W/m2 due to

SWd has a much smaller effect on surface heating, rather than if positive DR (DF)

anomaly was due to intense LWd. To summarize, DF and DR are probably not appro-

priate fluxes for explaining the regional and interannual differences in SMO timing.
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Figure 5.16: 20-year average DR (left-hand maps) and DF (right-hand maps) in the
40-day pre-melt period (prior to SMO) as defined with: method M1 (upper two maps),
method M2 (two maps in the middle), and method M3 (lower two maps).
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Figure 5.17: Results for the Downawrd Radiation. Bilateral regression results on the
relationship between the DR anomaly and the corresponding SMO anomaly (same
location, same year). The flux anomaly is averaged over various pre-melt periods (1-40
days). Three methods M1, M2 and M3 are compared. Left-hand plots illustrate the best
r2 with thee methods. Only results with r2 > 0.31 (p < 0.01) are shown. Right-hand
plots reflect the corresponding time-averaging period.
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Figure 5.18: Downward Radia-
tion: dependence of the squared
correlation (r2) on the length of
the pre-melt period. The black
dots show all significant r2 val-
ues (p < 0.01) for each flux-
averaging period. This indicates
the largest r2 at each time
lag (independent of the loca-
tion). The grey curve shows the
number of ERAI grid locations
where a significant r2 was found
with the given flux-averaging
period. It indicates which time
averaging period is the most
successful in explaining interan-
nual SMO variance (within the
study region). Three methods
M1 (a), M2 (b)and M3 (c) are
compared.
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Figure 5.19: Results for the Downward Flux. Bilateral regression results on the relation-
ship between the DF anomaly and the corresponding SMO anomaly (same location,
same year). The flux anomaly is averaged over various pre-melt periods (1-40 days).
Three methods M1, M2 and M3 are compared. Left-hand plots illustrate the best r2

with thee methods. Only results with r2 > 0.31 (p < 0.01) are shown. Right-hand plots
reflect the corresponding time-averaging period.
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Figure 5.20: Downward Flux: de-
pendence of the squared correla-
tion (r2) on the length of the pre-
melt period. The black dots show
all significant r2 values (p < 0.01)
for each flux-averaging period.
This indicates the largest r2 at
each time lag (independent of the
location). The grey curve shows
the number of ERAI grid locations
where a significant r2 was found
with the given flux-averaging pe-
riod. It indicates which time aver-
aging period is the most success-
ful in explaining interannual SMO
variance (within the study region).
Three methods M1 (a), M2 (b) and
M3 (c) are compared.
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Net flux

To remind, the net surface flux (NF)

is defined as the sum of the net radiative

fluxes (SWnet and LWnet) and turbulent

heat fluxes (LE and H). Positive NF holds

for the heat accumulation and warming

within the snowpack and/or sea ice. Since

the initial springtime snow-ice temperatures

are about -10-30oC (in April) there is al-

ways some lag between the instance (day)

when NF accumulation starts and the snow

melt onset.

Within the circumpolar central Arctic

the 20-year average NF is positive in the

40-day pre-melt period: about 10-20 W/m2

if defining the pre-melt phase with meth-

ods M1 and M2 (Fig 5.21 a-b). Since

the pre-melt period is shifted earlier in the

year with method M3 (compared to M1

and M2), the corresponding NF climatol-

ogy is closer to the wintertime NF values.

20-year average NF is within ±5 W/m2 in

late April-May period (Fig 5.21 c), with

the typical daily NF values within -30 -

(+10) W/m2.

Figure 5.21: 20-year average NF in the 40-
day pre-melt period (prior to SMO) as de-
fined with: (a) method M1, (b) method
M2, and (c) method M3.
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Figure 5.22: Bilateral regression results on the relationship between the NF anomaly
and the corresponding SMO anomaly (same location, same year). The flux anomaly is
averaged over various pre-melt periods (1-40 days). Three methods M1, M2 and M3 are
compared. Left-hand plots illustrate the best r2 with thee methods. Only results with r2

> 0.31 (p < 0.01) are shown. Right-hand plots reflect the corresponding time-averaging
period.
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Fig 5.22 reflects the performance of three alternative methods M1, M2 and M3

within the circumpolar central Arctic. All three methods evoke a causal effect of the

time average NF anomaly on SMO timing (Fig 5.22 left-hand maps): with a positive

NF anomaly corresponding to early SMO, and vice versa. Significant r2 was found

within the area of 413 x 103 km2 with M1 (shaded area in Fig 5.22 a-b), 344 x 103

km2 with M2 (shaded area in Fig 5.22 c-d), and 387 x 103 km2 with M3 (shaded area

in Fig 5.22 e-f), or 25% (M1), 20% (M2) and 23% (M3) of the circumpolar central

Arctic area.

With M1 the synoptic scale (1-7 days) NF anomalies explained up to 65% of the

local interannual SMO variance (Fig 5.23a), whereas with M2 and M3 a 10-40 day

NF anomalies explained interannual SMO variance best, up to 60% (Fig 5.23 b-c).

Accordingly, a 1-7 day average negative (positive) NF anomaly of -19±8 W/m2

(+19±9 W/m2) contributed to the anomalously late (early) SMO by 15-20 days (grid

locations within the shaded area in Fig 5.22 a-b). With M2 a 20-40 day average neg-

ative/positive NF anomaly of -3±9 W/m2 (+6±5 W/m2) contributed to the anoma-

lously late (early) SMO by 15-20 days (grid locations within the shaded area in Fig 5.22

c-d). With M3 a 10-20 day average negative (positive) NF anomaly of -7±3 W/m2

(+12±12 W/m2) contributed to the anomalously late (early) SMO by 15-20 days (grid

locations within the shaded area in Fig 5.22 e-f).

To summarize, over most of the circumpolar central Arctic methods M2 and M3

failed to detect the effect of brief 1-7 day average NF anomalies on interannual SMO

variability, whereas M1 found a significant correlation between SMO and NF over the

area of 355 x 103 km2 (21% of the circumpolar central Arctic). Instead M2 and M3

were better in detecting the areas where SMO correlated with the seasonal NF anomaly

(over the preceding 20-40 days): 330 x 103 km2 for M2, 210 x 103 km2 for M3, and only

100 x 103 km2 for M1.

Bilateral linear regression analysis was applied to the composite of all maritime

grid locations within the shaded area in Fig 5.22a, with the flux anomalies calculated

according to the method M1. Comparison of different time averaging period (1-40 days)

suggests that the best time averaging period is about 4 days, explaining 28% of the

total (spatial and interannual) variance in SMO (Table 1, page 98). Same exercise

with M2 and M3 resulted in 33% and 26% of explained SMO variance, with the best

time averaging period of 32 and 18 days respectively (Table 1, page 98). Considering

this result, the remaining 70% of unexplained variance was partly explained by the

other time averaging periods. Thus, each of the time averaging periods between 15-40

days suggests that NF anomalies account for about 20-24% of SMO variance. And NF

anomalies averaged over time lags between 1 and 15 days explain about 5-20% of SMO
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variance (p>0.01). Depending on the time lag, RMSE varies between 7.4 and 8.3 days.

Indeed a large portion of SMO variance is not explained by NF. This is related to (a)

our simplified methodology with a ”fixed” duration of the pre-melt period each year

and all locations, and (b) to inaccuracies in MO, SMO sample and NF. The latter are

originating from errors in the individual fluxes and the neglect of the conductive heat

flux.

Figure 5.23: Net flux: dependence
of the squared correlation (r2) on
the length of the pre-melt period.
The black dots show all signifi-
cant r2 values (p < 0.01) for each
flux-averaging period. This indi-
cates the largest r2 at each time
lag (independent of the location).
The grey curve shows the num-
ber of ERAI grid locations where
a significant r2 was found with the
given flux-averaging period. It in-
dicates which time averaging pe-
riod is the most successful in ex-
plaining interannual SMO variance
(within the study region). Three
methods M1 (a), M2 (b) and M3
(c) are compared.
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5.1.3 Stepwise multi-linear regression results:

Snow Melt Onset versus surface heat fluxes

Stepwise forward multiple linear regression analysis was applied to find those combi-

nations of surface fluxes that best explain interannual variance in SMO. Four individual

fluxes (predictors) were taken into account: LWd, SWd, LE and H. These 4 fluxes and

various combinations of them are the direct factors controlling SMO. Only those multi-

linear regression results were accepted, where the following conditions met: (1) there

were complete 20-year records of fluxes and SMO, and (2) the resulting regression was

significant at 99% (p < 0.01).

Results obtained with method M1 are illustrated in Fig 5.24. Accordingly, a com-

bination of 2-4 fluxes explained locally from 31 to 92% of the local interannual SMO

variance within roughly a half (46% of the circumpolar central Arctic area (Fig 5.24a),

with a root mean square error (RMSE) about 6-7 days (not shown). In the western

central Arctic, within the area where 3-7 day average flux anomalies (Fig 5.24b)

explained up to 80-90% of SMO variance (Fig 5.24a), at least 3 fluxes (Fig 5.24

c-f) appeared in the multi-linear regression equation, with LWd the dominating term

(Fig 5.24c). Within another sector also in the western Arctic, were a 40-day time

averaging period appeared to be the most relevant for local interannual SMO ”predic-

tion” (Fig 5.24b): LE and H were either the only or most important terms included

in the best multi-linear regression equation (Fig 5.24 e-f). Although SWd by itself

did not correlate with SMO, the inclusion of SWd term into the multi-linear regression

equation improved the explained variance of SMO over most of the central circumpolar

Arctic (Fig 5.24d).

Stepwise multi-linear regression analysis was also applied to the composite of all

maritime grid locations (2862 in total) within the circumpolar central Arctic. The time

average anomalies of 4 fluxes (all with the same time averaging period) were regrouped

in 4 time series of 2862 values each. At the end, these 4 large time series of LWd, SWd,

LE and H fluxes were regressed against the corresponding SMO anomalies (on the

same year, at the same location). The aim of this exercise was to test whether there is

some best length of the time averaging period when NF anomalies best explain (reflect)

spatial and interannual SMO features. Calculated with method M1, the combination

of 5-day average LWd, SWd, LE and H anomalies best explained (18% the total SMO

variance, with the standard error of about one week (Table 1, page 98).

Fig 5.25 demonstrates how well the best multi-linear regression equation with the

5-day average heat flux anomalies (Table 1, method M1, page 98) reconstructs the

local SMO features in three years: 1990, 2003 and 2007. Year 2003 is illustrated as a
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typical year with SMO close to the 20-year average (Fig 5.25 c-d). Year 2007 is taken

for comparison as the most famous for its unique sea ice conditions (Fig 5.25 e-f). SMO

in 1990 is shown in contrast to SMO pattern observed in 2007, with essentially opposite

regional pattern of SMO anomalies (Fig 5.25 a-b). General comparison of 20 years

suggested that this best combination of 2-4 fluxes (multi-linear regression equation in

Table 1, page 98) well captured the general behaviour of SMO, but cannot explain

SMO anomalies larger than 15 days.

Similar results for the local stepwise multi-linear regression analysis were found

with methods M2 and M3 (Fig 5.27 and Fig 5.29, Table 1, page 98). Significant

r2 were found within the area of 502 x 103 km2 with M2 (Fig 5.27 a-b) and 400 x

103 km2 with M3 (Fig 5.29 a-b), that represent respectively 30% and 24% of the

circumpolar central Arctic area. As for method M1, the LWd term was the dominant

the combination of several individual fluxes with M2 (Fig 5.27c). Analogously, in

the area where the combination of fluxes explained 80% of interannual SMO variance

(marked with orange in Fig 5.27a), LWd term was the first included in the multi-linear

regression equation (Fig 5.27c), with the best time averaging period of 15-20 days.

In line with M1, in those areas where 30-40 days averaging period suggested the best

results with M2 (marked in red in Fig 5.27b), LE and H were either the only or most

important terms included in the best multi-linear regression equation (Fig 5.27 e-f).
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5.1.4 Comparison of the bilateral versus

multi-linear regression results

Fig 5.26 compares the best results obtained with the bilateral and multi-linear

regression analysis, method M1. Over most of the central Arctic, a combination of

fluxes explained SMO better than any of the individual fluxes (Fig 5.26c) or their

sum. LWd largely dominated over the other fluxes within the Pacific and Atlantic

sectors of the central Arctic (Fig 5.26c). Surprisingly the best time averaging period

within the Atlantic sector was rather constant, approximately 25 days (not shown).

On the Pacific side the best time averaging period was more variable: with two peaks

at 4-7 days and 20-27 days. These interesting features are a subject of our planned

continuation study.

Comparison between the bilateral and multi-linear regression analysis results for

methods M2 and M3 is illustrated in Fig 5.28 and 5.30 respectively. Same conclu-

sions as for M1 hold for M2 and M3.

Fig 5.31 demonstrates the overall comparison of three methods (M1, M2

and M3), all time averaging periods, all heat fluxes (SWd, SWnet, LWd, LWnet,

LE, H, DR, DF and NF) and different combinations of 4 fluxes (multi-linear regression

with SWd, LWd, LE and H terms). This figure illustrates the main result of the study.

Causal effect of surface heat flux anomalies on the interannual local variance in SMO

(significant r2) was found within the area of 1.41 x 106 km2, representing 83.5% of

the circumpolar central Arctic. We found that combination of 2-4 fluxes (multi-linear

regression of LWd, SWd, LE and H) explains local SMO variance better than any

individual flux or their sum (NF, DR and DF), Fig 5.31c. This must be due to a

different accuracy of the individual fluxes. However, if all fluxes were equally accurate

in ERAI, NF should correlate with SMO better than any of its components or any

combination of some of its components. Abbreviation ”F” in Fig 5.31c refers to SWnet,

LWnet, DF, DR or NF. All three methods (M1, M2 and M3) revealed significant r2,

with none of the methods being explicitly better than the others, but complementing

one another (Fig 5.31e). Duration and timing of the pre-melt period depended on the

heat flux considered (Fig 5.31b). NF, LWd and LWnet correlated best when averaged

over the synoptic scales (1-7 days), and the other fluxes explained SMO better when

considered over longer 20-40 day pre-melt period. The standard error (RMSE) of the

linear bilateral and multi-linear regression approximation was found to be quite uniform

with the study region: ±4-8 day error in the ”predicted” SMO timing (Fig 5.31d).

In those grid locations where no significant r2 was detected with neither method,

heat flux component and time averaging period the additional examination is yet to be
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done. The possible solution could be the calculation of bilateral and multi-linear regres-

sions with variable time averaging periods for different years, different locations and

different fluxes. Such an adoptive/mild methodology likely will increase the explained

variance in SMO, however the interpretation of the results at 2862 grid locations within

the area of 1.7 mln km2 will require a more advanced technique. More close examina-

tion of SSM/I sea ice concentrations (SIC) within 83-87oN could be another possible

solution. Thus, for example, there certainly exist some errors in ERAI heat fluxes due

to sea ice errors. To note that ERAI SIC is set to 100% within 83-90oN [ECMWF

IFS Part II, 2008]. Localization of errors in ERAI SIC values (both in time and in

space), and extermination of obviously erroneous heat fluxes from the analysis (as we

demonstrated in this Section) might also increase the explained variance in SMO.

For curiosity we calculated the smallest in SSM/I SIC (25 km pixels) in the vicinity

of each ERAI grid location during the pre-melt period. In this manner we can localize

the areas where SIC was changing a lot (already in the pre-melt period) in reality,

but not in ERAI. Obviously in the areas of large SIC reduction there should be some

difference in surface heat fluxes between the reality and ERAI. To determine the pre-

melt period we took SMO date for each year and at each grid location. Then in the

vicinity of each grid location we found the daily SIC values (SSM/I) during a 41-day

pre-melt period (including the SMO day itself). SSM/I SIC values were considered

within a 50 km radius (first guess). 50 km distance is comparable to the half distance

between two latitude circles (84/2 = 42 km). As a result, at grid location we get at

least 16 SSM/I pixels for each day, and we examine 41 days in total. 16 x 41 = 656 SIC

values for each year at each ERAI grid location. The smallest of these 656 SIC values

gives an idea about SIC reduction in the vicinity of each ERAI grid location. Fig 5.32

demonstrates the smallest 25 km SSM/I SIC in the vicinity of each ERAI grid location

during the pre-melt period and in any year. To note, these SIC reductions occurred

in different years at different locations. This is just an example, but more extensive

additional analysis is needed to evaluate how/where/when errors in ERAI SIC affected

the surface heat fluxes.
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Table 1. Linear relationships between the surface heat flux anomaly (prior to SMO, 

methods M1, M2, M3) and SMO anomaly within the circumpolar Arctic (significant with 

p < 0.01). The stepwise multi-linear regression equation for the entire circumpolar central 

Arctic (83.25-87°N) ranks the contribution of fluxes in the equation. 

Linear regression equation 

Time 

averaging 

period [days] 

r
2
 

RMSE 

[days] 

Area where the 

equation is valid 
Method 

SMO = - 0.38  NF + 0.03 4 0.28 7.5 
Shaded area in 

Fig. 5.22 a-b 
M1 

SMO = - 0.85  NF – 0.3 32 0.33 7.2 
Shaded area in 

Fig. 5.22 c-d 
M2 

SMO = - 1.15  NF – 0.86 18 0.26 7.5 
Shaded area in 

Fig. 5.22 e-f 
M3 

SMO = - 0.35  LWd + 0.96 6 0.27 7.3 
Shaded area in 

Fig. 5.5 a-b 
M1 

SMO = - 0.57  LWd + 0.43 21 0.36 6.8 
Shaded area in 

Fig. 5.5 c-d 
M2 

SMO = -  0.31  LWd + 0.3 13 0.23 7.5 
Shaded area in 

Fig. 5.5 e-f 
M3 

SMO = - 2.58  LE – 1.38 40 0.31 7.3 
Shaded area in 

Fig 5.11 a-b 
M1 

SMO = - 1.65  LE – 1.02 27 0.29 7.4 
Shaded area in 

Fig 5.11 c-d 
M2 

SMO = - 0.87  LE – 0.96 5 0.22 7.6 
Shaded area in 

Fig 5.11 e-f 
M3 

SMO = - 4  H – 0.68 37 0.25 7.5 
Shaded area in 

Fig. 5.14 a-b 
M1 

SMO = - 4.96  H – 0.58 35 0.32 7.2 
Shaded area in 

Fig.  5.14 c-d 
M2 

SMO = - 2.23  H – 0.58 9 0.21 7.3 
Shaded area in 

Fig. 5.14 e-f 
M3 

SMO = - 0.31  LWd – 0.08 

 SWd – 0.67  H – 0.03  

LE + 0.45 

5 0.18 7.7 

Entire 

circumpolar 

area within 

83.25-87N 

 

M1 

SMO = - 0.35  LWd – 0.46 

 LE – 0.46  H + 0.01  

SWd - 0.05 

31 0.23 7.5 M2 

SMO = - 0.29  LWd – 0.09 

 SWd  – 0.43  LE – 0.17  

H – 0.1 

15 0.15 7.9 M3 
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5.1.5 Discussion

The first general comment refers to the distinction between two sea ice types in

the MO algorithm (SSM/I). Our results demonstrated that the combination of LWd,

SWd, LE and H anomalies (with the stepwise multi-linear regression) well captured

the spatial and interannual differences in SMO. Large SMO anomalies (of 15-35 days)

were, however poorly explained by surface heat fluxes. This is certainly related to errors

in fluxes (ERAI) and possibly also to the distinction of two sea ice types in the MO

algorithm (SSM/I). The algorithm for MO detection applied by Markus et al. [2009]

is different for the multi-year and first-year ice. We suspect that differences between

ice types, most likely contributed to the interannual and spatial variations in SMO.

Recently a similar guess but in another formulation was suggested in the study by

Anderson et al. [2011]. Its authors suspect that the snowpack differences between the

FYI and MYI contribute to SMO timing difference between FYI and MYI: with thicker

snow on MYI retarding SMO and albedo changes. However observations show that this

last argument can be merely justified (discussed in Section 1.4). Further studies (with

another methodology) are needed to find out how well surface fluxes (reproduced by

meteorological reanalysis) explain SMO timing on top of different ice types.

Another essential comment concerns the uncertainty in ERAI reanalysis heat fluxes.

ERAI is constrained by the satellite-derived data on vertical thermal and moisture

profiles, and also by the direct field and buoy observations (SAT, winds) generally

deployed on the thick first-year and multi-year ice floes. Naturally, one would expect

that meteorological reanalysis are likely better in representing the spatial differences in

the downward radiative fluxes, air temperatures and cover fraction, compared to the

upward LW, absorbed SW, LE and H fluxes over the mixed ice types and open sea areas

[Walsh and Chapman, 1998]. Due to lack of reliable data on sea ice and snow thickness

and under-ice water temperatures, the effect of the conductive flux through sea ice and

snow on SMO could not be investigated. Yet, it should be noted that ERAI calculates

the conductive heat flux of sea ice, resolved at four model levels. Thus in ERAI the

under-ice temperature is set to the freezing point depending on (climatological) salinity

and the thickness of the sea ice slab is always set to 1.5 m. In this formulation the under-

ice temperature and salinity do not vary in time, and the conductive heat flux of ice in

ERAI is primarily controlled by the meteorological conditions, which is not realistic.

It should be noted that this conductive flux has affected the surface fluxes that we

utilized in our study: LWup, LWnet, NF, and the turbulent sensible heat flux (H).
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Figure 5.24: Best results for the stepwise multi-linear regression (MLR) analysis at
each individual grid location (method M1.)

(a) Fraction of the local interannual SMO variance (r2) explained by the best
combination of four fluxes: LWd, SWd, LE and H. At each particular location r2

value is the highest among all combinations of these four fluxes and 40 different
flux-averaging periods.
(b) Flux-averaging period suggesting the best r2 that results from any combination of
individual fluxes at each grid location.
(c-f) Rank of the flux components in the best multi-linear regression equation (at
each individual grid location). For example, in (c) at those locations where the color
code refers to 1, LWd is the most significant flux component (with the smallest
p-value) and the first included in the multi-linear regression equation.

100



Figure 5.25: Comparison of the original SMO time series (left-hand maps) versus the
reconstructed SMO time series (right-hand maps) in 1990 (a-b), 2003 (c-d) and 2007 (e-
f). The multi-linear regression (MLR) equation from Table 1 (method M1, page 98)
and the local heat flux anomalies (5-day average) were applied to reconstruct SMO
timing at each ERAI grid location.
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Figure 5.26: Comparison of the bilateral versus multi-linear regression results (method
M1).

(a) Fraction of the local interannual SMO variance explained by the surface fluxes
(r2): LWd, SWd, LE, H and/or any combination of these 4 fluxes. At each particular
location, this r2 value is the highest among four individual fluxes, all combinations of
these four fluxes and all flux-averaging periods.
(b) Flux-averaging period suggesting the best r2 that results from any individual flux
or combination of individual fluxes at each grid location.
(c) The factor best explaining SMO variance: individual fluxes or some combination
of them, ranked by r2. Multi-linear regression (MLR) refers to some combination of
LWd, SWd, LE and H flux anomalies, suggesting the best r2.
(d) RMSE corresponding to the best explaining factor shown in (c).
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Figure 5.27: Best results for the stepwise multi-linear regression (MLR) analysis at
each individual grid location (method M2).

(a) Fraction of the local interannual SMO variance (r2) explained by the best
combination of four fluxes: LWd, SWd, LE and H. At each particular location r2

value is the highest among all combinations of these four fluxes and 40 different
flux-averaging periods.
(b) Flux-averaging period suggesting the best r2 that results from any combination of
individual fluxes at each grid location.
(c-f) Rank of the flux components in the best multi-linear regression equation (at
each individual grid location). For example, in (c) at those locations where the color
code refers to 1, LWd is the most significant flux component (with the smallest
p-value) and the first included in the multi-linear regression equation.
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Figure 5.28: Comparison of the bilateral versus multi-linear regression results (method
M2).

(a) Fraction of the local interannual SMO variance explained by the surface fluxes
(r2): LWd, SWd, LE, H and/or any combination of these 4 fluxes. At each particular
location, this r2 value is the highest among four individual fluxes, all combinations of
these four fluxes and all flux-averaging periods.
(b) Flux-averaging period suggesting the best r2 that results from any individual flux
or combination of individual fluxes at each grid location.
(c) The factor best explaining SMO variance: individual fluxes or some combination
of them, ranked by r2. Multi-linear regression (MLR) refers to some combination of
LWd, SWd, LE and H flux anomalies, suggesting the best r2.
(d) RMSE corresponding to the best explaining factor shown in (c).
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Figure 5.29: Best results for the stepwise multi-linear regression (MLR) analysis at
each individual grid location (method M3).

(a) Fraction of the local interannual SMO variance (r2) explained by the best
combination of four fluxes: LWd, SWd, LE and H. At each particular location r2

value is the highest among all combinations of these four fluxes and 40 different
flux-averaging periods.
(b) Flux-averaging period suggesting the best r2 that results from any combination of
individual fluxes at each grid location.
(c-f) Rank of the flux components in the best multi-linear regression equation (at
each individual grid location). For example, in (c) at those locations where the color
code refers to 1, LWd is the most significant flux component (with the smallest
p-value) and the first included in the multi-linear regression equation.
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Figure 5.30: Comparison of the bilateral versus multi-linear regression results (method
M3).

(a) Fraction of the local interannual SMO variance explained by the surface fluxes
(r2): LWd, SWd, LE, H and/or any combination of these 4 fluxes. At each particular
location, this r2 value is the highest among four individual fluxes, all combinations of
these four fluxes and all flux-averaging periods.
(b) Flux-averaging period suggesting the best r2 that results from any individual flux
or combination of individual fluxes at each grid location.
(c) The factor best explaining SMO variance: individual fluxes or some combination
of them, ranked by r2. Multi-linear regression (MLR) refers to some combination of
LWd, SWd, LE and H flux anomalies, suggesting the best r2.
(d) RMSE corresponding to the best explaining factor shown in (c).
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Figure 5.31: Comparison of the bilateral versus multi-linear regression results with all
three methods M1, M2 and M3. Subpolts a-d are analogous to those in previous
Figure, except that NF, SWnet, LWnet, DF and DR are also included into comparison.
Map (c) shows the factor best explaining interannual SMO variance, with F represent-
ing any of the following fluxes: NF, SWnet, LWnet, DF or DR. (e) Method (M1, M2
or M3) suggesting the best r2 that results from any individual flux or combination of
individual fluxes at each grid location and with any time averaging period.
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Figure 5.32: The smallest annual-
mean spatially-average SIC
(SSM/I) in the vicinity of each
ERAI grid location (within 50 km
radius) during a 40-day pre-melt
period and on the SMO day itself
(41-day average SIC). Such SIC
conditions occurred in any year
(1989-2008), in different years at
different locations. Three methods
M1 (a), M2 (b) and M3 (c) were
applied to define the timing of the
40-day pre-melt period. SMO day
is included in the examination in
order to capture/localise as much
as possible of potential errors in
ERAI SIC and surface heat fluxes.
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5.2 Meteorological conditions affecting Surface Heat

Fluxes and Snow Melt Onset timing

Earlier in Section 5.1 we discussed that Snow Melt Onset on top of compact sea

ice (SMO) is controlled by the surface heat fluxes. In turn the surface heat fluxes are

themselves modified by weather (cloud cover, heat advection, wind speed), snow and

sea ice thickness. In this Section we considered a longer chain of interactions: meteo-

rological conditions - surface heat fluxes - SMO timing on top of the sea ice. Similar

to Section 5.1, bilateral and stepwise multi-linear regression analysis were applied to

evaluate how well the meteorological conditions (individual meteorological variables

and various combinations of these variables) explain the interannual and spatial vari-

ability in surface fluxes and SMO timing. Among individual meteorological variables

we chose: the near-surface (2m) air temperature, skin temperature, total (vertically in-

tegrated) column water vapour, liquid water and ice water contents, near-surface (2m)

specific humidity, total and low-level cloud fractions, near-surface (10m) wind speed,

as well as the horizontal thermal and moisture advection. Two heat flux components

were considered, those best explaining the variability in SMO: the net flux (NF) and

the downward longwave radiation (LWd).

To evaluate the relationship between surface heat fluxes, meteorological variables

and SMO, again we face the question on how to define the timing and duration of

the reference study period. When changes in surface heat fluxes and meteorological

conditions trigger a better/weaker heat accumulation within a dry snowpack and in

turn an early/late SMO timing? It is of evidence: if evaluating the relationship between

the surface heat flux (for ex., LWd) and the corresponding meteorological state variable

(for ex, total cloud fraction), one should pre-define the reference period of the year

(same each year!) to avoid the comparison of the cloud LW radiative forcing during

early spring in one year, and during late spring - in another year. The possible solution

for the reference study period could be, for example:

(a) a 20-year mean regional average SMO within 83.25-87oN, is the Julian day 174 or

24-25 June (both in 25 km resolution and ERAI grid).

(b) the earliest local SMO (25 km resolution) within the circumpolar central Arctic is

the Julian day 76 (16-17 of March).

(c) the earliest local SMO (ERAI grid resolution) within the circumpolar central

Arctic is the Julian day 141 (20-21 of May).

In our example here we chose option ”c” and further demonstrate the results based

on the daily time series of the surface heat fluxes and meteorological variables during
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a 40-day pre-melt period between 11 April - 20 May. This approach roughly interferes

with our method M3, where the earliest SMO is considered as a reference day of the

year (the end of the pre-melt period).

As before, three methods M1, M2 and M3 were applied when comparing (1) the

time-average anomaly in individual meteorological variable and (2) the corresponding

(same year, same location) SMO anomaly.
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5.2.1 Snow Melt Onset - Heat Fluxes - Atmospheric Moisture

Although polar air is relatively dry,
in reality [Zhang et al., 1997] and in
ERAI the day-to-day LWd anomalies
are strongly affected by the atmospheric
water vapour. During February-April
the vertically integrated water vapour
content (TCWV) in the central Arctic is
about 2-5 kg/m2, and about 5-12 kg/m2

in May-June (Fig 5.33a). Vertically
integrated liquid water content (TCLW)
and ice water content (TCIW) are of
the order of 0.01-0.05 kg/m2 [Francis
and Hunter, 2007] during the pre-melt
April-May months (Fig 5.33 b-c). The
near-surface (2m) specific humidity (q)
is typically below 4 g/kg within the sea
ice covered Arctic [Serreze et al., 1995b],
Fig 5.33d.

With a focus on the pre-melt period (11
April-20 May) diurnal anomalies in spe-
cific humidity explained 60% of the total
variance in LWd, and locally up to 71%
of the temporal variations in LWd (Table
2, page 129). TCWV accounted for 50% of
the overall (temporal and spatial) variance
in LWd, locally explaining up to 63% of
the temporal LWd variability (Fig 5.34a),
with the standard error (RMSE) between
18 and 23 W/m2 (Fig 5.34b), and Table
2 (page 129).

Figure 5.33:
Seasonal cycle in (a) total column water

vapour; (b) total column liquid water, (c)
total column ice water, (d) near-surface

specific humidity. The black solid curve is
a 20-year average within the circumpolar

central Arctic, two grey dashed curves
delimit one standard deviation of all

daily values, and two black dashed curves
delimit the maximum and minimum daily

values.
Figure 5.33:
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Figure 5.34: Relationship between TCWV and LWd diurnal anomalies.

The local diurnal anomalies are calculated relative to the regional 20-year climatology
for the same day of the year within 83.25-87oN (solid black curve in Fig 5.33a).
Bilateral regression is calculated for 800 values of TCWV and LWd at each ERAI
grid location (40 days x 20 years). Same 40-day pre-melt period from 11 April to 20
May is considered everywhere.
(a) fraction of the local day-to-day variability in LWd explained by diurnal (same
day, same location) TCWV anomalies (r2).
(b) root mean square error of the linear regression model.

Thus on average the anomaly in TCWV of -2 - (-4) kg/m2 (+4 - +10 kg/m2) was

found in those days when LWd anomaly was negative (positive) by 100 - 0 W/m2 (+10

- +120 W/m2), Fig 5.35.

Figure 5.35: Relationship between the
diurnal LWd anomaly versus corre-
sponding TCWV anomaly. Each grey
dot represents some grid location
within 83.25-87oN, some year (1989-
2008) and any day of the 40-day pre-
melt period (11 Apr-20 May). Black
line reflects the linear regression equa-
tion in Table 4 (page 130).

Similar comparison for NF evokes that the diurnal anomalies in TCWV (and q)

explained 40% of the total (temporal and spatial) NF variance (Table 3, page 129), and

locally accounting for up to 49% (52%) of the temporal (day-to-day and interannual)

variability in NF (Fig 5.36).
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It is logic: if near-surface specific humidity and TCWV explain a significant portion

of the total (spatial and temporal) variance in LWd and NF, and both LWd and NF af-

fect SMO timing, then both near-surface specific humidity and TCWV should somehow

affect SMO timing as well. Fig 5.37 demonstrates the effect of TCWV anomaly aver-

aged over a 1, 2 .. 40-day pre-melt period (and any method M1, M2 and/or M3) on SMO

timing. Accordingly TCWV anomalies explained up to 83% of the local interannual

variance in SMO (Fig 5.37a), where significant relationship (r2) was detected within

about 66% of the circumpolar central Arctic area (shaded grid boxes in Fig 5.37).

Thus the average 1-7 day anomaly in TCWV of +2 - +6 kg/m2 (-2- -6 kg/m2) oc-

curred in those years and at those locations where/when SMO was 10-25 days early

(late) compared to the local 20-year average, not shown.

Similar result was found for the near-surface specific humidity (not shown). Year-

to-year anomalies in q explained locally up to 73% of the interannual variations in SMO

(best with 1-10 day averaging period and M1), revealing significant r2 within 50% of

the circumpolar central Arctic, with RMSE of 5-8 days (not shown).

Figure 5.36: Same as in Fig 5.34 but for NF. (a) fraction of the local day-to-day
variability in NF explained by diurnal (same day, same location) TCWV anomalies
(r2). (b) root mean square error of the linear regression model.
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Figure 5.37: Best bilateral regression results on the local relationship between TCWV
anomaly and the corresponding SMO anomaly (same location, same year).

(a) fraction of the local interannual SMO variance (r2) explained by the time average
TCWV. At each particular location r2 value is the highest among three methods (M1,
M2 or M3) and 40 different time-averaging periods.
(b) time-averaging period suggesting the best r2.
(c) method suggesting the highest r2.
(d) root mean square error of the linear regression model.
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5.2.2 Snow Melt Onset - Heat Fluxes - Clouds

Total (TCC) and the low-level (LCC) cloud cover are abundant in the Arctic,

smaller in winter and increasing in sprig-summer-fall season. Apparently ERAI cap-

tures well this general tendency, showing the increase in both TCC and LCC during

February-July period (Fig 5.38). Diurnal variations in TCC (LCC) explained 19%

(12%) of the total variance in diurnal LWd anomalies, and locally up to 47% (35%)

of the temporal changes in LWd anomalies, see Fig 5.39a (Fig 5.40a) and Table 2

(page 129).

Figure 5.38: Seasonal cycle in ERAI
total cloud fraction (TCC, black)
and low-level cloud fraction (LCC,
grey). Climatology for each day of
the year is calculated as a 20-year
mean regional average (grid-box area
weighted) within 83.25-87oN.

Figure 5.39: Relationship between TCC and LWd diurnal anomalies.

The local diurnal anomalies are calculated relative to the regional 20-year climatology
for the same day of the year within 83.25-87oN. Bilateral regression is calculated for
800 values of TCC and LWd at each ERAI grid location (40 days x 20 years). Same
40-day pre-melt period from 11 April to 20 May is considered everywhere.
(a) fraction of the local day-to-day variability in LWd explained by diurnal (same
day, same location) TCC anomalies.
(b) root mean square error of the linear regression model.
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Figure 5.40: Same as in Fig 5.39 but for LCC.

(a) fraction of the local day-to-day variability in LWd explained by diurnal (same
day, same location) LCC anomalies.
(b) root mean square error of the linear regression model.

Comparison of the local diurnal anomalies in TCC, LCC and NF established a

very weak and positive effect of the cloud fraction on NF anomaly, with r2 locally not

exceeding 14% (Table 3, page 129). This result is consistent with the reality, where

during most of the year the surface NF in snow covered regions tends to be grater in

cloudy periods, compared to clear sky days [Key et al., 1997].

If TCC and LCC tend to affect surface heat fluxes in the pre-melt period (increasing

LWd and reducing NF deficit), naturally there should be some contribution of TCC and

LCC anomalies in SMO timing. Application and comparison of three methods (M1, M2

abd M3) with TCC (LCC) anomalies averaged over 40 different time lags established

significant correlations between local ERAI TCC (LCC) anomalies and SMO timing.

Correlations between TCC (LCC) were strongly negative: where the additional cloud

fraction (positive anomaly) in the pre-melt period contributed to the earlier SMO

timing (negative anomaly). This is consistent with earlier results by Curry [1995] and

Zhang et al. [1996]. Locally TCC and LCC explained up to 69% of the interannual

variance in SMO (Fig 5.41a, 5.42a) with the best time averaging period for the cloud

anomalies within 10-20 days (Fig 5.41b, 5.42b), and the most appropriate method

M2 (Fig 5.41c, 5.42c), and the standard error in SMO prediction around 6-9 days

(Fig 5.41d, 5.42d).

Total (vertically integrated) liquid water (TCLW) and ice water (TCIW) contents

are the moisture quantities related to cloud properties. Results for TCLW and TCIW

are summarized in Tables 2-3 (page 129). These explained 31-32% of the total variance
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Figure 5.41: Best bilateral regression results on the local relationship between TCC
anomaly and the corresponding SMO anomaly (same location, same year).

(a) fraction of the local interannual SMO variance (r2) explained by TCC. At each
particular location r2 value is the highest among three methods and 40 different
time-averaging periods.
(b) time-averaging period suggesting the best r2.
(c) method suggesting the highest r2.
(d) room mean square error of the linear regression model.

in LWd and 22-24% of the total variance in NF, locally accounting for up to 47% and

34% of the local temporal changes in LWd and NF, respectively. To note, in reality

LWd is particularly sensitive to the variations in TCLW within 0-0.03 kg/m2, which is

exactly the case for the Polar regions, even during summer months [Curry, 1995 and

Zhang et al., 1996]. Thus the significant relationship between LWd and TCLW diurnal

anomalies, as performed in ERAI, seems reasonable. However the relationship between
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Figure 5.42: Same as in Fig 5.41 but for LCC.

(a) fraction of the local interannual SMO variance (r2) explained by LCC. At each
particular location r2 value is the highest among three methods and 40 different
time-averaging periods.
(b) time-averaging period suggesting the best r2.
(c) method suggesting the highest r2.
(d) room mean square error of the linear regression model.

TCIW and surface fluxes, for ex. LWd, is less evident. Based on SHEBA observations

Intrieri and Shupe [2004] have quantified the radiative properties of the atmospheric

ice crystals. They found that TCIW contributed a negligible radiative effect on sea ice

surface during November - mid-May period. If following ERAI the result is somehow

different, at least during April - mid-May period. As we just said: in ERAI 32% of

the total (day-to-day, interannual and spatial) LWd variations are explained by TCIW

variations in time and space during April - mid-May period.
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When applying the forward stepwise multi-linear regression TCIW improved the ex-

plained variance of LWd, but interestingly - not TCLW (Table 2, page 129). However,

both TCLW and TCIW significantly (negatively) correlated with SMO (not shown):

with larger moisture content in those years/areas where SMO occurred earlier than

average.

The relationship between cloud fraction and SMO had been addressed earlier by

Serreze et al. [1993] within the East-Siberian Beaufort Sea region of the Arctic Ocean.

A 5-year sample (in the period between 1979 and 1986) was utilized for that study.

Both, cloud amounts and SMO were determined with the remote sensing: microwave

data from SMMR (Nimbus-7 Scanning Multichannel Microwave Radiometer) and the

visible-band observations by DMSP (Defence Meteorological Satellite Program). In

spite the apparent evidence, no significant relationship between the regionally aver-

aged cloud cover, northward wind component, the near-surface air temperatures and

regionally averaged SMO timing could be established at that moment. Our results

evidenced that TCC and LCC significantly contribute to SMO timing. The fact that

we have better results is likely related to several factors. First, the data quality was

likely worse, compared to our cloud, wind, temperature and SMO products. Second,

a 5-year data sample is probably too small to catch a significant relationship between

these complex variables.

Credibility of the cloud fractions in ERAI had been recently questioned by Marta

Zigmuntowska (in press). She compared ERAI TCC and LCC values with the remote

sensed estimates. Her preliminary results indicate that ERAI TCC are much larger

(year through) compared to those from CALIPSO/CloudSat. According to our knowl-

edge this is the only study addressing the question on the cloud properties in ERAI in

the Arctic region. Interestingly to note that: if there exist some constant bias in ERAI

meteorological variables and surface heat fluxes, it likely does not perturb the corre-

lation strength. Thus the amplitude of the anomalies does not affect the correlation

strength, however errors in daily values and in day-to-day anomalies - do largely affect

the correlation strength between heat fluxes, meteorological variables and SMO.

Earlier Bromwich et al. [2007] had investigated the cloud radiative properties in

the predecessor of ERAI - ERA-40 reanalysis. This study showed a very good repre-

sentation of LWd (observations vs ERA-40) at Point Barrow in June 2001 ”on those

days when the total cloud fraction was properly resolved by ERA-40”. However, the

error in LWd of 20-50 W/m2 was found in ERA-40 in this period with both: under-

and overestimation of the actual TCC and LWd values. We speculate that these errors

in TCC and LWd likely hold for ERAI as well.
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5.2.3 Snow Melt Onset - Heat Fluxes - Thermal Advection

Horizontal thermal advection (TAD) was calculated at each grid location and each

day of the year as explained in Appendix 1. Six geopotential heights were considered:

500, 600, 700, 800, 900 and 1000 hPa. The day-to-day statistics of TAD during the pre-

melt and the first part of the melt season (March-July) are reflected in Fig 5.43. Thus

the regional average 20-year climatology within 83-78oN (solid black curve) indicates

positive TAD values of 1-2 oC/day without any seasonal change. To note, this is the

weighted mean of all local (grid box) TAD values for each day of the year, and this is not

a convergence that we discussed in Chapter I. Examination of the local diurnal values

evokes very high TAD values, indicating that locally there can be a very large horizontal

heat transport. Naturally, the largest TAD occurs in winter, rather than in summer -

when thermal gradients and the intensity (depth) of cyclones are the most pronounced.

Results illustrated in Fig 5.43 indicate that the horizontal thermal gradients and

thermal advection are the strongest within the lower troposphere in ERAI, here roughly

around 800-900 hPa, which is in agreement with the general expectation [Nakamura

and Oort, 1988; Serreze and Barry, 2005]

Comparison of TAD and LWD diurnal anomalies at each ERAI grid location during

the pre-melt period (11 April-20 May) detected that locally TAD anomalies explain

up to 16% in temporal variations in LWd (not shown), better in the lower troposphere

(800-1000 hPa levels). However, TAD anomalies accounted for less than 1% of the total

variability in LWd (not shown). Interestingly, TAD explained better NF variations,

than LWd, accounting for 5% of the total NF variance at the lowermost 1000 hPa level

(not shown). This partly results from the importance of thermal advection on H and

indirectly - on LE.

Since the effect of TAD variations on LWd and NF changes appeared to be minor,

the relationship between TAD and SMO was not investigated. We expect that another

methodology for calculation thermal advection, and likely, instead of our methodology -

the horizontal thermal convergence/divergence should be calculated in further studies.
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Figure 5.43: Thermal advection (TAD) statistics within 83.25-87oN in the period 1989-
2008.

TAD is a relative measure of the diurnal local horizontal gradients in potential
temperature and the corresponding wind speed. The black solid curve is a 20-year
average regional mean TAD (grid-box area weighted). Two grey dashed curves delimit
one standard deviation of all daily values (in a given month) at all grid locations
(within 83.25-87oN). Two black dashed curves delimit the maximum and minimum
daily values that occurred at any location within 83.25-87oN. Time period: 1 March -
31 July. Six geopotential levels are considered: 500, 600, 700, 800, 900 and 1000 hPa.
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5.2.4 Snow Melt Onset - Heat Fluxes - Moisture Advection

Moisture advection was calculated at each grid location and each day of the year

as explained in Appendix 2. As for thermal advection six geopotential heights were

considered: 500, 600, 700, 800, 900 and 1000 hPa. The day-to-day statistics of the

moisture (specific heat) advection (MAD) during the pre-melt and the first part of the

melt season (March-July) are reflected in Fig 5.44

Moisture advection explained less than 1% of the total (temporal and spatial) vari-

ance in LWd anomalies, locally accounting for up to 4% of the temporal (day-to-day

and interannual) variability in LWd (not shown).

Earlier we have demonstrated that all the moisture content variables strongly affect

the day-to-day and spatial differences in LWd (in ERAI). And here we got a surpris-

ingly small effect of the moisture advection on the surface LWd and NF anomalies.

This inconsistency indicates that either (a) horizontal advection should be calculated

differently, and/or (b) that the relationship between the advected moisture and the

local moisture-cloud variables and LWd is not linear, which is a well known fact. In

reality moisture advection affects the local specific humidity and the cloud cover, and

LWd anomaly occurs if there is a simultaneous increase in both. Relatively poor effect

of LCC and TCC day-to-day anomalies on day-to-day LWd anomalies indicates that

there are likely some errors in these quantities. And the horizontal moisture advection

alone is likely not an appropriate indicator of LWd changes.

Further it could be of interest to compare the horizontal moisture transport diver-

gence as calculated by Graversen et al. [2011] - with the seasonal LWd and annual

SMO anomalies. Yet, this analysis is still to be done.
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Figure 5.44: Moisture advection (MAD) statistics within 83.25-87oN in the period 1989-
2008.

MAD is a relative measure of the diurnal local horizontal gradients in specific
humidity and the corresponding wind speed. The black solid curve is a 20-year
average regional mean MAD (grid-box area weighted). Two grey dashed curves
delimit one standard deviation of all daily values (in a given month) at all grid
locations (within 83.25-87oN). Two black dashed curves delimit the maximum and
minimum daily values that ever occurred at any location (within 83.25-87oN). Time
period: 1 March - 31 July. Six geopotential levels are considered: 500, 600, 700, 800,
900 and 1000 hPa.
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5.2.5 Snow Melt Onset - Heat Fluxes - Skin Temperature and

Near-Surface Air Temperature

Fig 5.45 demonstrates the seasonal cycle in the ice surface or skin temperature

(SKT), and the near-surface air temperature at about 2 meter heigh (SAT) during

March-July period. The 20-year climatology within 83-87oN (solid black curve) is about

-25-35oC in March, -10-30oC in April, -5-

15oC in May and -5-0oC in June-July.

Prior to SMO the snow is dry, surface

albedo is high and as a result SKT and

the upward LW are mainly driven by the

downward longwave radiation [Serreze and

Barry, 2005]. Table 4 (page 130) out-

lines several and only meteorological fac-

tors affecting SKT variations on top of

the compact sea ice: surface heat fluxes

and the individual meteorological vari-

ables. The variations in time and in space

in ERAI SKT were very well explained by

the variations in ERAI LWd (Table 4,

page 130). Both SKT and LWd anoma-

lies were initially scaled by the regional

20-year climatology. Accordingly, the lo-

cal diurnal anomalies in LWd explained

up to 81% of the temporal variability in

SKT (Fig 5.46a), with the standard er-

ror within 2oC (Fig 5.46b). Thus a pos-

itive (negative) LWd anomaly of 50-100

W/m2 produced a positive (negative) SKT

anomaly by 0 - +20oC (-40 - 0oC), not

shown.

Figure 5.45: Seasonal cycle in ERAI (a)
skin and (b) near-surface air tempera-
ture. Black solid curve is a 20-year aver-
age within 83.25-87oN, two grey dashed
curves delimit ± one standard deviation
of all daily values, and two black dashed
curves delimit the maximum and minimum
daily values. Time period 1 March - 31
July, 1989-2008.

We remind that these results refer to the daily mean values of surface heat fluxes

and SKT in ERAI grid coordinates.

The effect of LWnet and NF on SKT variations (in time and in space) manifested

by the positive correlation coefficients, but not as strong as for LWd flux component

(Table 4, page 130). Thus warmer SKT coincided with the positive anomalies in NF
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Figure 5.46: Relationship between the skin temperature (SKT) and downward longwave
(LWd) diurnal anomalies. The local diurnal anomalies are calculated relative to the
regional 20-year climatology for the same day of the year within 83.25-87oN. Bilateral
regression is calculated for 800 values of SKT and LWd at each ERAI grid location (40
days x 20 years). Same 40-day pre-melt period from 11 April to 20 May is considered
everywhere.

(a) fraction of the local day-to-day variability in SKT explained by diurnal LWd
anomalies (same day, same location).
(b) root mean square error of the linear regression model.

and LWnet, e.i. a smaller heat deficit. Diurnal anomalies in SWd and SWnet were

negatively correlated with SKT during the pre-melt period between 11 April and 20

May (Table 4, page 130), indicating that LWd was the major source of heat for the dry

ice covered surface, to note - as performed by ERAI. And this is a physically realistic

result. One may specify that already in April, SWd may start to overlap LWd, and so

far - dominate SKT and the internal snow temperatures, at least at noon on clear-sky

days. Such conditions have been observed in reality. Yet this important feature of the

diurnal cycle cannot be seen with the daily mean time series of surface heat fluxes and

SKT. Comparison of SKT with H and LE values established that only a minor portion

(8%) of the total (temporal and spatial) SKT variance was explained by the variations

(in time and in space) in LE and H heat fluxes (Table 4, page 130).

In spring, when the snow is still cold and dry, a larger LWd and positive NF increase

the surface (snow) temperature. When sufficient amount of heat is accumulated at the

surface (within the snowpack), the melt temperature is reached (SKT warms-up to 0oC)

and the snow melt starts. This reasoning serves to demonstrate that the surface (snow)

temperature is not a factor controlling SMO timing. Instead SKT (and its anomalies)

is another (and alternative to SMO) estimate of the same thing - of the surface (snow)
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Figure 5.47: Same as in Fig 5.46 but for the net flux (NF). (a) fraction of the local
day-to-day variability in SKT explained by diurnal NF anomalies (same day, same
location). (b) root mean square error of the linear regression model.

thermal state.

Naturally the surface/internal snow temperatures are / should be warmer, e.i. near

0oC, early (late) - in those years when SMO occurs early (late). Bilateral regression

analysis with three methods (M1, M2 and M3) established that ERAI SKT anomalies

accounted for up to 91% of the local interannual variance in SSM/I-based SMO timing

(Fig 5.48a), with the standard error of the linear regression ranging between 3 and

9 days depending on the location (Fig 5.48d). Best time averaging period for SKT

anomaly appeared to be within 1-10 days (Fig 5.48b), and the highest r2 were found

with method M1 (Fig 5.48c). To note, this result interferes with our conclusions for

LWd and NF, where synoptic time averaging period and M1 were also the most relevant

to the SSM/I-based SMO time series.

Correlations between SKT and SMO were strongly negative: with a warmer ERAI

SKT (positive anomaly) found in those years/grid locations when/where earlier SMO

(negative anomaly) was detected with SSM/I Fig 5.49. This is reasonable and physi-

cally consistent with the reality.

Considering the relationship between LWd and SAT. In spring prior to SMO the

surface-based inversions prevail, and 2m SAT is typically slightly warmer than SKT.

To note, episodically SAT can be cooler than SKT when horizontal heat advection

with the simultaneous thick cloud cover with weak winds produce huge (70-100 W/m2)

LWd anomalies, reduce LWnet deficit and foster intense surface (SKT and near-surface

(SAT) heating. In presence of surface-based inversions the day-to-day (daily mean)

SAT anomalies are controlled by the turbulent sensible (H) heat flux, being roughly a

function of SKT, the overlying air temperature and the wind speed. SWd may produce
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Figure 5.48: Best bilateral regression results on the local relationship between the SKT
anomaly and the corresponding SMO anomaly (same location, same year).

(a) fraction of the local interannual SMO variance (r2) explained by SKT. At each
particular location r2 value is the highest among three methods and 40 different
time-averaging periods.
(b) time-averaging period suggesting the best r2.
(c) method suggesting the highest r2.
(d) room mean square error of the linear regression model.

the diurnal variations in SKT and SAT, but this is difficult to detect from the daily

average record: heating at noon plus cooling at midnight = zero daily mean anomaly.

Correlation of the diurnal anomalies in SAT and anomalies in surface heat fluxes

revealed very high and statistically significant relationship between LWd and SAT in

ERAI. Thus the additional LWd contributed to warmer SAT in ERAI. Diurnal anoma-
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Figure 5.49: Relationship between the
diurnal local SKT anomalies and cor-
responding SMO anomalies. Each grey
dot represents some grid location within
83.25-87oN and any year. SKT anomaly
is 1-10 day average prior to reference
SMO date determined with M1.

lies in LWd explained 70% of the total (temporal and spatial) variance in SAT, and up

to 80% of the temporal changes in local (daily mean) SAT anomalies. This relationship

is highly non-linear and schematically could be described as followed. When LWd flux

is anomalously large (due to horizontal heat/moisture convergence and clouds), typi-

cally the turbulent sensible heat flux (downward heat supply) is larger as well. These

two warm-up the near-surface air and the surface (snowpack). This warming of SKT in

combination with the weak winds may cancel the turbulent heat exchange. However the

thermal (LWd and LWup) radiation can be also trapped by the near-surface moisture.

In turn, warming of the lowermost boundary layer can be associated with different

combinations of processes, initially and primarily controlled by LWd heat supply.
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Table 2. Meteorological variables best explaining the temporal and spatial variability in 

the downward longwave radiation (LWd) during the 40-day pre-melt period (11 April - 

20 May). Bilateral regression analysis was applied to the combination of all ERAI grid 

locations within 83.25-87N and 20 years. Local anomalies in LWd and meteorological 

variables are scaled by to the 20-year regional climatology. The stepwise forward multi-

linear regression equation was calculated with all these meteorological variables and also 

TCLW as the potential predictors. TCLW was not accepted by the multi-linear regression 

procedure. All results are significant at 99 % confidence level (p < 0.01). 

Linear regression equation 
overall 

r
2
 

overall 

RMSE [W/m2] 

best local 

r
2
 

LWd = 59.9  q + 1.15 0.6 19.7 0.71 

LWd = 16.2  TCWV + 0.18 0.5 22.2 0.63 

LWd = 459.3  TCIW – 0.46 0.32 25.8 0.47 

LWd =  1381  TCLW – 0.01 0.31 26.1 0.41 

LWd =  58.9  TCC – 0.52 0.19 28.2 0.47 

LWd =  38.1  LCC  – 0.6 0.12 29.4 0.35 

LWd = 46.6  q + 1.8  TCWV + 174.1  TCIW + 10.8  

LCC + 22.4  TCC + 0.8 
0.75 15.9 0.79 

 

 

Table 3. Meteorological factors best explaining the temporal and spatial variability in the 

net flux (NF) flux during the 40-day pre-melt period (11 April - 20 May). Bilateral 

regression analysis was applied to the combination of all ERAI grid locations within 

83.25-87N and 20 years. Local anomalies in NF and meteorological variables are scaled 

by to the 20-year regional climatology. The stepwise forward multi-linear regression 

equation was calculated with all these meteorological variables and also TCLW as the 

potential predictors. TCLW was not accepted by the multi-linear regression procedure. All 

results are significant at 99 % confidence level (p < 0.01). 

Linear regression equation 

overall 

r-square RMSE [W/m2] 

best local 

r-square 

NF = 20.1  q + 0.74 0.4 9.7 0.52 

NF =  5.96  TCWV + 0.46 0.39 9.8 0.49 

NF =  509.2  TCLW + 0.39 0.24 10.9 0.34 

NF =  157.5  TCIW + 0.22 0.22 11 0.29 

NF =  11.43  TCC + 0.18 0.04 12.2 0.14 

NF =  5.15  LCC  + 0.17 0.01 12.4 0.06 

NF =  2.22  SAT  + 0.33 0.42 9.48 0.53 

NF =  12.4  q + 2  TCWV + 69  TCIW + 

1.6  TCC + 0.63  0.48 9.4 0.57 
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Figure 5.50: Best results from the stepwise multi-linear regression analysis. LWd is an
explainable variable and 5 predictors: TCWV, near-surface specific humidity, TCIW,
TCC and LCC. (a) fraction (r2) of the temporal variance in daily LWd explained by
any combination of these individual meteorological variables. (b) RMSE corresponding
to the best combination of several individual meteorological variables [W/m2].

 

 

Table 4. Factors best explaining the temporal and spatial variability (anomalies) in skin 

temperature (SKT) on top of compact sea ice during the 40-day pre-melt period (11 April 

- 20 May). Bilateral regression analysis was applied to the combination of all ERAI grid 

locations within 83.25-87N and 20 years. Local anomalies in heat fluxes and 

meteorological variables were initially scaled by to the 20-year regional climatology. 

Linear regression equation 
overall 

r-square 
RMSE [°C] 

best local 

r-square 

SKT =  0.1  LWd - 0.08 0.72 2.0 0.81 

SKT =  0.16  NF – 0.16 0.32 3.0 0.5 

SKT =  0.11  LWnet – 0.14 0.35 3.0 0.47 

SKT =  - 0.04  SWd – 0.1 0.28 3.2 0.39 

SKT = - 0.18  SWnet – 0.17 0.29 3.1 0.38 

SKT =   - 0.36  LE – 0.004 0.08 3.5 0.14 

SKT = 0.17  H – 0.13 0.08 3.6 0.34 

SKT = 1.97  TCWV – 0.05 0.51 2.6 0.66 

SKT =  3.6  TCC – 0.13 0.05 3.7 0.08 

SKT =  2.21  LCC – 0.13 0.03 3.7 0.07 
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Discussion

In previous Section we have demonstrated that LWd and NF anomalies explained

well the interannual and spatial variations in SMO timing. The aim of this Section was

to reconstruct a longer chain of processes affecting/controlling SMO timing on top of

compact Arctic sea ice.

The main conclusion of this Section is that 70-80% of the temporal variations in

LWd are explained by the temporal variations in vertically integrated water vapour

(TCWV) and ice water (TCIW) content, near-surface (2m) specific humidity, total

and low-level cloud fractions (Fig 5.50). This result reflects the relationships as pre-

scribed in ERAI and refers to a 40-day pre-melt period (mid April - mid May), and the

central circumpolar Arctic (83-87oN). The same individual meteorological variables

(their anomalies) significantly correlated with SMO timing, when applying methods

M1, M2 and/or M3. Thus the additional (less) moisture content, larger (smaller) cloud

fractions and warmer (cooler) surface temperatures were suggested by ERAI in those

years/areas when SSM/I-based SMO occurred early (late). This is a physically relevant

interaction.

The choice of the pre-melt period (from 11 April to 20 May) was quite subjective.

Our main arguments for this choice are the following. (1) Defined in this manner the

pre-melt period most likely does not overlap with the melt season. (b) We expect

that shifting, lagging, reducing, stretching of the ”reference pre-melt period” would

not dramatically change the correlation between the daily anomalies in meteorological

variables and the daily anomalies in surface heat fluxes.

To note that the correlation between the individual meteorological variables and

SMO was not affected by this choice, but rather could have been affected, e.i., reduced

(1) by errors/biases in rough MO retrievals, (2) by the errors in meteorological state

variables in ERAI, (3) by our definition of the ”reference SMO” date with M1, M2 and

M1 in ERAI grid coordinates, and (4) by our assumption of a ”fixed length” pre-melt

period in each year.

We recognize that our methodology and conclusions were quite schematic. It is

evident that there exist much more meteorological factors and more complex relation-

ships than what we have addressed in our study. The initial objective was to explain

the interannual and spatial variations in SMO within the vast Arctic Ocean. However

and naturally - many limitations arose along the way. To allow the interpretation and

strict reasoning we chose this schematic solution to demonstrate our ideas and several

existing possibilities. Certainly more complex methodologies (with a more advanced

SIC filter, and allowing variable duration of the pre-melt period) - may/will quantify

the addressed relationships much better.

131



5.3 Trends in MO, SMO and surface heat fluxes

Over the past few decades a tendency towards earlier melt onset has been revealed

with the remote sensed ”blended” Melt Onset (MO) retrievals. Anderson and Drobot

[2001] detected significant trends (1979-1998) towards earlier MO in the western central

Arctic (8.9 days per decade), Lincoln Sea (4.4 days per decade) and Beaufort Sea (5.1

days per decade). Belchansky et al. [2004] calculated the difference between two decadal

averages (1979-1988 and 1989-2001) and found earlier MO by 5 days in the Kara -

northern Barents and Chukchi Seas, by 9 days in the East Siberian Sea, and by 4 days

in the central Arctic with the perennial ice (Fig 5.51). A tendency towards later MO

(positive trend) was found within the eastern central Arctic and in the central Beaufort

Sea (Fig 5.51). More recently, also based on SMMR-SSM/I passive microwave record,

Stroeve et al. [2006] and Markus et al. [2009] demonstrated statistically significant (p <

0.01) 30-year trends (1979-2007) by 2.5 days per decade in the central Arctic, and 3-4.5

days per decade in Kara, Laptev, East-Siberian, Chukchi and Beaufort Seas. According

to our knowledge, reasons for the trends in MO have not been explained yet.

Our study focused on the circumpolar central Arctic (83-87oN) in the period 1989-

2008. 20-year linear fit (trend) at each pixel in rough 25 km resolution suggested a

20-year tendency towards earlier MO ranging locally between -8 and -18 days per

decade (p < 0.01), see Fig 5.52a. The regional average trend for those MO pixels

with a complete 20-year time series was 13 days per decade. Negative tendency in

MO (towards earlier MO) was found within 83.4 x 103 km2, that is only 5% of the

circumpolar central Arctic area (83.25-87oN).

There are three major differences in our results compared to Markus et al. [2009]:

(1) central Arctic domain is defined somehow differently,

(2) our study period is 20-year long (1989-2008) against a 29-year period in their

study,

(3) this trend estimate is for each individual 25 km MO pixel with a complete 20-year

record, whereas in their study the linear regression was applied to the ”annual mean

regional average MO” within the central Arctic.

When evaluating a 29-year trend (1979-2007, p < 0.01) in the annual mean regional

average MO we found a tendency of -2.6 days per decade within 80-87oN. This

compares well with the result reported by Markus et al. [2009] for the same period

1979-2007: with a 99% significant trend of 2.5 days per decade.

20-year tendency of SMO sample in ERAI grid coordinates was computed as well.

To remind, SMO is the average of all rough MO pixels within a 130 km radius around
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each ERAI grid location. Only those rough MO pixels were considered which had mi-

nor (small/short) changes in sea ice concentrations (SIC) in a 40-day pre-melt period.

Within the circumpolar central Arctic SMO trend was towards earlier seasonal tran-

sition as well: about -8.8 days per decade (Fig 5.52b). This is an area weighted

regional average SMO trend. Negative SMO trends were found within 162 x 103 km2,

that is about 10% of the circumpolar central Arctic area (83.25-87oN), Fig 5.52b.

To discuss a possible relationship between the trends in surface heat fluxes and

trends in MO and SMO, again the reference period of the year should be determined

first. When do we search for trends in surface fluxes: in February, in May or in June?

In the other words: when changes in fluxes might trigger a better/weaker heat accu-

mulation within the dry snowpack on top of sea ice? Moreover, if evaluating trends

one should chose a ”fixed” season to avoid the comparison of the heat fluxes in early

spring in one year, and in late spring - in another years. In our example here we average

the surface fluxes during a 30-day ”pre-melt period” (21 April - 20 May) prior to the

20-year earliest SMO. Thus the 21st of May was the earliest local SMO in ERAI grid

coordinates during 1989-2008. 20-year linear trend of the monthly mean heat fluxes

at each ERAI grid location in illustrated in (Fig 5.53), all demonstrated results are

significant at 99% confidence level.

Accordingly, in the period from 21 April to 20 May SWd, SWnet, H, DR and

DF revealed significant 20-year trends within a portion of the study area (83-87oN)

not everywhere in the circumpolar central Arctic (Fig 5.53). The largest trends were

found for SWd, DF and DR: reaching +15-20 W/m2 per decade north of Greenland

and in the Lincoln Sea (Fig 5.53 c,e,f). Interestingly, DR and DF trends are large and

99% significant and moreover - appear within the most of the study area (Fig 5.53

e-f). To note, over most of the study domain SWd trends were significant only at

95%, and these SWd trends are the primary cause of DR and DF trends! Trends in

H and LWnet were negative (Fig 5.53 a-b), which is likely a result of increasing

SWd and SWnet. Naturally a larger surface warming (by means of SWnet) enhances

thermal emission (LWup), increases LWnet deficit (heat loss), reduces the near-surface

inversion strength, and weakens the turbulent sensible downward heat sink. NF, LWd

and LE trends (during 21 April - 20 May) were insignificant (neither at 99%, nor at

90% significance level), not shown.

In reality NF controls the interannual variability in SMO on top of compact sea

ice, the regional (spatial) differences in SMO and any tendency in SMO. Our results

showed that, although ERAI NF explained well the interannual and spatial variance

in SMO (locally up to 65%, Section 5.1), NF (and neither LWd) does not explain the

observed (significant) trends in SMO. And since other fluxes performed worse in terms
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Figure 5.51: SSMR-SSM/I MO tendency
in 1979-2001. Reprint from Belchansky et
al. (2004). [Mean MO 1989-2001] minus
[mean MO 1979-1988]. Blue-green colours
reflect the tendency towards earlier MO
and yellow-red colours represent the ten-
dency towards later MO. Units [days]. MO
is the apparent melt onset, including both,
the divergent sea ice drift and the snow
melt initiation on top of the compact sea
ice cover.

Figure 5.52: (a) 20-year linear trend in rough MO time series, calculated only for those
MO pixels with a complete 20-year record. (b) 20-year linear trend in SMO (r130km,
40-day SICfilter of 85%), calculated only for all ERAI grid since there was a complete
20-year SMO sample everywhere. Trends are significant at 99% confidence level.
Units: days per decade.

of the interannual and spatial SMO variance, we attribute this lack of the ”expected”

relationship to larger errors in those fluxes. In this situation, even if SWd, DR and DF

have large and significant trends relevant in sign (strengthening of fluxes) and appar-

ently in line with the negative SSM/I-based SMO tendency (towards earlier melt), we

can not accept the hypothesis on the effect of SWd, DF and DR trends on SMO trends.

Moreover, here we made an arbitrary choice for pre-melt period of 1 month (21 April

20 May). Certainly, that was a ”first-guess”, but not necessarily the optimum and best

pre-melt period for the surface fluxes. We state that other methods with larger amount

of data should be applied to study MO and SMO trends.
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Figure 5.53: 20-year trends in surface heat fluxes, averaged over a 30-day pre-melt
period (21 April-20 May), significant at 99% confidence level. (a) net longwave
radiation, LWnet, (b) sensible heat flux, H, (c) downward solar radiation, SWd, (d)
absorbed solar radiation, SWnet, (e) downward radiation, DR, and (f) downward flux,
DF. ERAI reanalysis, 1989-2008, 83.25-87oN.
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Interestingly, among the factors controlling SMO trends on top of compact sea ice

are not only the surface heat fluxes, but also the snow and sea ice thickness. Naturally

on top of thin (warm) ice slab the Snow Melt Onset requires smaller downward heat

supply compared to the thick (cold) ice slab. So with a zero or even negative NF trend

during the pre-melt period, there can be a tendency towards earlier SMO if the sea ice

becomes thinner and thinner every year.

To note, the illustrated trends in fluxes report how ERAI represents surface fluxes,

which does not imply that the same trends occur in a real world. There was a strong

debate on the validity and reliability of trends in reanalysis (e.g. ERA-40) within the

areas where almost no observational data were assimilated, such as the central Arctic

northward from 82oN [e.g. Serreze et al., 2007; Graversen et al., 2006, 2008a and 2008b;

Bitz and Fu, 2008, Grant et al., 2008; Thorne, 2008; Screen and Simmonds, 2010a,

2010b, 2011b]. Although all these cited studies agree that there were warming trends

in the central Arctic, in particular in spring and fall period, the reported magnitudes of

trends differ and the altitudes with the strongest warming in the atmosphere depend

on the vertical resolution of applied data sets. According to our knowledge, ERAI

improved the meteorological component, but has not adopted a better sea ice scheme

and likely, does not perform surface fluxes much better compared to ERA-40 in the

central Arctic.
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Conclusions

In this study we explored the contribution of the surface radiative and turbulent

heat fluxes to the observed (SSM/I) spatial (50-130 km) and year-to-year variability

in snow melt onset (SMO) on top of the sea ice within the circumpolar central Arctic

and over a 20-year period (1989-2008). Many of the analyses and results presented here

were not included in our paper on SMO (in press, Journal of Geophys. Research).

1. ERAI surface fluxes appeared to be useful in explaining the variability in SMO.

High and causally relevant correlations were found between the heat flux anoma-

lies (during the pre-melt period) and SMO timing. A larger NF and LWd and

weaker turbulent (LE and H) heat loss from the surface occurred in those springs

when earlier SMO was observed. Loceal anomaly in NF explained up to 65% of

the interannual variance in SMO. LWd turned out to be the main term of NF,

and explained alone up to 90% of the local interannual variance in SMO although

within a limited area within the western central Arctic. This result is a strong

indication of a good accuracy in both: LWd flux anomalies in ERAI, and our

SMO sample deduced from the original MO data set by Markus et al. [2009].

2. The effect of turbulent heat fluxes on SMO was not to bring heat to the snow

surface, but an anomalously small (large) heat loss favored earlier (later) SMO.

30-40 days average anomalies in H and LE explained, respectively, up to 72%

and 56% of the local interannual SMO variance. In combination with radiative

fluxes, LE and H increased the explained variance of SMO, still primary controlled

by LWd. With a few exceptions, in general, in those areas where LE and/or H

best explained local interannual SMO variance, the relevant time averaging (with

the highest explained variance) was around 30-40 days. we say best explained if

compared to the other individual fluxes and various combinations of individual

fluxes.

3. When considered alone, the incident solar radiation (SWd) and the absorbed

solar radiation (SWnet) were nowhere important factors for SMO variability in

the central Arctic (83-87oN). This result is reasonable because there is no snow

melt and no ice melt in ERAI. So far the representation of diurnal and day-to-

day variations in surface albedo, SWd and SWnet on top of the compact sea ice

cannot be captured in ERAI, both before, during and after SMO. However, in

reality already before the continuous snow melt establishes, the surface albedo

and SWnet largely contribute to the net flux (NF) accumulation within the snow,

thus affecting the SMO timing. Nevertheless, with the introduction of SWd in

the multi-linear regression analysis, the year-to-year SMO variance was better
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explained within most of the circumpolar Arctic. This implies that at least the

sign of the year-to-year SWd anomalies is reasonably represented in ERAI.

4. We also examined the importance (effect, role) of the duration (length) and tim-

ing of the pre-melt period. The goal was to identify the most relevant time scales

for each individual heat flux component and the combination of fluxes when the

flux anomaly gives the best indication for SMO timing: early or late. Regarding

NF, LWnet and LWd the most relevant time scale was about 1-7 days, whereas for

H and LE it was around 30-40 days. Heat flux anomalies averaged over other time

averaging periods (between 1 and 40 days) also explained a significant portion of

SMO variance, but a smaller portion compared to demonstrated results. Duration

of the pre-melt period longer than 40 days (prior to SMO) did not improve the

capability of surface fluxes to explain SMO timing. None of the methods for de-

termining the reference SMO date (M1, M2 and M3) appeared to be considerably

better than the others.

5. The fact that 1-7 days average anomalies in NF, LWnet and LWd were best ex-

plaining SMO variance suggests that: (a) these fluxes and their anomalies are

quite well represented in ERAI, i.e. with reasonable day-to-day variations, am-

plitudes and signs; and (b) that the longwave radiation (both LWd and LWup)

in ERAI is, likely, more accurate than the other components of NF. We speculate

that the effect of brief (1-7 days) flux anomalies on surface melt can be distin-

guished only if the fluxes and MO were well captured in both data sets (ERAI and

SSM/I). In fact, if all fluxes were equally accurate in ERAI, NF would correlate

with SMO better than any of its components or any combination of some of its

components. Yet, this is not the case: individual fluxes and different combinations

of them explained the interannual variance in SMO better than NF.

6. Relationships between the meteorological state variables and the main terms

of the surface heat fluxes (affecting/controlling SMO timing) NF and LWd were

considered. All meteorological variables were taken from ERAI reanalysis as well.

Atmospheric moisture content (as presented in ERAI) appeared to be the ma-

jor factor controlling the temporal and spatial diurnal LWd and NF anomalies.

TCWV (2m specific humidity) accounted for 50% (60%) of the overall variance

in LWd, locally explaining up to 63% (71%) of the temporal LWd variability.

The cloud fraction accounted for 12-19% of the total variance in diurnal LWd

anomalies, but had a very weak (negligible) effect on the day-to-day NF anoma-

lies and surface temperatures. Thermal and moisture advection (as calculated

here!) could not explain the temporal and spatial anomalies in LWd and NF.

Surface (skin) temperature is tightly related to LWd over the compact sea ice in

138



ERAI with r2 up to 0.82).

7. Interestingly the vertically integrated water vapour (TCWV) and the near-surface

specific humidity were practically as important for SMO timing - as the anomaly

in LWd, and much more important than the cloud variables (TCC and LCC).

One would expect highest importance of LWd for SMO timing (the direct fac-

tor bringing heat to the surface), second highest - for the cloud variables, and

relatively smaller effect of the moisture content on SMO. The moisture has to

be condensed to clouds to have a notable (70-100 W/m2) radiative forcing on

LWd. However, vertically integrated and near-surface water vapour quantities

are probably much more reliable in ERAI than cloud variables. In ERAI the wa-

ter vapour results directly from model prognostic variables, and is constrained

by data assimilation over the ocean areas, whereas cloud water/ice contents and

especially cloud fractions heavily depend on the parametrization schemes, and

are therefore much more liable to errors.

8. High and statistically significant relationships between SMO, surface fluxes and

meteorological state variables were also found south of 83oN and within the sea-

sonal ice zone: Kara, Laptev, East-Siberian, Chukchi and eastern Beaufort Seas

and the Baffin Bay. In these areas the NF and SWnet fluxes correlated with the

”apparent” MO the best. In contrast to the central circumpolar Arctic (83-87oN),

where ERAI surface fluxes were least affected by SIC changes, in the southern

areas ERAI SIC has ever dropped below 80% (and even down to 0%) at least

once during the pre-melt period. As a result, when the ice concentration reduced,

a stronger SW absorption by the open water contributed to the additional NF

accumulation. In other words, southward from 83oN the positive NF and SWnet

flux anomalies during the pre-melt period were in some years (some individual

days) due to sea ice opening. Hence, in some years the positive NF and SWnet

flux anomalies at the open sea surface could not be a reason for the early Snow

Melt Onset on top sea ice. Thus the statistically significant relationships were

only partly due to the causal effect of fluxes on SMO. This result also indicates

on the relevant estimation of surface heat fluxes in ERAI, at least the sign of the

flux anomaly, both in totally and partially ice-covered areas. This result moti-

vated the introduction/development of a ”SIC filter” to distinguish between the

”pure” Snow Melt Onset on top of compact sea ice and the divergent ice drift.

9. Examination of the large 30-90 day spatial differences in the MO timing within

50-100 km distance suggested that they are primarily, but not entirely due to

opening of leads or polynyas. Comparison of some large MO spatial gradients

with the surface fluxes on the Pacific side of the Arctic Ocean (70-85oN) revealed
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a few large flux gradients across the areas of abrupt MO gradients, associated

with atmospheric fronts and not related to any SIC changes (ERAI). Yet, these

short-lived and very localized spatial gradients in NF and H (by up to 25 W/m2

within 50 km distance) do not convincingly explain the SMO gradients of one

month within a 50 km distance. Instead, spatial differences in the ice type could

have been a reasonable explanation for these pronounced MO gradients within a

totally ice-covered region. Naturally, with the same meteorological forcing SMO

starts earlier on top of thinner (warmer) ice, compared to thick multi-year ice.

10. Local MO and SMO trends up to -13 and -9 days per decade respectively were

found within a limited area where complete 20-year MO and SMO time series

were available. Long term SMO trends should, in principle, be explainable by

NF trends: with a larger surface heat gain (positive NF anomaly) producing

earlier snow melt (negative SMO anomaly), and vice versa. However SMO trends

could not be reasonably explained by ERAI surface heat fluxes. Certainly our

simplified methodology could have imposed some crucial limitations for this kind

of analysis. Moreover, we stress that the trend estimates strongly depend on the

method applied and should be considered with caution. Another important and

interesting aspect regarding trends, is that SMO trends may have occurred (at

least partly) due to to sea ice thinning, even simultaneously with the negative

NF trends.

11. Our results were based on two independent data sets (ERAI and MO), both of

quite high spatial (25-100 km) and temporal resolution. Errors detected in ERAI

near-surface air temperature and moisture during summer [Lupkes et al., 2010]

and simplified SIC representation north of 83oN indicate that neither surface

fluxes are free of errors. However, a good aspect in reanalysis is that the same

model and data assimilation system were applied throughout the period, resulting

in a spatially and temporally consistent data set. It is unlikely that errors in the

surface fluxes could generate artificially improved correlations between the fluxes

and SMO. Instead, errors in surface fluxes, in MO detection, ice type classification

in the MO algorithm, and our SMO sampling should have increased the scatter

in the relationship between SMO and the heat fluxes, thus, reducing correlations.

Study of the divergent ice drift was beyond the scope of present study.
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Perspectives

Three reanalysis data sets were used during this work: NCEP/NCAR, ERA-40 and

ERAI. Comparison of surface heat fluxes between these three reanalysis was demon-

strated in Chapter 1. However, due to time limitations we could not conduct the same

exercise as we did for SMO and ERA Interim, but with NCEP/NCAR and ERA-40.

In fact, this could be interesting to do. However, to remind, the comparison of SMO

and surface heat flux anomalies is not a conclusive validation of either data sets. Our

exercise suggested an alternative and justified point of view on the data sets of SSM/I-

based Melt Onset and ERAI surface heat fluxes, however without any quantitative

evaluation of their errors. Years 1979-1988 and since 2008 could be added in this anal-

ysis with ERAI, as well as the other meteorological reanalysis time series, for example

JRA-25, NCEP-DOE, NASA’s MERRA and NCEP-CSFR.

If considering the effect of meteorological conditions on LWd, NF and SMO, it

is of evidence that there exist much more meteorological factors and more complex

relationships, rather we have addressed in our study. Thus LWd varies non-linearly

with the cloud fraction, the cloud droplet size, liquid water path and the cloud-base

height, i.e. cloud bottom temperature [Zhang et al., 1996; Curry, 1995; Francis and

Hunter, 2007; Garrett et al., 2009]. It could be of interest to apply/introduce some of

these variables in further studies addressing the meteorological effect on SMO timing.

Moreover, it is questionable: why we could not detect the effect of the horizontal thermal

and moisture advection on LWd, NF and SMO? We suggest that another calculation

method should be used for thermal and moisture advection.

Our study highlighted that SMMR-SSM/I-based Melt Onset data by Markus et

al. [2009] is a blend of two totally different processes: Snow Melt Onset on top of the

compact sea ice (radiative origin), and Divergent Ice Drift (dynamic origin). We used

the daily data on sea ice concentrations to distinguish between these two processes.

However it is of evidence that a more precise distinction between SMO and divergent

ice drift is needed. To provide this distinction we suggest to take into account the ice

drift data in combination with the sea ice concentrations, and likely including in the

”SIC filter” the MO day itself as well.

Successful distinction between SMO on top of sea ice and the divergent ice opening

will allow a further study of the factors controlling these events.

Ice thickness (type/age) versus SMO. Regarding the SMO, the following step could

be the evaluation of the effect of surface heat fluxes on SMO variance on top of different

sea ice types (thickness, age). The data on ice type, thickness and ice age data should

be, first of all, based on SMMR-SSM/I observations, so it could be easily compared

with SMMR-SSM/I based SMO retrievals. Yet, other ice type, ice thickness and ice

141



age products may support such a study as well.

Better distinction between SMO and divergent ice drift may also allow a further

study of their long-term tendencies. According to our knowledge, at the moment there is

no solid explanation for the observed MO/SMO trends in any part of the Arctic Ocean.

An interesting and open question is: whether there is a tendency towards earlier spring

ice break-up? And if it is the case: whether and how the earlier spring ice break-up is

related to (a) a changing dynamic stress, e.i. faster sea ice drift, (b) earlier SMO on

top of sea ice, and/or (c) general sea ice thinning?

It is possible that any/this algorithm for MO detection [here by Markus et al.,

2009] developed for two ice types can be biased due to this sea ice type detection.

The question arises: whether this ice type detection could have affected the long-term

trends and the interannual variance in SMO on top of the ice? In the other words: in

those areas where MYI type was replaced by the FYI type can we have an ”artificial”

SMO trend generated by the algorithm itself?

Active MW detection (SAR) of SMO timing has a great potential, suggesting a

much better spatial resolution (hundreds of meters). However these rough backscatter

time series exist only since 1991 (compared to 1979 with SMMR), and according to our

knowledge there is no ready-to-use MO time series native from active MW observations.

Throughout this manuscript we highlight that the spring SMO timing (early or late)

has a strong effect on the total ice ablation during the melt season and also contributes

to September ice minimum. It could be of interest to evaluate the effect/consequences

of SMO timing on further surface (skin and near-surface) temperatures, timing of

first ice break-up and summertime sea ice concentrations. Likely this kind of analysis

will require some satellite retrievals of these quantities, rather than meteorological

reanalysis data sets. How far the effect of SMO timing propagates along the season?
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List of variables

DF : surface downward radiation, is a sum of SWd, LWd, LE and H

DR : surface downward radiation, is a sum of SWd and LWd

ERAI : ERA Interim reanalysis

FYI first-year ice

H : surface turbulent sensible heat flux

LCC : low-level cloud cover [fraction]. In ERAI it is the analysis quantity, each value

is an instantaneous value valid at the time of analysis. The average of four analysis

values (0h , 6h , 12 and 18h) is the daily average.

LE : surface turbulent latent heat flux

LWd : surface downward longwave radiation (also called thermal or infrared), in the

electromagnetic spectrum it is between 4 and 50 m wave length

MAD : horizontal moisture (specific humidity) advection

MO : apparent Melt Onset detected with the remote sensing, units [Julian day]

MYI : multi-year ice

NF : surface net flux

RMSE : root mean square error, which is the standard (typical) error of the linear

regression model with one or several predictors (explaining variables)

SAT : near-surface air temperature at about 2 m height

SIC : sea ice concentration [percentage within the pixel] or [percentage within of the

grid cell covered by sea ice].

SMO : Snow Melt Onset on top of sea ice, units [Julian day]. One value at each loca-

tion each year.

SWd : surface downward shortwave radiation, within 0.2 4.0 m wave length

SSM/I : Special Sensor Microwave Imager

TAD : horizontal thermal advection

TCC : total cloud cover [fraction]. In ERAI it is the analysis quantity, each value is an

instantaneous value valid at the time of analysis. The average of four analysis values

(0h , 6h , 12 and 18h) is the daily average.

TCIW : total column ice water content [kg/m2]. It is a vertically integrated value, and

is produced as a forecast quantity valid at the instantaneous end time of the forecast.

For our study we took the values twice daily: 0+6h and 12+6h. Daily mean is the

average of these two values.

TCLW : total column liquid water content [kg/m2] is a vertically integrated value,

produced as a forecast quantity valid at the instantaneous end time of the forecast

(+12h). For our study we took the values twice daily: 0+12h (valid at 12 UTC) and

12h+12h (valid at 00 UTC).

TCWV : total column water vapor [kg/m2]. Is the analysis quantity with 6h intervals,

four times daily : 0h, 6h, 12 and 18h. Daily average is the average of four values.

q : near-surface (2m) specific humidity, units [g/kg]
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Appendix 1

Thermal advection at the central grid location:

formulation

Entering data are the daily air temperatures at pressure levels [K], u wind (eastward

wind component) and v wind (northward wind component) vectors [m/sec]. +u wind

component is from West to East, and +v component is directed from South to North.

Potential temperature (Θ) at 6 pressure levels is calculated first (at 500mb - 1000mb

with a 100 mb step).

Daily potential temperature (Θ) at each location, each pressure level (for example at

the 500mb level) and each day of the year is calculated as:

Θ500 = T500 ∗
(

1000

500

)0,286

(5.1)

here T500 is the air temperature at 500 mb given geopotential height.

Heat advection in the central grid point is calculated as:

− V ×5Θ = −u∂Θ

∂x
− v∂Θ

∂y
(5.2)

∂x is the length [km] between the neighboring grid locations at 1.5 distance along

given latitude circle (2 times 0.75lat) and ∂y is the length [km] between the

neighbouring grid locations to the north and south of our central grid location

(always 160 km).

∂Θ is the difference in Θ between the east and west (E minus W), or north and south

(N minus S).

u and v are the wind components at the central grid point.

Thermal advection is in [C per day].

The effect of the altitude on the distance between the neighboring locations along the

same latitude circle is neglected. Thus the additional 1-5 km altitude changes the

resulting horizontal distance by only about 0.01 km.

We suppose that if horizontal advection below 500 mb does not affect surface fluxes

and SMO, neither the advection at the upper levels does.





Appendix 2

Moisture advection at the central grid location:

formulation

Specific humidity (q) advection is calculated in the same way as the thermal

advection with ∂q instead of ∂Θ.

Initial data are the relative humidity f and air temperature T at 6 pressure levels.

q =

(
0.6224 ∗ e

P − 0.3776 ∗ e

)
∗ 1000 (5.3)

q in [g/kg]

e is the is the partial water vapour pressure in [hPa]

P is the geopotential heigh in [hPa]

e =
f ∗ ew
100

(5.4)

f is relative humidity [%]

ew is the saturation vapour pressure in [hPa]

ew = 6.112 ∗ exp
17.62∗T
243.12+T (5.5)

T is the air temperature at given geopotential height in [C]

Moisture advection is in [g/kg per day]
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Appendix 3:

Wintertime near-surface freezing conditions

This section reflects the major results obtained during the early phase of this PhD

work. Relationship between the warming trends in air temperatures and retreating and

thinning Arctic sea ice was questioned. How the warming could be translated into sea

ice extent and/or ice thickness change?

At this stage we considered the entire maritime Arctic (60 - 90oN) and the near-

surface air temperatures from NCEP/NCAR reanalysis. Daily air temperatures at the

lowest model (0.995 sigma) level were chosen, with the spatial resolution of 2.5olat by

2.5olongit in the period 1979-2008. To note, the vertical sigma coordinate is a terrain-

following and convenient for a study of the near-surface processes over a flat surface,

for ex., ocean. The 0.995 sigma surface is a level of about 5 hPa above the ground, but

it is not a geopotential surface. Representation of the sea ice fraction is very schematic

in NCEP/NCAR (either 0%, or 100% ice coverage) and this should strongly affect the

near-surface air temperature at 2m height. By choosing a higher level we expected to

reduce the effect of the sea ice fraction on the air temperature.

Naturally the sea ice formation is a complex processes. Our objective was to try

to find/define some simplified meteorological index that could explain some portion of

the observed variations and/or changes in sea ice extent and/or ice thickness. Without

inventing something new, we applied the method of freezing degree days described by

Maykut [1986]. Cumulative number of Freezing Degree Days was calculated here for

30 freezing seasons (1979/80 - 2007/08) at each NCEP/NCAR grid location. Where

freezing degrees for each day is just the temperature below the freezing point (set

to -1.7oC everywhere). Sum of daily freezing temperatures during one freezing season

resulted in one FDD value each year at each grid location. The freezing season was

schematically defined as the period between the 1st of September and the 31st of May

the following year. The units of FDD are in [oC per season].

Thus as the beginning of the freezing season, if there is no ice, the initial ice growth

maybe described by the air temperatures alone [Maykut, 1986]. Depending on the in-

tensity (temporal evolution) of FDD accumulation, when FDD reaches 500o the ice

thickness by this time attains about 30-75 cm. So far 1000 FDD corresponds to accu-

mulated ice thickness of 60-110 cm (if there is no snow on top).

Cumulative number of FDD in 6 freezing seasons out of thirty are reflected in

Fig 5.54. These maps nicely demonstrate the climatology of the near-surface thermal

conditions: with the cold core within the western Arctic (FDD values are about 6000-

8000) and rather mild freezing conditions within the eastern Arctic (with FDD values
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of 4000-6000). The striking fact is that FDD values seem to reduce (non-linearly) from

one year-to-another along the 30-year period. 30-year linear trend in FDD is towards

FDD reduction by 30 [oC per season] per year within the central Arctic (north of 85oN),

reaching 45-60 FDD per year within the East-Siberian - Chukchi - western Beaufort

Seas (Fig 5.55). This is in line with the results by Lindsay and Zhang [2005] who

have found near-surface warming trends of 3oC per decade during fall in the period

1988-2003, also with NCEP/NCAR reanalysis.

Figure 5.54: Cumulative number of Freezing Degree Days (FDD) during 1 Sept - 31
May period. Computed from NCEP/NCAR 0.995 sigma level air temperatures.

Naturally if FDD reduces it is either due to the warming in some period of the

freezing season, or due to shortening of the freezing season, or (likely) due to both

warming and shortening. So it was of interest to establish: in what part of the freezing

season these changes in FDD take place? In fact, springtime near-surface warming (in

March-May) likely does not have much effect on sea ice formation, because all the

region if well ice covered with the snowpack on top. However if changes (warming)

occur during the early freezing season (Sept-November), for example due to retarded

fall freeze-up, then the consequences of the delayed freeze-up (and smaller FDD) may

have an impact on total sea ice accumulation by the end of the freezing season.

The spatial occurrence of each FDD value can be represented with a spatial dis-

tribution curve. Thus we computed the sum of all grid box areas in [km2] with FDD

values falling within one of the pre-determined intervals. The example for three years
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Figure 5.55: Cumulative number of
Freezing Degree Days (FDD) during 1
Sept - 31 May period. Standard devia-
tion (in color) and linear trend (con-
tours) of 30 FDD values (30 years)
at each grid location in the period
1979/1980-2007/2008. Linear fit is in
[FDD per year], significant at 95% con-
fidence level.

is given in Fig 5.56.

This technique with the spatial distribution curves was applied to compare three

periods of the year (fall, winter and spring) and different decades (Fig 5.57). Each

curve reflects the typical FDD conditions within the entire region (60-90oN) in one

decade. The most spatially popular FDD values within the region are marked by peaks

in curves. Very small values (below 300 FDD) naturally are very popular since we have

included much of the ice free areas (Greenland and Barents Seas) in our analysis. We

found that in all three periods (fall, winter and spring) the entire curve and their peaks

shifted to the left, towards smaller FDD values. This means that the large (cold) FDD

became less spatially popular, whereas smaller (warmer) FDD became more spatially

popular than it was before. To summarize this result: changes (reduction/warming) in

FDD are similarly redistributed between fall, winter and spring periods. We found no

strong indication that warming occurs in some specific period of the freezing season

(fall, winter or spring).

Figure 5.56: Annual accumulation of FDD
over the maritime Arctic in three freezing
seasons. Each curve means some particu-
lar year and each point on the curve is the
area (Y axis) occupied by the given value
of FDD (X axis) at the end of the freezing
season (in May).

As we said, changes in FDD accumulated by the end of the freezing season is

either due to overall warming, either due to shortening of the freezing season. Relevant

issue (lengthenning of the melt season) has been investigated by Smith [1998] with the

remote-sensing (SSMR-SSM/I data). Accordingly Smith [1998] there was a significant
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tendency towards delayed fall freeze-up during the 1980s - 90s. So at the next step we

examined the length of the freezing season in relation to FDD.

Figure 5.57: Spatial distribution of local
FDD values around the region (60-90N).
Local FDD values are compared here.
The peak in curves indicates the ”most
popular/frequent” FDD values within
the region. Sept-Oct-Nov (blue), Dec-
Jan-Feb (black) and Mar-Apr-May (red).
Plain curve represents the the decadal av-
erage 1979-1988. Dashed-dotted curve re-
flect the decadal average in 1999-2009.

The question arose: how to define the beginning and the end of the freezing season?

Do we take the near-surface air temperatures below freezing point as the starting/last

day of the freezing season? Do we refer to sea ice concentrations in NCEP/NCAR?

Knowing the limitations of the near-surface air temperature and sea ice issues in

NCEP/NCAR - probably these are not the best ideas. Can we use then some remote

sensed sea ice concentrations to determine the day when sea ice starts to form? At

this stage SSM/I-based freeze-up and melt onset became of interest. Fig 5.58a illus-

trates the correlation strength between the annual FDD values and the corresponding

timing of first (early) fall freeze-up. Fall freeze-up is SMMR-SSM/I-based data set

developed by the group of Stroeve, Markus and Meier, in principle similar to their

apparent Melt Onset data set. To note, at that moment this Freeze-up data set was

the only available for our study period. Accordingly the fall freeze-up is a definite in-

stance (Julian day) of the year when sea ice appears within given 25 km SSM/I pixel.

All pixels within 50,100,150,200,250 and 300 km were averaged to define the average

freeze-up date at each NCEP/NCAR grid location. 250 km scale suggested the best

correlation strength (between freeze-up and FDD). Accordingly negative correlations

were found in the marginal seas (northern Barents, northern Kara, Laptev, Chukchi,

southern Beaufort Seas). Thus FDD values were smaller (negative anomaly) in those

years (winters) when fall freeze-up occurred later (positive anomaly). This is a logic

result. Locally the correlations were up to 0.6.

Similar exercise was done with the fall FDD (accumulated during September-

November period). The correlation between fall FDD and freeze-up timing is even

more pronounced, with the correlations reaching -0.8 within the marginal seas, and

significant correlations found within the most of the Arctic Ocean (Fig 5.58b).

To summarise: we established that fall freeze-up affects the interannual variability in
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Figure 5.58: Correlation between NCEP/NCAR FDD and SSM/I-based fall Freeze-
up. Freeze-up is the average of all 25 km pixels within 250 km radius around each
NCEP/NCAR grid location. Period 1979/80-2007/08. Naturally, the fall freeze-up cor-
responds to the early part of the corresponding freezing season. The hole around the
North Pole is where there were no SSMR-SSM/I observations.

(a) FDD is accumulated by the end of the freezing season (September-May).
(b) FDD is accumulated during September-November months only.

total FDD (accumulated by the end of the freezing season) within the marginal Arctic

seas. Warming trends in FDD are in line with the tendency towards later ice formation

in fall. However to note, both shortening of the freezing season and the overall warming

(smaller FDD) were responsible for the reduction in FDD.

To continue - fall freeze-up appeared to dominate the interannual variability in fall

FDD. And in fact - it is in fall when the fastest ice formation takes place! To specify:

the strongest reduction in FDD during fall is located in the same region where the

correlation between fall FDD and freeze-up is the largest.

No relationship was found between the total FDD (accumulated by the end of the

freezing season) and the following spring Melt Onset timing. Rough MO data in 25 km

resolution was applied to this analysis produced by Markus et al. [2009]. This indicates

that FDD likely does no affect the timing of the following spring melt onset.

This FDD study suffered from several non-negligible aspects that complicated the

reasoning about the importance of FDD trends in sea ice formation or any other changes

in sea ice. First: the reduction of FDD from 5000 to 4000 in 30 years is difficult to

translate in terms of sea ice thickness. Starting from about 60-100 cm thickness, the

ice floe is insensitive to the atmospheric cooling, especially if it is snow covered. Second,

the largest FDD trends occurred in those areas where the standard deviation (typical

interannual variations) in FDD values is very large as well, of ±1000 FDD around the
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average (Fig 5.55). So, even if the trend is significant, it is too small compared to

the typical interannual variations, and can not be ”seen”/translated/compared in/to

the changes in the sea ice condition in those areas with large 45 FDD trends. Third,

we should note that these -30-45 FDD/year trends refer to the period of about 270

days (from September to May), which is only a little daily warming. Reduction by 30

FDD per year is about 0.1oC of daily mean (or monthly mean) warming per year−1

(if uniformly distributed warming along the season). This is likely not comparable to

reanalysis biases and errors in air temperature.

One may argue that warming of the lower troposphere could be important for the ice

formation within leads and polynyas during winter. This is true, however the reduction

in total FDD is only 0.1oC in terms of the monthly mean warming. This value is likely

not large enough to play a notable role in the wintertime sea ice production.

In turn, we faced the following question. If the fall freeze-up is so important, what

controls its timing? What may affect the earlier-later sea ice formation? Anyway, in

the conditions of polar night and intense surface (ocean) cooling ice formation starts at

some moment. Timing of the polar night is the same each year. However, the amount

of ocean heat can be different, and this is possibly/likely a cause of the interannual

and temporal variability in fall freeze-up timing?

These results and reasoning briefly demonstrated the ideas that brought us to the

Melt Onset study. We do not show here, but the spring Melt Onset appeared to correlate

with the following fall freeze-up in the Arctic Ocean. Thus earlier MO (SSM/I) occurred

in those years/areas where following fall freeze-up (SSM/I) was delayed. Also quite

reasonable relationship.

Our FDD study was further developed/continued by CLIMPACT group who in-

vestigated the temporal changes in FDD (also called freezing index) within a dozen of

global climate models and with several climate change scenarios. Non-linear statistical

relationships between the summer minimum sea ice extent, summer (June) near-surface

air temperature and FDD were applied in their study. However it should be noted, the

study by CLIMPACT group showed that the summer minimum sea ice extent does

not correlate with FDD accumulated during preceding winter. Neither we found no

correlation between the total and/or fall FDD and the following fall freeze-up. Thus

FDD alone did not appear to be an appropriate indicator/predictor of/for the sum-

mer minimum sea ice extent. However, this FDD index may serve as a good indicator

of the general wintertime freezing conditions within vast regions (best without much

pretension on the effect on sea ice cover). This idea was implemented in the study by

CLIMPACT group, and finalized by Malaak Kallache. This paper by Malaak Kallache

is attached here, where I contributed with the meteorological (FDD) Section.
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[1] The timing of spring snow melt onset (SMO) on Arctic sea ice strongly affects the heat
accumulation in snow and ice during the melt season. SMO itself is controlled by surface
heat fluxes. Satellite passive microwave (SSM/I) observations show that the apparent
melt onset (MO) varies a lot interannually and even over 50–100 km distances. The MO
record appeared to be a complex blend of SMO on top of sea ice and opening of leads
and polynyas due to divergent sea ice drift. We extracted SMO out of the original MO
record using sea ice concentration data. Applying ERA Interim reanalysis, we evaluated
the portion of SMO variance explained by radiative and turbulent surface heat fluxes
in the period of 1989–2008. The anomaly of the surface net heat flux 1–7 days prior to
SMO explained up to 65% of the interannual variance in SMO in the central Arctic.
The main term of the net flux was the downward longwave radiation, which explained up
to 90% of SMO variance within the western central Arctic. The role of the latent
and sensible heat fluxes in earlier/later SMO was not to bring more/less heat to the surface
but to reduce/enhance the surface heat loss. Solar radiation was not an important factor
alone, but together with other fluxes improved the explained variance of SMO.
Local 20-year SMO trends averaged over the central Arctic Ocean are toward
earlier melt by 9 days per decade.

Citation: Maksimovich, E., and T. Vihma (2012), The effect of surface heat fluxes on interannual variability in the spring onset
of snow melt in the central Arctic Ocean, J. Geophys. Res., 117, C07012, doi:10.1029/2011JC007220.

1. Introduction

[2] The melt season on Arctic sea ice is short, typically
about 2–4 months (May–August), with the most intense
incident solar shortwave (SW) radiation during May–July of
150–300 W/m2 (daily means) at the surface [Ebert and
Curry, 1993]. Prior to the melt onset (MO) on top of com-
pact sea ice, the snowpack is dry and reflects 80–90% of the
incident SW radiation. With MO, free water appears within
the snowpack and snow crystals coarsen. As a result, SW
scattering within the snowpack weakens and SW absorption
increases [Grenfell and Perovich, 1984, 2004]. Therefore, an
earlier snow melt by a few days increases the accumulation
of SW radiation within the snowpack, which makes an
important contribution to the total surface heat storage dur-
ing the melt season [Bitz et al., 1996]. Radiation measure-
ments in the central Arctic have quantified that one day
earlier MO on top of the sea ice increases the melt season
cumulative absorbed SW energy at the sea ice - ocean sur-
face by approximately 8.7 MJ/m2, corresponding to the

additional 3 cm of summer ice melt [Perovich et al., 2007b].
In comparison, 1-day delay in fall freeze-up results in an
increase by only 1.5 MJ/m2, or less than 0.5 cm of additional
ice melt. An early MO on sea ice and the associated early
generation of open water areas favor heat accumulation in
the upper ocean [Drobot, 2007; Eicken and Lemke, 2001;
Perovich et al., 2007a]. Further, it takes more time in
autumn to cool warmer water masses down to the freezing
point. As a result, the freeze-up starts later, which contributes
to sea ice thinning in the following year [Laxon et al., 2003].
[3] Over the past few decades a tendency toward earlier

MO in the Arctic has been revealed based on satellite
observations. Already Anderson and Drobot [2001] have
detected significant trends (1979–1998) toward earlier MO
in the western central Arctic (8.9 days per decade), Lincoln
Sea (4.4 days per decade) and Beaufort Sea (5.1 days per
decade). Belchansky et al. [2004] evaluated the difference
between two decadal averages (1979–1988 and 1989–2001):
by 5 days in the Kara - northern Barents and Chukchi Seas,
by 9 days in the East Siberian Sea, and by 4 days in the
central Arctic. More recently, also based on a satellite pas-
sive microwave record, Stroeve et al. [2006] and Markus
et al. [2009] demonstrated statistically significant 29-year
(1979–2007) MO trends by 2–4 days per decade in the
central Arctic, Laptev, East-Siberian, Chukchi and Beaufort
Seas and the Baffin Bay. The tendency toward earlier MO
and sea ice thinning [Giles et al., 2008; Kwok and Rothrock,
2009] are essential elements in the recent Arctic warming,
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but, according to our knowledge, reasons for the statistically
significant 20–30-year trends in MO have not been
explained yet.
[4] Trends as well as the interannual and regional varia-

tions in snow MO on top of sea ice are controlled by the
surface heat fluxes. The surface fluxes, in turn, are affected
by the air temperature and humidity, wind speed, clouds,
snow and ice thickness, and the heat conductivity of snow
and ice. By surface fluxes we mean the fluxes in the upper-
most �0.2 m of the snowpack. SW radiation penetrates into
the snowpack, so that melt often starts a few cm below the
surface [Cheng et al., 2006, 2008]. An early (late) snow MO
on top of sea ice is only due to an early and fast (late and
retarded) net heat flux accumulation.
[5] Previous studies on the factors controlling the spring

snow MO on sea ice have mostly addressed the role of a
large-scale atmospheric circulation on the regional average
MO, or the local effect of radiative and turbulent surface
heat fluxes observed during field campaigns. Field obser-
vations by Barber et al. [1994], Granskog et al. [2006] and
Vihma et al. [2009] demonstrated the importance of synoptic-
scale variations and the diurnal cycle in the surface heat
fluxes. Cheng et al. [2008] showed that success in modeling
of snow MO strongly depends on the vertical resolution
applied: with a 15–20 layer snow model resolving the snow
MO better than a 3 layer model. The study by Yackel et al.
[2007] indicated on a poor agreement (no significant rela-
tionship) between the near-surface air temperatures (daily
means reaching 0�C) and the remote sensed MO on sea ice.
[6] Drobot and Anderson [2001] and Belchansky et al.

[2004] both developed algorithms for MO detection by
remote sensing and found that interannual variations in the
regional mean MO within the Arctic are affected by the
large-scale atmospheric circulation (the Arctic Oscillation
index) and the near-surface air temperatures (SAT) during
preceding months. The role of clouds and atmospheric mois-
ture content in snowMO timing on sea ice has been addressed
by Zuidema et al. [2005], Stone et al. [2005], andNghiem et al.
[2003], but only a few direct investigations of the cloud radi-
ative forcing on snow MO have been made [Zhang et al.,
1996, 1997], based on a radiative transfer model only. Little
attention has been paid to small-scale spatial differences and
interannual variations in the observed snow MO and surface
fluxes.
[7] Our approach is totally different. We examine whether

radiative and turbulent surface heat fluxes on top of Arctic
sea ice (based on meteorological reanalysis) can explain the
interannual and spatial (50–130 km scale) variations in snow
MO (based on remote sensing retrievals) within a vast
domain (83–87�N) and over a 20-year period (1989–2008).
This kind of analysis requires (1) a distinct definition of what
is regarded as snow MO, (2) an estimation of the relative
importance of the individual surface fluxes (shortwave and
longwave radiation as well as the turbulent fluxes of sensible
and latent heat) and various combinations of fluxes in the
further timing of snow MO, and (3) an evaluation of the
length of a relevant pre-melt period when surface flux
anomalies are crucial for further timing of snow MO.
[8] The three data sets utilized in this study are described

in section 2: ERA Interim reanalysis of surface fluxes and
two remote sensing records of (a) sea ice concentrations and
(b) MO. As we will highlight, the satellite retrievals of MO

do not only represent the snow melt onset (SMO) on top of
the compact sea ice, but also include cases of divergent sea
ice drift. Hence, our first task was to extract the SMO
signature from the original MO record. The methodology
applied is outlined in section 3.1. To compare the SMO
timing and the heat flux anomaly prior to SMO we introduce
three alternative and complementary methods. At this stage
we make assumptions on the relevant temporal and spatial
scales of the processes (sections 3.2 and 3.3). 20-year cli-
matologies of the original MO record and the extracted SMO
sample are illustrated in section 4.1, and statistics of the
surface heat flux components are presented in section 4.2.
The main result of this study: the role of the surface fluxes in
SMO variability is outlined in sections 4.3 and 4.4. 20-year
tendencies in MO, SMO and surface fluxes are considered in
section 4.5. The results and perspectives for future work are
discussed in section 5, and the concise conclusions are drawn
in section 6.

2. Data

2.1. Melt Onset Data

[9] The appearance of water in snow causes the grains
to cluster, resulting in larger grains with a more rounded
shape. As a result, the snow emissivity increases in the near-
infrared and microwave wavelengths, and the reflectivity
decreases in the visible spectrum. Field observations show
that the initial surface melt is often followed by episodic re-
freezing and melting, each time affecting the emissivity and
reflectivity of the surface [Barber et al., 1994; Ehn et al.,
2006]. First attempts to detect MO with the help of satellite
visible, near-infrared and microwave measurements date to
1980s [Anderson, 1987; Grenfell and Perovich, 1984;
Robinson et al., 1986]. It was soon found that cloud cover
and precipitation have the strongest effect on the visual and
near-infrared spectrum [Forster et al., 2001; Yackel et al.,
2007], thus making the microwave observations the most
compatible for MO detection. For this reason, the recently
updated Arctic-wide MO record derived from the Scanning
Multichannel Microwave radiometer and Special Sensor
Microwave Imager (SMMR-SSM/I) passive microwave
measurements of brightness temperature [Markus et al.,
2009] was chosen for our study. MO data set is available
on http://neptune.gsfc.nasa.gov/csb/index.php?section=50.
[10] The MO spatial resolution (pixel size) is approxi-

mately 25 km with the northward limit at 87�N. Compared
to the other time series, the major advantage of this MO
record is that until recently it was the only one to cover the
complete 30-year period of 1979–2008 and both multiyear
and first-year ice areas.
[11] Markus et al. [2009] defined the MO as the first day

of the continuous melt. Thus, at each individual 25 km pixel,
the snow MO is the day of the year when water in liquid
phase stays continuously present on top of sea ice (first-year
or multiyear), either within the snowpack or on top of the
bare ice. Otherwise, if no clear snow MO signal is detected,
the day when the sea ice concentration drops below 80% for
the last time before the area (pixel) becomes ice-free, is
considered as MO. It means that formation of open water
areas (leads and polynyas) is also included in the MO record,
although leads and polynyas may open without any melt, but
only due to divergent sea ice drift.
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[12] This MO retrieval has been compared byMarkus et al.
[2009] with buoy observations of surface air temperature
(SAT) and reanalysis data from the National Center for
Environmental Prediction and the National Center for
Atmospheric Research (NCEP/NCAR). At two locations
(one multiyear and the other with first-year sea ice) SSM/I-
based and SAT-based snowMO agree within less than 8 days
(better over first-year ice). Over the entire Arctic Ocean these
three MO estimates (SSM/I, buoy SAT and reanalysis SAT)
were compared during one particular year in terms of their
spatial distribution statistics. While spatial distribution curves
do not perfectly mirror one another, they are in a very good
agreement. This comparison, however, does not provide
the conclusive quantitative validation for the SSM/I-based
snow MO retrievals. First, because SAT data (both buoy
observations and reanalysis) themselves have errors. Second,
because melt within the snowpack does not necessarily
coincide with 0�C or �1�C air temperatures at 2 m height
[Yackel et al., 2007]. Third, because when varying the
threshold applied to SAT data by �2�C, the resulting SAT-
based MO ranges by as much as �50 days [Markus et al.,
2009].

2.2. Sea Ice Concentration

[13] We utilized a daily Arctic sea ice concentration
(SIC) record by Cavalieri et al. [1996], which is based on
the same SMMR-SSM/I brightness temperature measure-
ments with the same spatial resolution as the MO data.
These SIC data were produced with the NASA Team
Algorithm and obtained from the National Snow Ice Data
Center website http://nsidc.org/data/nsidc-0051.html. Note
that in the algorithm for the MO detection developed by
Markus et al. [2009] the same NASA Team Algorithm was
applied for SIC estimation.

2.3. ERA Interim Reanalysis Data

[14] ERA Interim reanalysis (ERAI) of the surface heat
fluxes with 12 h intervals [Dee et al., 2011] were chosen for
the comparison with the MO record. ERAI is the newest of the
three reanalyses produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF). ERAI has a
global coverage with a spatial resolution of 0.72� latitude by
0.72� longitude, spanning the period from 1989 onwards.
ERAI benefits from the experience of previous reanalyses,
with several major improvements: higher resolution, assimi-
lation of more extensive and diverse observational data with a
more sophisticated technique (four-dimensional variational
data assimilation), an improved hydrological cycle and a var-
iational bias correction of satellite radiance data [Dee and
Uppala, 2009]. Compared to the earlier ERA-40 reanalysis,
ERAI also has a better vertical consistence of the air temper-
ature in the Arctic region [Uppala et al., 2008; Dee and
Uppala, 2009]. This comparison was done against 2000
radiosonde reports inland north of 70�N.With the introduction
of the variational bias correction in ERAI, the vertical structure
is now more efficiently constrained by radiosonde observa-
tions [Uppala et al., 2008; Dee and Uppala, 2009].
[15] Over Arctic sea ice ERAI vertical profiles of air

temperature, humidity and wind have been validated against
observations from three ship campaigns [Lüpkes et al.,
2010]. It was found that ERAI overestimates the near-
surface humidity and air temperature during summer,

whereas the near-surface winds in ERAI are represented
more accurately, with the differences increasing at higher
altitudes but remaining less than 1 m s�1. According to our
knowledge, the accuracy of ERAI surface fluxes on top of
Arctic sea ice is yet to be validated.
[16] In ERAI the SIC is prescribed in the same way as

for ERA-40 prior to January 2002 [Fiorino, 2004]. From
1 January 2002 to 31 January 2009 ERAI follows the
ECMWF operational forecasting system [Thiébaux et al.,
2003]. Sea ice concentrations below 20% are set to 0%.
South of 82.5�N, SIC in ERAI is based on SSM/I passive
microwave measurements, and northward from 83�N SIC is
set to 100% [European Centre for Medium-Range Weather
Forecasts (ECMWF), 2008a], although this is not realistic.
Sea ice in ERAI has a uniform thickness of 1.5 m and no
snow cover on top [ECMWF, 2008b]. No data on snow or ice
surface temperature are assimilated to ERAI. In this formu-
lation, the variability of the conductive heat flux through the
ice and snow is limited and depends primarily on the atmo-
spheric fluxes. Radiative and turbulent surface fluxes from
ERAI include downward longwave radiation (LWd), net
longwave radiation (LWnet), downward shortwave radiation
(SWd), net (absorbed) shortwave radiation (SWnet) and tur-
bulent fluxes of latent (LE) and sensible (H) heat. Positive
values represent heat flux to the surface.

3. Methodology

3.1. Determination of Snow MO

[17] Considering the definition of the continuous MO by
Markus et al. [2009], the ice conditions may evolve as fol-
lows. During some period in spring, the ice field diverges
and SIC reduces to less than 80% (even down to 0%) in a
SSM/I pixel. Then the wind changes and due to sea ice drift,
SIC temporarily increases back to values exceeding 80% in
the given pixel. A few days/weeks later, the snowmelt onsets
on top of sea ice or divergent ice drift exposes open water
within the same area. In this situation the MO algorithm by
Markus et al. [2009] determines the continuous MO as the
last drop in SIC (below the 80% threshold) before the area
becomes ice free or as the last snow MO event on top of the
compact sea ice.
[18] In nature when SIC stays high (100%) throughout the

pre-melt period, surface fluxes (and meteorological condi-
tions) affect SMO and not vice versa. To ensure that SIC was
high throughout the pre-melt period, we first distinguish the
MO cases (pixels and years) least affected by the SIC chan-
ges in the pre-melt period. For that we tested several SIC
filters, where the MO pixel was considered to be a snow MO
pixel, if the daily (or time averaged) SIC prior to the MO did
not fall below some threshold (80, 85 or 95%; see below).

3.2. Evaluation of the Relevant Temporal
and Spatial Scales

[19] Besides removing those MO pixels that have already
experienced the drop in SIC prior to MO, the two data sets
(MO and surface fluxes) also need to be converted to a
comparable spatial resolution. A question arises: what is the
sea ice area that is affected by the surface fluxes at a fixed
grid location? A drifting sea ice floe is under the effect of the
flux at a fixed grid cell only during some limited period of
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time. Before and after that, the ice slab is affected by surface
fluxes at the neighboring grid cells.
[20] A comparison of different solutions led to the for-

mulation of the following assumptions. Those MO pixels
with a 40-day average SSM/I-based SIC ≥ 85% during a 40-
day pre-melt period were considered to be snow MO pixels.
This 85% SIC filter allows for SIC changes in time,
removing those pixels with a pronounced SIC reduction,
and, at the same time, keeping those MO events least
affected by SIC reduction already in the pre-melt period.
Stronger SIC filters tend to reject most of the MO data set,
which drastically reduces the study material. Snow MO
timing in ERAI grid coordinates was determined as the
average MO date of all snow MO pixels within a 130-km
radius around each ERAI grid location. The radius is based
on the following assumptions. With a typical wind speed of
5 m/s in spring, assuming that sea ice drift speed is 2% of the
wind speed [Thorndike and Colony, 1982] and that the
monthly displacement is half a trajectory length, the monthly
ice displacement is approximately 130 km. This rough esti-
mate agrees well with the satellite data on sea ice displace-
ments (F. Girard-Ardhuin, IFREMER/LOS, personal
communication, 2011). The monthly displacement naturally
varies in space and time, but we only need an order of
magnitude estimate to provide SMO spatial averaging.
[21] For clarity, we use the abbreviation SMO for the

snow MO on sea ice and reserve the abbreviation MO for the
melt onset as defined by Markus et al. [2009].

3.3. Comparison of SMO and Surface Fluxes

[22] We compared SMO data against ERAI daily surface
heat flux anomalies (relative to the 20-year climatology) in
the common 20-year period of 1989–2008. The very recent
extension of ERAI for the period 1979–1988 became

available too late for this study. The flux anomalies were
averaged over 1–40 days before a reference SMO date, and
then compared to the SMO anomaly at the same location and
year. Time averaging up to 40 days is demonstrated here,
because it appeared that longer periods prior to SMO did not
improve the capability of surface fluxes to explain the SMO
timing. The definition of the reference SMO date and the
further flux averaging were done using three alternative
methods, schematically illustrated in Figure 1.
[23] With method M1 the flux anomalies were calculated

right before the exact SMO date. As the SMO date is dif-
ferent each year and varies from one location to another, the
variations in the reference date slightly hamper the interan-
nual comparison of the flux anomalies. To fix the reference
SMO date, we chose the 20-year average SMO date (method
M2) and the 20-year earliest SMO date (method M3) at each
location. This allows for a more suitable comparison of flux
anomalies between different years, but the drawback is that
the period just a few days before SMO is usually (M3) or in
approximately half of the cases (M2) not included in the
calculations.
[24] First order (bilateral) linear regression analysis was

used to compare (correlate) two 20-year time series: the n-
day average (n = 1 to 40) flux anomaly and the SMO
anomaly, both in the same ERAI grid (Figure 2, example for
the net flux). A statistically significant relationship with a
99% confidence level (p < 0.01) is established when the
correlation coefficient (r) exceeds 0.56 (r2 > 0.31). Over a
compact sea ice cover, a causal effect of the surface flux
anomaly on SMO requires a negative r: a positive flux
anomaly precedes an early SMO and vice versa (Figure 2,
example for the net flux). Considering the physical inter-
pretation, r2 represents the percentage of the interannual

Figure 1. Schema of three methods (M1, M2 and M3) used
to determine the pre-melt period and for calculation of the
flux anomaly prior to SMO. In method M1 the pre-melt
period is defined to start n days (n = 1–40) prior to the exact
local SMO date, which varies both interannually and spa-
tially. In methods M2 and M3 the pre-melt period varies spa-
tially but not interannually. In M2 the pre-melt period starts
n days before the local 20-year average SMO date, whereas
in M3 the pre-melt period starts n days before the earliest
local SMO during the 20-year period. The SMO date itself
is not included in the n-day pre-melt period.

Figure 2. Causal relationship between a 3-day average NF
anomaly and the corresponding SMO timing [Julian day] at
one location 85.5�N 57.75�W. Black curve (right y axis)
shows the 20-year mean seasonal cycle of NF at this loca-
tion. Gray circles and their linear fit show the relationship
between SMO (x axis) and the preceding NF anomaly (left
y axis) averaged during 3-day pre-melt period prior to
SMO (method M1). The linear regression equation suggests
that a 3-day average local NF anomaly prior to exact SMO
date explains 65% of the interannual local variance in
SMO, with RMSE of 6.2 days.
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variance in SMO timing explained by the interannual
changes in the flux anomaly.
[25] Stepwise forward multiple linear regression analysis

[Draper and Smith, 1998] was applied to find out how well
various combinations of flux anomalies (LWd, SWd, LE and
H) explain the interannual variance of SMO, and which
combinations of ERAI fluxes best reflect SMO variability.
Among 4 potential predictors (individual fluxes) the first
term included in the multilinear regression equation corre-
lates the best with SMO. At this stage we get a first-order
linear regression equation. At the next step the predictor best
explaining the residuals from the existing linear regression
equation is accepted. This procedure is repeated further, as
long as the correlation coefficient between the potential
predictors and the residuals is significant. The overall mul-
tilinear regression equations (with 2, 3 or 4 terms) for each
of 40 time averaging periods are examined for significance
with an F test. The critical F-value depends only on a
number of predictors included in the multilinear regression
equation. Length of the time series is constant of 20 years,
and p < 0.01. To note, the anomalies of all flux components
included in the multilinear regression equation are averaged
over the same time averaging period.
[26] In sections 2 and 3 we briefly described the MO

algorithm developed and applied by Markus et al. [2009] to
the daily brightness temperature measurements to evaluate
the apparent MO at each 25 km pixel and each year (1979–
2008). ContinuousMO is considered here. However, usually
some transition period characterized by alternating melting
and re-freezing events occurs. During this period the daily
amplitude in brightness temperature increases until it reaches
a maximum in the beginning of the continuous melt [Markus
et al., 2009]. Time-space resolution of both data sets (SSM/
I-based MO and ERAI fluxes) is limited. So it is evident that
many of the localized (tens to hundreds of meters scales)
episodic (of a few hours) snow melt events are not captured
in either data set. From this point of view, it seems that the
onset of continuous snow melt is a more distinct event than
any episodic melt, and it should be better represented in both
remote sensing records and meteorological reanalysis.

4. Results

4.1. MO and SMO Climatology

[27] According to the MO record produced by Markus
et al. [2009], on average (in 1989–2008), the melt starts
around late May at the southernmost ice margin: in the
Greenland Sea, northern Barents Sea, southern Kara Sea, as
well as Bering and Davis Straits (Figures 3a and 3b). The
northward advance of melt from the Alaskan and Siberian
coast and the northern Greenland Sea up to 87�N takes
approximately 40 days (Figures 3a and 3b). The area farther
north is unfortunately not covered by SSM/I observations.
[28] The analysis is complicated by the fact that MO timing

is very variable in space (Figure 3e) and interannually
(Figures 3c and 3d). In the central Arctic the MO differences
over a 50 km distance are mostly less than 25 days
(0.5 days km�1), but there are some areas where the MO
difference over a 50 km distance has even reached 3 months
(2 days km�1, Figure 3e). The majority of cases (pixel years)
with the large horizontal MO gradients are due to early ice
opening: lead and polynya formation already in March.

Accordingly, vast leads have occurred as far as 80–85�N. In
the presence of compact (100%) sea ice cover, the regional
differences in snow melt timing are controlled by the surface
fluxes. Visual comparison of the MO maps with the surface
fluxes on the Pacific side of the Arctic Ocean (70–85�N,
170–220�E) revealed a few large spatial gradients in heat
fluxes across the areas of abrupt MO differences. Some of
these differences in heat fluxes andMO seem to be associated
to the atmospheric fronts, and not related to SIC changes
(according to SSM/I-based SIC data). These MO events
were, most likely, the true SMO cases. Yet, the episodic,
short-lived (1–5 days) and highly localized spatial gradients
in NF, SWd and H by up to 25W/m2 within a 50 km distance
(between neighboring ERAI grid locations) do not convinc-
ingly explain SMO spatial gradients exceeding 1 month
within a 50 km distance. Instead, the spatial differences in
the ice type may provide an explanation for these pro-
nounced MO gradients within totally ice-covered region.
Field observations in April–May demonstrated that thinner
sea ice is 5–10�C warmer at the snow-ice interface compared
to thick ice [Perovich and Elder, 2001]. This is due to a larger
conductive heat flux through thinner ice. Thus, with the same
meteorological conditions and a uniform snow depth, on top
of thin ice it takes less time to heat the snow to the melting
point. In consequence, SMO starts earlier on top of thinner
(initially warmer) ice floe, compared to thick multiyear ice.
[29] The typical local (same pixel) interannual fluctuations

in MO are about �2 weeks around the average MO date in
the central Arctic, increasing in the marginal seas, locally up
to �4 weeks (Figure 3c). Application of the SIC filter to the
original MO data, yielding the SMO sample (see section
3.2), reduced the local interannual variations and smoothed
the spatial differences in the timing of surface melt initiation
(Figures 3b and 3d).
[30] Figure 3f demonstrates the smallest one day SIC

(SSM/I-based data of 25 km resolution) in a 40-day pre-melt
period prior to MO (M1). Smallest SIC observed during
1989–2008 is shown for each 25 km pixel. As discussed
already in section 3.1, our analysis reveals vast areas where
SIC values have episodically fallen below 80% and some-
times even below 50% already before MO (Figure 3f). This
means that already prior to continuous MO (divergent ice
drift or snow MO) the reduced SIC has in some springs
affected the surface heat fluxes, although not necessarily in
ERAI.

4.2. ERAI Climatology of Surface Fluxes in April–June
Within 83–87����������������N
[31] The ERAI fluxes least affected by SIC changes are

those within the circumpolar Arctic between 83.25�N and
87�N, where the SIC in ERAI (but not in reality) is 100%
every year during the entire pre-melt period. Hereafter we
focus on this circumpolar central Arctic region which occu-
pies an area of approximately 1.7 � 106 km2.
[32] SWd increases rapidly as the polar day progresses on

average from 90� 40W/m2 in April up to 250� 70W/m2 in
June (Figure 4a). Absorption of SW radiation (SWnet)
enhances in spring (Figure 4b) due to increasing down-
welling SWd radiation: from 20 � 10 W/m2 in April to
75 � 25 W/m2 in June, becoming the most efficient in July.
In ERAI the monthly albedo of sea ice and open water are
prescribed according to the seasonal means as determined by
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Ebert and Curry [1993]. The bare sea ice albedo value of
0.51 is taken as a representative value for summer, the dry
snow albedo value of 0.77 is used for the winter months, and
the open water albedo is approximately 0.06 [Screen and
Simmonds, 2012].
[33] LWd is a major source of energy for the Arctic snow/

ice surface all year-round. FromApril to June the air moisture

content increases, which promotes a larger LWd: of about
190 � 40 W/m2 in April, reaching 290 � 30 W/m2 in June
(Figure 4c). Throughout the year, on average, there is a per-
sistent surface radiative cooling in the central Arctic, with the
negative net longwave radiation LWnet values (Figure 4d).
Heat loss by means of LWnet reduces in spring from
40� 25 W/m2 in April to 25� 20 W/m2 in June (Figure 4d).

Figure 3. Maps of statistics of MO (SSM/I resolution of 25 km, based on Markus et al. [2009]), SMO
(ERAI grid resolution), and SIC (SSM/I) in the period 1989–2008: (a) 20-year average MO, (b) 20-year
average SMO, (c) standard deviation of MO, (d) standard deviation of SMO, and (e) the largest differences
in MO timing ever observed between two pairs of neighboring pixels (in the same year). These most
extreme MO gradients were found in different years in different areas. (f) The smallest ever observed
one day SIC in a 40-day pre-melt period prior to MO (method M1).
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Figure 4. Seasonal cycle of ERAI surface fluxes within 83.25–87�N in the period 1989–2008: (a) down-
ward solar radiation SWd, (b) absorbed solar radiation SWnet, (c) downward longwave radiation LWd,
(d) net longwave radiation LWnet, (e) latent heat flux LE, (f) sensible heat flux H, (g) downward flux DF,
and (h) the net heat flux NF. The black solid curve is a 20-year average flux (grid-box area weighted).
Two gray dashed curves delimit � one standard deviation of all daily values (in a given month) at all
grid locations (within 83.25–87�N). Two black dashed curves delimit the maximum and minimum daily
flux values ever occurred at any location (within 83.25–87�N) on any day of each month. Following
ERAI convention, negative values correspond to surface heat loss (upward fluxes).
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[34] The turbulent surface fluxes are on average relatively
weak in spring, of the order of �20 W/m2 [Ebert and Curry,
1993]. According to ERAI, sublimation of snow usually
takes place during the pre-melt period, roughly April–May
months (latent heat flux is upwards). In line with ERAI
convention, the monthly and daily mean LE is represented by
negative values in Figure 4e. Surface warming during May
and early June results in a slightly unstable stratification near
the surface, in both nature [Persson et al., 2002] and ERAI.
As a result, in May–June the monthly mean sensible heat flux
is slightly negative (upwards), of the order of 2 � 2 W/m2

(Figure 4f). The day-to-day variability in H and LE is about
5 W/m2 and quite uniform regionally (not shown here).
[35] Downward radiation (DR) is the sum of LWd and

SWd. Both LWd and SWd affect the local surface heat bal-
ance, but are not directly influenced by local feedbacks, such
as changes in albedo and surface temperature. Although
DR increases rapidly as the summer progresses (from 300 to
370 W/m2 in April to 500 W/m2 in June), the day-to-day
variations are only 40–50 W/m2 and rather uniform in space
(not shown here). The downward flux (DF) is the sum of DR,
H and LE (Figure 4g). Compared to DR, DF is more sensitive
to surface properties (SIC and albedo) and small-scale pro-
cesses (wind and near-surface thermal stratification). Never-
theless, over the sea ice the climatology of DR and DF is very
similar. In spring DF increases rapidly: from 300� 50 W/m2

in April to 520 � 50 W/m2 in June (Figure 4g).
[36] The net flux (NF) is the sum of LWnet, SWnet, H and

LE. From August to May NF is negative on average, in the
circum-polar central Arctic (Figure 4h). In spring the net
surface heat loss switches to surface net heat gain, reaching
30 � 20 W/m2 by June (Figure 4h). The local 40-day aver-
age NF prior to SMO (M1) is positive (10–15 W/m2) in the
circum-polar central Arctic (not shown).

4.3. Effect of the Surface Fluxes on the Interannual
Variations in SMO

[37] After removing the MO pixels largely affected by the
sea ice opening in the pre-melt period, methods M1, M2 and
M3were applied to calculate the time-average flux anomalies
prior to the SMO date. Bilateral linear regressions were then
calculated (at each grid cell) for the 20-year time series of
SMO anomalies and corresponding surface flux anomalies.
Results obtained with M1, M2 and M3 are qualitatively
similar. Depending on the flux, one of the methods appears
slightly better than the others. In this context, the best method
(M1, M2 or M3) reveals the highest explained variance (r2).
Moreover the best method evokes the relationship (signifi-
cant r2) between SMO anomaly and the corresponding heat
flux anomaly over a larger area than the other two methods.
Comparison of r2 at various locations suggests that M3
was slightly better for NF (Figure 5g) and M2 for LWd
(Figure 5h). To illustrate the main results of this study, we
made a compromise by selecting methodM1, which reveals a
stronger relationship between SMO and both NF and LWd
(Figures 5g and 5h).
[38] The local interannual SMO variance is well explained

by the interannual changes in NF. The highest r2 is found
with a synoptic time averaging period of about 1–7 days
(Figure 5a), explaining locally up to 55–65% (maximum
r2 = 0.65) of the interannual SMO variance (Figures 5a and
5e). Considering the entire area where significant r2 is

detected (shaded area in Figure 5e), the 4-day average NF
anomaly explains 28% of the total (spatial and interannual)
variance in SMO (Table 1). These results indicate that a large
portion of our data sample contains a stronger surface NF
accumulation (positive NF anomaly relative to the climatology)
before the anomalously early snow melt (negative SMO
anomaly). And correspondingly, the anomalously weak NF
accumulation and even NF loss (negative NF anomaly) are
suggested by ERAI in those years and locations where SMO
is retarded (positive SMO anomaly).
[39] Next we consider the flux intensity: how large are

ERAI NF anomalies (during this optimum 1–7 day pre-melt
period) in those locations and years where and when SMO
occurred particularly early or late? More precisely: what
are the magnitudes of SMO and NF anomalies within the
domain where the relationship between SMO and NF is
established (shaded area in Figure 5e)? Figure 5c illustrates
a group of 20-year time series at different grid locations:
(1) SMO anomalies and (2) corresponding 1–7 day average
NF anomalies. All ERAI grid locations with a significant r2

at any (1–7 day) time averaging period are regrouped in
Figure 5c. On average, when SSM/I-based SMO occurs
anomalously early, for example by 15–20 days, the 1–7 day
mean NF anomaly (ERAI) just before SMO is positive of
about 17–18 W/m2 (Figure 5c). An equally large negative
NF anomaly is related to SMO delayed by 15–20 days.
[40] Results obtained with three fairly similar methods

(M1, M2 and M3) show that the magnitude of the time
average flux anomaly and its impact on SMO timing strongly
depend on the definition of the pre-melt period. Whereas
M1 suggests a high correlation between SMO and brief
NF anomalies, M2 and M3 fail to detect the synoptic-scale
effect of NF on SMO. Thus with M1 the effect of 1–7 days
NF anomalies is detected over the area of 372 � 103 km2,
which represents 22% of the circumpolar central Arctic.
Instead, M2 and M3 are better in detecting the areas where
SMO correlates with the NF anomaly over the preceding
20–40 days: 340 � 103 km2 for M2, 216 � 103 km2 for M3,
and only 109 � 103 km2 for M1 (not shown).
[41] Considering the individual flux components, LWd

alone explains up to 90% of the local interannual SMO var-
iance, although only over a small area (Figures 5b and 5f).
Among different time averaging periods, the 1–7 day LWd
anomaly (M1) seems to best reflect the local interannual
SMO variance compared to longer LWd history (Figure 5b).
Thus for a time averaging period of 8 days or more, the
highest r2 drops lower than that for a 1 day time scale
(Figure 5b). Similar results emerge when considering the
entire shaded area in Figure 5f (as a group of locations and
years, without regional averaging). Within this area the
anomalous local (ERAI resolution) 6-day average LWd
before the SMO accounts for 27% of spatial and interannual
variance in SMO (Table 1). Within the same area, on aver-
age, the 1–7 day mean LWd anomaly of +25 (�14) W/m2 is
followed by 15–20 days earlier (later) SMO (Figure 5d).
Below we summarize the size of area with significant corre-
lations between LWd flux and SMO anomalies (not shown in
figures). The effect of 1–7 day average LWd anomaly (just
before SMO) on SMO appears within 589 � 103 km2 with
M1 (35% of the circumpolar Arctic), compared to the area of
277 � 103 and 192 km2 � 103 km2 with M2 and M3
respectively. Similar to NF, calculations with M2 reveal vast
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areas where LWd flux anomalies averaged over a longer (20–
40 days) pre-melt period reflect the interannual behavior of
the SMO. Thus the effect of LWd anomalies during a 20–
40 day pre-melt period on SMO is present over an area of
733 � 103 (with M2) and 339 � 103 km2 (with M1). That is

about 43% and 20% of the circumpolar central Arctic
respectively. As for NF, the magnitude of the time-average
LWd anomalies (which correlate with the SMO timing)
depends on the definition of the pre-melt period. Using M1,
LWd anomalies of about 20–40 W/m2 during a 20-40-day

Figure 5
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pre-melt period affect SMO timing by as much as 18 days
(not shown).
[42] The best results obtained with the three methods (M1,

M2 and M3) are compared in Figures 5g and 5h. Within the
colored domain at least one method and at least one time-
averaging period evoke a statistically significant r2. All three
methods detect the relationship between ERAI fluxes and
SMO timing, complementing one another. None of the
methods is much better than the other two.
[43] Very similar results are obtained for the LWnet flux

(not shown): 1–7 day time scales are the most illustrative for
the seasonal transition (r2 up to 0.9), with a secondary peak at
about 30-day lag (r2 up to 0.6). We speculate that the effect of
brief (1–7 day) flux anomalies on surface melt can only be
distinguished if the heat fluxes and SMO are well captured in
both data sets.
[44] Anomalies in LE and H are positive (negative) in the

early (late) SMO years (Figures 6c and 6d). Seasonal 30–
40 day flux anomalies in H and LE (M1) explain up to 72%
and 56% of the local interannual SMO variance respectively
(Figures 6a and 6b). Local LE and H flux anomalies within
the shaded areas in Figures 6e and 6f respectively account for
31% and 25% of the spatial and interannual variance in SMO
(Table 1). On average 1–2 W/m2 weaker (stronger) loss of
sensible heat and 2–3 W/m2 weaker (stronger) loss of latent
heat (sublimation) during May–June (30–40 day pre-melt
period) contribute to the advance (delay) in SMO by 15–
20 days (Figures 6c and 6d). A statistically significant effect
of 30–40 day mean flux anomalies (M1) to SMO variance
is found over the areas of 254 � 103 km2 for LE and

300 � 103 km2 for H (15% and 18% of the circumpolar
Arctic). To note, these areas are only a part of the shaded
domain in Figures 6e and 6f (where all time averaging peri-
ods are considered together). The performance of three
methods (M1, M2 and M3) in terms of r2 is compared in
Figures 6g and 6h. Accordingly, LE and H flux anomalies
computed with either M1 or M2 capture the interannual local
variability in SMO better (with larger r2) than M3.
[45] Our results show that SWd and SWnet (on their own)

do not play any role in the interannual and/or spatial vari-
ability in SMO within the central Arctic (83–87�N). This is
reasonable, as until mid-May the sea ice albedo in ERAI is
rather high (0.77), and since there is no snow melt (and no
ice melt) in ERAI, the representation of SWnet variations in
time is unrealistic.
[46] The effect of DF and DR anomalies on SMO is weak:

although the anomalies locally explain up to 50% of the
interannual variance in SMO, a significant r2 is found only
for less than 2% of the circumpolar Arctic.

4.4. Effect of the Combination of Surface Fluxes
on Interannual Variations in SMO

[47] Stepwise forward multiple linear regression analysis
was applied to find those combinations of surface fluxes that
best explain the SMO variance. Four predictors were taken
into account: LWd, SWd, LE and H. These individual fluxes
and various combinations of them are considered here as the
direct factors controlling SMO.
[48] A combination of 2–4 fluxes explains locally from

30 to 92% of local interannual SMO variance within roughly

Figure 5. Bilateral regression results on the relationship between the flux anomaly and the corresponding SMO anomaly
(same location, same year). The study domain is within 83.25–87�N. The flux anomaly is averaged over various pre-melt
periods (1–40 days, method M1). Left-hand plots illustrate the results for NF and right-hand plots for LWd. (a, b) Depen-
dence of the squared correlation (r2) on the length of the pre-melt period. The black dots show all significant r2 values
(p < 0.01) for each flux-averaging period. The gray curve shows the number of ERAI grid locations where a significant
r2 was found with the given flux-averaging period. It indicates which time averaging period is the most successful in explain-
ing interannual SMO variance. (c, d) Scatter of 1–7-day flux anomalies against corresponding SMO anomaly. All locations
evoking a significant r2 at any flux-averaging period between 1 and 7 days are regrouped. Each location is represented with
20 black open circles (20 years). Four vertical gray lines delimit �15–20 day SMO anomalies. The average of 1–7 day flux
anomalies corresponding to these �15–20 day SMO anomalies is cited in the text. (e, f) The highest r2 found with some of
the flux-averaging periods (1–40 days), method M1. All grid locations where at least one significant r2 was detected with M1
are shown. (g, h) Comparison of the highest r2 (p < 0.01) obtained with the three methods (M1, M2 and M3) and all flux-
averaging periods (1–40 days).

Table 1. Linear Relationships Between the Surface Heat Flux Anomaly (Prior to SMO) and SMO Anomaly Within the Circumpolar
Arctica

Linear Regression Equation
Flux Averaging Period
Prior to SMO (days) r-Square

RMSE
(days) Area Where the Equation is Valid

SMO = �0.38 � NF + 0.03 4 0.28 7.5 Shaded area in Figure 5e
SMO = �0.35 � LWd + 0.96 6 0.27 7.3 Shaded area in Figure 5f
SMO = �2.58 � LE � 1.38 40 0.31 7.3 Shaded area in Figure 6e
SMO = �4 � H � 0.68 37 0.25 7.5 Shaded area in Figure 6f
SMO = �0.31 � LWd � 0.08 � SWd � 0.67 � H � 0.03 � LE + 0.45 5 0.18 7.7 Entire circumpolar area

within 83.25–87�N
aThe results presented are significant with p < 0.01. Bilateral regression analysis was applied to the combination of all those grid locations where at least

one flux-averaging period suggests a significant relationship (p < 0.01) between a given flux and SMO (M1). The stepwise multi-linear regression equation
(combination of LWd, SWd, LE and H) is valid for the entire circumpolar area within 83.25–87�N (M1). Depending on the flux (column 1), a certain n-day
averaging period (column 2) yields the strongest relationship (column 3) between the corresponding n-day average flux anomaly and SMO. The strongest
linear relationship has the highest r2 compared to other flux-averaging periods (1–40 days prior to SMO). For example, the first line means that the 4-day
average NF anomaly before the SMO date (M1) explains 28% of the total SMO variance (from year-to-year and between neighboring grid locations) with
RMSE of 7.6 days. The stepwise multiple linear regression equation for the entire circumpolar central Arctic (83.25–87�N) ranks the contribution of
individual heat fluxes in the equation.
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a half (46%) of the circumpolar central Arctic area
(Figure 7a), with a root mean square error (RMSE) about 6–
7 days (not shown). In the western central Arctic, within the
area where 3–7 day average flux anomalies (Figure 7b)
explain 80–90% of SMO variance (Figure 7a) at least 3

fluxes (Figures 7c–7f) appear in the multilinear regression
equation, with LWd the dominating term (Figure 7c). Within
another sector in the western Arctic, a 40-day time average
(Figure 7b) LE and H are either the only or most important
terms included in the best multilinear regression equation

Figure 6
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(Figures 7e and 7f). Interestingly, although SWd by itself
does not correlate with SMO, the inclusion of SWd into the
multilinear regression equation improves the explained var-
iance of SMO over most of the central Arctic (Figure 7d).
[49] Figure 8 compares the best results obtained with the

bilateral and multiple regression analysis. Over most of the
central circumpolar Arctic (68% of the study domain, shaded
area) a combination of fluxes explains SMO better than any
of the individual fluxes (Figure 8c) or their sum. LWd
largely dominates over the other fluxes within the Pacific
and Atlantic sectors of the central Arctic (Figure 8c). The
best time averaging period within the Atlantic sector is
25 days on average (Figure 8b). On the Pacific side the best
time averaging period has two peaks at 4–7 and 20–27 days.
[50] Stepwise multilinear regression analysis was also

applied to the composite of all maritime grid locations (2862
in total) within the circumpolar central Arctic. Calculated in
this manner, the combination of 5-day average LWd, SWd,
LE and H anomalies explains 18% of the total SMO variance,
with a standard error of the linear regression model of about
one week (Table 1). To note, the total variance includes both
interannual and spatial variance. Figure 9 demonstrates how
well the best multilinear regression equation (in Table 1)
reconstructs the local SMO features in three years: 1990,
2003 and 2007. Year 2003 is illustrated as a typical year with
the SMO close to the 20-year average (Figures 9c and 9d).
Year 2007 is taken for comparison as the most famous for its
unique sea ice conditions (Figures 9e and 9f). SMO in 1990 is
shown in contrast to SMO pattern observed in 2007: with
essentially opposite SMO anomalies (Figures 9a and 9b).
Accordingly, the best combination of four fluxes well cap-
tures the spatial features of SMO (Figure 9), but cannot
explain SMO anomalies larger than 15 days.

4.5. Trends

[51] We first focused on the local MO trend at those SSM/I
MO pixels with a complete 20-year time series. Statistically
significant (p < 0.01) trend is found within 83.400 km2

(shaded locations in Figure 10a), that is only 5% of the cir-
cumpolar central Arctic area (83.25–87�N). Depending on
the location, the MO tendency is toward earlier MO, ranging
locally between �8 and �18 days per decade (Figure 10a).
The average of these significant local (in 25 km resolution)
MO trends is �13 days per decade.
[52] There are three major differences in our experimental

setup compared to Markus et al. [2009]. (1) Central Arctic
domain is defined differently. (2) Our study period is only
20 years long (1989–2008) against a 29-year period in the
study by Markus et al. [2009]. (3) Our trend estimate is for

each individual 25 km MO pixel, whereas Markus et al.
[2009] calculated the trend for the “annual areal average
MO” within the central Arctic region. According to Markus
et al. [2009] in the central Arctic the MO trend was about
�2.5 days per decade (1979–2007) and our calculations for
the same 29-year period confirm this result (p < 0.01).
[53] Area average 20-year trend in SMO sample within the

circumpolar central Arctic is �8.8 days per decade
(Figure 10b). These results nicely illustrate how different
approaches produce very different trends in MO/SMO: by
�2.5, �8.8 and �13 days per decade.
[54] Both the interannual variability and trends in SMO

should, in principle, be explainable by interannual variability
and trends in NF. In contrast, the interannual variability and
trends in the apparent MO can be also related to the sea ice
dynamics. To discuss a possible relationship between the
trends in surface fluxes and trends in SMO, again we first
need to define the reference period of the year when changes
in fluxes might trigger a larger/smaller heat accumulation
within a dry snowpack. In our example here we averaged
the surface fluxes during a 30-day pre-melt period (21 April–
20 May) every year and calculated the linear trend at each
ERAI grid location (Figures 10c and 10f). Where the 21 May
is the earliest local SMO found within the circumpolar central
Arctic (83–87�N) in the period 1989–2008.
[55] In the period of 21 April–20 May ERAI SWd, SWnet,

LWnet, H, DR and DF follow significant 20-year trends
within a portion of the study area (83–87�N), but not every-
where in the circumpolar central Arctic (Figure 10). The
largest trends are found for SWd, DF and DR: reaching +15–
20 W/m2 per decade north of Greenland and in the Lincoln
Sea. Since DR and DF trends are very similar in magnitude
and have the same spatial features, only DF is illustrated here
(Figure 10e). H and LWnet trends are negative (Figure 10f),
which seems to be a consequence of a larger SWd and SWnet
in ERAI: where H, LWup and LWnet strengthen (heat loss)
with an increased surface heating by means of SWd. NF,
LWd and LE trends in the period 21 April–20 May are
insignificant. DR and DF trends are large and appear within
the most of the study area.
[56] In reality the trends in SMO and surface fluxes (NF)

could partly be due to changes in sea ice and snow cover and
partly due to evolution of meteorological conditions. Recent
studies manifested a significant thinning of sea ice in the
Arctic Ocean [Kwok and Rothrock, 2009]. We speculate that
younger (saltier, thinner and warmer) ice should have
impacted the true NF at the snow surface, and likely con-
tributed to the observed advance of snow melt in the spring
(SSM/I). An interesting aspect to be highlighted: in the areas

Figure 6. Bilateral regression results revealing the relationship between the flux anomaly and the corresponding SMO
anomaly (same location, same year). The study domain is within 83.25–87�N. The averaging period for the flux anomaly
ranges from 1 to 40 days prior to SMO (method M1). Left-hand plots illustrate the results for LE and right-hand plots for
H. (a, b) Dependence of the squared correlation (r2) on the flux-averaging period. The black dots show all significant r2

values for each flux-averaging period. The gray curve shows the number of ERAI grid locations where a significant r2

was found with the given flux-averaging period. (c, d) Scatter of 30–40 day flux anomalies against corresponding SMO
anomaly. Each location is represented with 20 black open circles (20 years). All locations evoking a significant r2 at any
flux-averaging period between 30 and 40 days are regrouped. Four vertical gray lines delimit �15–20 day SMO anomalies.
The average of 30–40 day flux anomalies corresponding to these �15–20 day SMO anomalies is cited in the text. (e, f) The
highest r2 found with some of the flux-averaging periods (1–40 days), method M1. All grid locations where at least one sig-
nificant r2 was detected with M1 are shown. (g, h) Comparison of the highest r2 (p < 0.01) obtained with the three methods
(M1, M2 and M3) and all flux-averaging periods (1–40 days).
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Figure 7. Best results for the stepwise multilinear regression (MLR) analysis at each individual grid
location (p < 0.01), method M1. (a) Fraction of the local interannual SMO variance (r2) explained by
the best combination of four fluxes: LWd, SWd, LE and H. At each particular location r2 value is the high-
est among all combinations of these four fluxes and 40 different flux averaging periods. (b) Flux averaging
period suggesting the highest r2 that results from the best combination of four individual fluxes. (c–f) Rank
of the flux components in the best multilinear regression equation (at each individual grid location). For
example, in Figure 7c at those locations where the color code refers to 1, LWd is the most significant flux
component (with the smallest p-value) and the first included in the forward multilinear regression analysis.
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where the ice and/or snow have become thinner, a trend
toward an earlier SMO might occur even with a negative
trend in NF, LWd and SWd.
[57] The illustrated trends in surface heat fluxes are only

based on ERAI, and not validated against observations. So far,
the field spring-time flux measurements only exist for limited
periods in a few ice stations. A strong debate has taken place
on the reliability of trends in reanalyses (e.g. ERA-40) in areas
where almost no observational data were assimilated, such as
the central Arctic northward of 82�N [e.g., Graversen et al.,
2008; Bitz and Fu, 2008; Grant et al., 2008; Thorne, 2008;
Screen and Simmonds, 2011]. Although the reported magni-
tudes of trends differ among various data sets, all these cited
studies agree that there have been warming trends in the cen-
tral Arctic, in particular in spring and fall, with the earlier
spring snowmelt and later fall freeze-up. According toUppala
et al. [2008], Dee and Uppala [2009], and Dee et al. [2011],

ERAI reproduces meteorological processes in the Arctic better
than earlier reanalyses, which possibly has also improved the
accuracy of radiative and turbulent fluxes on sea ice, but this is
still an open question.

5. Discussion

[58] To successfully quantify the effect of surface fluxes on
SMO, it was essential to take into account the following.
First, instead of analyzing fluxes themselves, we paid atten-
tion to the flux anomalies relative to the 20-year climatology.
Contrary to the flux anomalies, radiative fluxes themselves
have a non-causal positive correlation with SMO: when
SMO occurs late, corresponding seasonal values of LWd and
SWd are larger. Second, we found that there is no single time
scale for the pre-melt period when the contribution of surface
fluxes to SMO is the most important. For NF, LWnet and

Figure 8. Comparison of the bilateral versus multilinear regression results, method M1. (a) Fraction of
the local interannual SMO variance explained by the surface fluxes (r2): NF, LWd, LWnet, SWd, SWnet,
LE, H, DF, DR or any combination of 4 major fluxes (multilinear regression with LWd, SWd, LE and H
flux components). At each particular location, this r2 value is the highest among the individual heat fluxes,
all combinations of four major fluxes and all flux averaging periods. (b) Flux averaging period suggesting
the best r2 that results from any individual flux or combination of individual fluxes at each grid location.
(c) The factor best explaining SMO variance (individual fluxes or some combination of them, ranked by
r2) at each grid location. Multilinear regression (MLR) refers to some combination of LWd, SWd, LE and
H flux anomalies, suggesting the best r2. Notation “F” corresponds to any of the following fluxes: NF,
LWnet, SWd, SWnet, DF or DR. (d) RMSE corresponding to the best explaining factor shown in
Figure 8c.
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Figure 9. Comparison of the original SSM/I-based SMO time series (left-hand maps) versus the recon-
structed SMO time series (right-hand maps) in (a, b) 1990, (c, d) 2003 and (e, f) 2007. SSM/I-based SMO
anomalies (left-hand maps) are calculated relative to the 20-year local mean SMO date. The multilinear
regression (MLR) equation from Table 1 and the local heat flux anomalies (5-day average, method M1)
are applied to reconstruct SMO anomalies at each ERAI grid location.
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Figure 10. 20-year (1989–2008) local trends in (a) original MO data in 25 km resolution, (b) SMO in
ERAI grid resolution, (c) SWd, (d) SWnet, (e) DF and (f) LWnet together with H. In Figure 10f dark blue
represents LWnet trend, and light blue - green colors reflect H trend. Trends for ERAI surface fluxes
are calculated based on the monthly mean heat fluxes in the same pre-melt period each year (20 April–
21 May) and around the region. Trends were calculated only for the complete 20-year records, significant
at p < 0.01.
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LWd the most relevant time scale was 1–7 days, whereas for
H and LE it was around 30–40 days. Yet, we note that sig-
nificant r2 were also found with other time averaging periods
(Figure 5a, 5b, 6a, and 6b). The differences are probably
related to the daily magnitudes of flux anomalies: NF and
LWd reach larger magnitudes than LE and H and, accord-
ingly, a long-term anomaly in LE and H is needed to cause a
statistically significant effect on SMO.
[59] Over most of the central Arctic a combination of 2–4

fluxes explained SMO better than the individual fluxes alone
or their sum (DR, DF and NF) (Figure 8c). This must be due
to a different accuracy of the individual fluxes. However, if
all fluxes were equally accurate in ERAI, NF should corre-
late with SMO better than any of its components or any
combination of some of its components.
[60] The combination of LWd, SWd, LE and H anomalies

(multilinear regression) well captures the spatial and inter-
annual differences in SMO (Figures 7 and 9). Large SMO
anomalies (of 15–35 days) and huge spatial differences in
SMO (by 1–3 months within 50 km distances) are, however,
poorly explained by surface fluxes. This is related to errors
in fluxes (ERAI) and possibly also to the distinction of two
sea ice types in the MO algorithm (SSM/I). The algorithm
for MO detection applied byMarkus et al. [2009] is different
for the multiyear and first-year ice. We suspect that differ-
ences between ice types, most likely contribute to the inter-
annual variations in SMO. Further studies are needed to find
out how well surface fluxes explain SMO variance on top of
different ice types.
[61] A detailed statistical investigation of the effect of

snow and ice thickness and the conductive heat flux on SMO
variance and trends would require data with spatial and
temporal resolution comparable to ERAI, but no such data
are currently available. We may, however, assume that the
variability in the conductive heat flux was one of the main
factors that reduced the capability of radiative and turbulent
fluxes to explain SMO variance.
[62] The original MO record ofMarkus et al. [2009] is not

fully independent of ERAI, because SSM/I data of sea ice
concentration were applied in both. However, if focusing on
the circumpolar central Arctic with a prescribed SIC of 100%
in ERAI, and also extracting the SMO signal from the MO
record, we can consider these data sets fully independent. In
the future, the SMO data could be utilized to improve rea-
nalyses by means of surface (skin) temperature assimilation.
Regarding the hole at the North Pole and the spatial resolu-
tion, the active microwave time series of the backscatter
[Kwok et al., 2003] could be used to fill in the gap and to
improve the spatial coverage of the existing MO records.
[63] Errors detected in ERAI near-surface air temperature

and moisture during Arctic summer [Lüpkes et al., 2010] and
simplified SIC representation north of 83�N indicate that
neither surface fluxes are free of errors. However, a good
aspect in reanalysis is that the same model and data assimi-
lation system were applied throughout the period, resulting in
a spatially and temporally consistent data set. Errors in sur-
face fluxes may, however, depend on weather and sea ice
conditions, which could generate interannual variations in
the errors, but such a possible dependence has not been
investigated over Arctic sea ice yet. Furthermore it is unlikely
that errors in the surface fluxes could generate artificially
improved correlations between the fluxes and SMO. Instead

errors in surface heat fluxes, in MO detection, and SMO
sampling (used as the reference date for the pre-melt period
definition) should have increased the scatter in the observed
relationship between SMO and the fluxes, thus reducing
correlations.
[64] We also highlight that the continuous MO detected

with the remote sensing by Markus et al. [2009] is an
instance (Julian day) when either (a) liquid water remains on
top of the sea ice (snow melt), or (b) the final sea ice diver-
gence occurs. Although SMO and the ice divergence are
closely related, they have a different origin. SMO on top of
large and compact ice slab is due to a sufficient accumulation
of the net heat flux (NF) within the snowpack, whereas
opening of leads and polynyas (before melt ponds appear on
top of sea ice) is due to divergent ice drift, typically caused by
winds, tides, ocean currents of other origin, or bottom melt of
ice. Studies on the latter processes are beyond the scope of
this paper, but these aspects are essential for the treatment
and interpretation of the original MO data. It seems that in the
earlier analyses of satellite-based MO records, SMO and
opening of leads and polynyas have not been distinguished.
[65] We presented quantitative SMO versus heat flux

relationships only for the central Arctic (83–87�N), where it
was possible to reliably detect the causal effect of surface
fluxes on SMO. However, strong statistical relationships
between SMO and surface fluxes were also found in the
seasonal ice zone: Kara, Laptev, East-Siberian, Chukchi and
eastern Beaufort Seas and the Baffin Bay. In these areas the
most important fluxes were NF and SWnet. In contrast to the
central Arctic (83–87�N) where ERAI surface fluxes were
the least affected by SIC changes, in areas south of 83�N
ERAI SIC dropped below 80% at least once during the pre-
melt period (Figure 3f). As a result, when the ice concentra-
tion is reduced, the stronger SW absorption by the open water
contributed to the additional NF accumulation. In other
words, southward from 83�N, the positive NF and SWnet
flux anomalies during the pre-melt period were due to the
opening of leads or polynyas at least once within the 20-year
record. Hence, some positive NF and SWnet flux anomalies
were not a reason for the early SMO, and the statistically
significant relationships were only partly due to the causal
effect of fluxes on SMO. The effect of SIC on LWd was not
as straightforward as in the case of NF and SWnet. Interan-
nual LWd anomalies explained up to 70% of the local inter-
annual SMO variance southward from 83�N, significant
within vast areas of the northern Kara Sea, Laptev Sea,
northward of the East-Siberian-Beaufort Seas (75–83N) and
in the western Baffin Bay.

6. Conclusions

[66] Applying ERAI reanalysis of radiative and turbulent
surface heat fluxes and satellite passive microwave (SSM/I)
data of sea ice concentration and SMO in the period of 1989–
2008, we evaluated the portion of the interannual variance in
SMO explained by the surface fluxes over the central Arctic
Ocean at 83–87�N. High and causally relevant correlations
are found between the surface flux anomalies and SMO
timing: a larger net heat flux and downward longwave radi-
ation and weaker heat loss from the surface via the turbulent
fluxes (LE and H) occur in springs/locations with an earlier
SMO.
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[67] The anomaly of the net heat flux 1–7 days prior the
SMO explains up to 65% of the interannual variance in SMO.
The main term of the net flux is the downward longwave
radiation, which alone accounts for up to 90% of SMO var-
iance over a limited area in western central Arctic. Solar
radiation is not an important factor alone, but in combination
with other fluxes improves the explained variance of SMO.
Seasonal 30 to 40-day anomalies in the turbulent fluxes of
sensible and latent heat explain locally up to 72% and 56% of
the interannual SMO variance respectively. Regarding
method M1, the individual heat fluxes and various combi-
nations of them account for about 30–90% of the interannual
SMO variance within as much as 68% of the study domain
(Figure 8). When comparing all three methods (M1, M2
and M3) a significant explained variance in SMO timing is
detected within 83.5% of the study domain (not shown).
[68] The downward longwave radiation is the most

important flux term, best explaining the timing of SMO. This
points out on the importance of clouds and air moisture. The
difference in downward longwave radiation between over-
cast and clear skies is typically 70–100W/m2 [Beesley, 2000;
Intrieri et al., 2002;Wang and Key, 2005]. It is, however, not
only the cloud fraction and thickness that control longwave
radiation, but also the phase of clouds; water clouds have a
significantly higher longwave emissivity than ice clouds
[Wang and Key, 2005; Pinto et al., 1997]. The association of
an early SMO with a small heat loss from the surface by the
turbulent fluxes of sensible and latent heat suggests that an
early SMO is related to the presence of warm and moist air
over the sea ice. Warm air advection is an important mech-
anism for synoptic-scale near-surface warming events over
Arctic sea ice, and it is often associated with low-level liquid-
phase clouds [Persson et al., 2002; Vihma and Pirazzini,
2005]. These are the conditions that favor both large down-
ward longwave radiation and reduced turbulent heat loss
from the surface, accordingly also favoring an early SMO.
[69] Local SMO gradients of up to one month per 50 km

distance are occasionally related to large surface flux gradients
(up to 25 W/m2 in NF within 50 km distance) associated with
the atmospheric fronts, and further should be examined
together with the sea ice types. In agreement with the earlier
SSM/I-based studies, the 20-year MO and SMO trends in the
central circumpolar Arctic Ocean are toward earlier spring
melt. Local MO and SMO trends of 13 and 9 days per decade,
respectively, are found within a limited area where complete
20-year time series were available. SMO trends cannot be
reasonably explained by ERAI surface fluxes. Moreover, we
stress that the trend estimates strongly depend on the method
applied and should be considered with caution.
[70] To reach these results, it was essential to extract the

SMO signal out of the original MO record by Markus et al.
[2009], which also includes cases of opening of leads and
polynyas. The analysis based on three alternative methods
(M1, M2, or M3) yields essentially similar results. While
differences exist in detailed numerical values (r2, rmse,
length of the best time averaging period), the main conclu-
sions of the work do not depend on the method.
[71] We stress that more studies are needed to better

understand and quantify the factors controlling SMO. A high
priority should be given to the studies investigating the
relationships between the sea ice, surface heat fluxes, local
meteorological conditions (clouds, wind, air temperature and

humidity), cyclones, and large-scale circulation. In particu-
lar, the important role of downward longwave radiation on
SMO calls for more studies on the cloud radiative forcing,
sources of Arctic clouds (advection from lower latitudes
versus evaporation from ice-free areas in the Arctic), and the
evolution of cloud properties with changing sea ice cover.
The results obtained may increase the potential for seasonal
prediction of Arctic sea ice conditions. As the SMO initiates
the albedo feedback process, the conditions favorable for
early SMO are also favorable for larger ice melt and heat
storage in the upper ocean [Perovich et al., 2007a, 2007b;
Notz, 2009], and hence, for reduced sea ice cover and later
freeze-up in the following fall.
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ABSTRACT

The performance of general circulation models (GCMs) varies across regions and periods. When projecting

into the future, it is therefore not obvious whether to reject or to prefer a certain GCM. Combining the

outputs of several GCMs may enhance results. This paper presents a method to combine multimodel GCM

projections by means of a Bayesian model combination (BMC). Here the influence of each GCM is weighted

according to its performance in a training period, with regard to observations, as outcome BMC predictive

distributions for yet unobserved observations are obtained. Technically, GCM outputs and observations are

assumed to vary randomly around common means, which are interpreted as the actual target values under

consideration. Posterior parameter distributions of the authors’ Bayesian hierarchical model are obtained by

a Markov chain Monte Carlo (MCMC) method. Advantageously, all parameters—such as bias and precision

of the GCM models—are estimated together. Potential time dependence is accounted for by integrating

a Kalman filter. The significance of trend slopes of the common means is evaluated by analyzing the posterior

distribution of the parameters. The method is applied to assess the evolution of ice accumulation over the

oceanic Arctic region in cold seasons. The observed ice index is created out of NCEP reanalysis data. Outputs

of seven GCMs are combined by using the training period 1962–99 and prediction periods 2046–65 and 2082–99

with Special Report on Emissions Scenarios (SRES) A2 and B1. A continuing decrease of ice accumulation is

visible for the A2 scenario, whereas the index stabilizes for the B1 scenario in the second prediction period.

1. Introduction

Today it is well accepted that global climate change

has an effect on the polar regions (cf. Parry et al. 2007).

The characteristics of the feedback is still under in-

vestigation and is related to important questions such as

future sea level rise (cf. Charbit et al. 2008) and the in-

fluence of the polar regions on midlatitude patterns of

atmospheric circulation and precipitation (Stroeve et al.

2007). General circulation model (GCM) projections are

instrumental to exploring the effect of climate change in

the future (see, e.g., Baettig et al. 2007). These models

are run under contemporary conditions and possible fu-

ture scenarios that reflect assumptions about the evolu-

tion of environment and society, especially the potential

change in CO2 emissions and concentrations. In this

work two common greenhouse gas and aerosol emission

scenarios (Nakicenovic and Swart 2000)—Special Re-

port on Emissions Scenarios (SRES) A2 and B1—are

employed for projections. The GCMs are based on com-

plex dynamics and their performance varies across space

and time. It is therefore not obvious whether to reject or
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prefer a certain GCM when projecting into the future.

A simple combination of the different GCM outputs,

which we denote the multimodel ensemble, might av-

erage out extremes. For diverse application fields it has

nevertheless been shown that multimodel ensemble av-

eraging (MEA) or Bayesian model averaging can gen-

erate better projections than each single model (cf.

Raftery et al. 2005; van Loon et al. 2007).

Bayesian inference allows for the incorporation of

expert knowledge and the assessment of parameter un-

certainties. The approach has been increasingly used

in climate change studies (see, e.g., Tol and De Vos 1998;

Rougier 2007). For a general discussion of Bayesian sta-

tistics, refer to Congdon (2003) or Gelman et al. (2004).

Combining multimodel ensembles by using a Bayesian

approach has been pursued by a variety of studies.

Among them, several are related to climate change and

aim at the enhancement of projections. Coelho et al.

(2004) regressed the multimodel ensemble mean on ob-

servations. This does not allow for a differentiation of

bias and variance of the diverse models. Raftery et al.

(2005) regressed observations on a weighted linear com-

bination of model projections. Weights, which indicate

the importance of each model, and regression parame-

ters were estimated in a training period for which ob-

servations were available. Then they were transferred to

a prediction period. Regression on the sum of model

projections may cause overfitting when too many models

are used. Therefore, the number of models and the length

of the training period play an important role in this ap-

proach. Min and Hense (2006) proceeded likewise,

where the weights for the linear combination of model

outputs were obtained from Bayes factors. Tebaldi et al.

(2005) treated observations and model outputs as ran-

dom variables. Both data sources varied around common

means. These means were interpreted as unobserved

values of the assessed variable, the target values. In this

way a connection between model outputs and observa-

tions is established. Tebaldi et al. (2005) explored the

change of mean temperature between the training and

prediction periods. Here stationarity of the variable was

assumed within each period. Berliner and Kim (2008)

followed a similar approach, but they allowed for time-

dependent variables under consideration by applying

a data assimilation framework. The target values were

modeled as autocorrelated hidden states, which are influ-

enced by covariates. They estimated a potential bias of

each model as averaged deviation from these target values.

The study presented here is in line with Tebaldi et al.

(2005) and Berliner and Kim (2008). We allow for a

temporal gap between the training and prediction periods.

That is, contrary to Tebaldi et al. (2005), projections are

not regressed on model outputs of the training period.

Model outputs and observations are assumed to vary

around common means, that is, both have an error. In

the training period, model outputs and observations are

combined to a weighted average, whereas we assume

that observations have no bias. In this way a potential

bias and the variability of each GCM are estimated

in comparison to the observations. This differs from

Berliner and Kim (2008), who did not directly involve

observations to estimate these parameters. A Kalman

filter is integrated in a Markov chain Monte Carlo

(MCMC) routine to estimate the parameters of our

Bayesian hierarchical model (Chib and Greenberg 1996).

This allows for sequential prediction and for updating

steps and the assessment of time-dependent variables,

which are especially required when analyzing the effect

of climate change. The common means of model outputs

and observations are modeled as hidden states compris-

ing a stationary autoregressive and a trend component.

As application we assess the evolution of an ice index.

We proceed as follows: In section 2 the data are de-

scribed and the construction of the ice index for the

oceanic Arctic region is presented. The Bayesian model

combination (BMC) framework is outlined in section 3

and its application to the ice index is illustrated in sec-

tion 4. Last, a summary of our results and a conclusion

are given in section 5.

2. Ice accumulation over the oceanic Arctic region

Sea ice area reductions are related to increases of sur-

face air temperature in the polar regions (Hassol 2004);

such reductions have been well documented by obser-

vational and modeling studies (cf. Zhang and Walsh 2006;

Cavalieri and Parkinson 2008). Temperature-based ice

indices represent primarily sea ice thickness and vol-

ume: the intensity of sea ice accumulation during the

freezing season is a result of heat fluxes between ocean

and air reservoirs through snow-covered sea ice. Sea

ice accumulation has, for example, been estimated by

Anderson (1961) and Maykut (1986), who utilize daily

near-surface temperature fields for this purpose. Sea ice

thickness and volume are important for sea ice–related

feedbacks (Stroeve et al. 2007). They influence, for ex-

ample, ice forming and drifting processes.

Here atmospheric surface temperatures (SATs), 2 m

above the surface, are used to calculate an ice index as

a proxy for the ice accumulation over the oceanic Arctic

region. This ice index has been developed within the

European Union (EU) project Developing Arctic Mod-

eling and Observing Capabilities for Long-term Envi-

ronmental Studies (DAMOCLES; available online at

http://www.damocles-eu.org). We use daily SAT data to

calculate the index, either provided by GCMs or by
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National Centers for Environmental Prediction (NCEP)

reanalysis data. The ice index was designed in the fol-

lowing way: The area over the oceanic Arctic region was

classified regarding its iciness over the freezing season

(September–May). The level of iciness was estimated

by taking at each grid point the sum of degrees below

21.78C over the season. The iciness classes had a width

of 2008C. Data at different grid points represent areas

of distinct size; in this way, area and classes of iciness

are linked. Figure 1 exemplarily shows the levels of ici-

ness of the oceanic Arctic region for the freezing season

2000/01 and NCEP reanalysis data. The winter ice index

was obtained by taking the integral of the classified area,

that is, the black curve in Fig. 1. Here the summands of

the Riemann integral have been weighted with the ici-

ness class levels and the area of the warmest classes,

where the sum of degrees below 21.78C is smaller than

11008C, were disregarded. In this way the focus is set on

the colder levels, and the intensity of freezing conditions

during the polar winter is explored. This ice index, there-

fore, is related to sea ice volume accumulated by the end

of winter rather than to sea ice extent. Further details

are provided in Maksimovich and Gascard (2010). We

analyze the ice index for the historical period 1962–99

and projection periods 2046–65 and 2082–99 and SRES

A2 and B1. NCEP reanalysis data are used to calculate

the observed ice index. Outputs of 13 Intergovernmental

Panel on Climate Change (IPCC) models cover all three

periods and are therefore chosen for our analysis (see

Fig. 3 for model acronyms). Within the historical period,

the models are run with the twentieth-century run (20c3m)

scenario, that is, with increasing greenhouse gases and

anthropogenic sulfate aerosol forcing as observed through

the twentieth century. The model surface temperature

data have been obtained from the Program for Climate

Model Diagnosis and Intercomparison (available online

at www-pcmdi.llnl.gov).

3. Bayesian model combination

Let BMC denote our technique to average over many

competing models by setting up a statistical model. The

quantities of interest are parameters of this model, which

are estimated while evaluating GCM outputs and ob-

servations. The effect of each GCM is weighted according

to its performance in a training period, where observa-

tions are available for comparison. In this way model

uncertainty is incorporated in the calculation of the

BMC projections. Expert knowledge may be integrated

as prior information. The aim of BMC is the improve-

ment of predictive performance. For the analysis we

proceed in two steps, as illustrated in Fig. 2. First, the

BMC framework is inspected on a verification period.

Here the BMC projections are compared to observa-

tions not used in the calibration. The BMC results in

predictive distributions. We take the mean of these dis-

tributions as actual BMC projections. Their uncertainty

is deduced by calculating credibility intervals from the

predictive distributions. In Fig. 2 BMC projections of

the ice index (black line) are depicted together with

GCM projections (gray dots) and observations (thick

black lines). For the verification period shown, the BMC

projections are located much closer to the observations

FIG. 1. Accumulated area over oceanic Arctic region, classified

by iciness. The level of iciness is measured by the sum of degrees

below 21.78C per freezing season (September–May). The ice index

is created as an integral over the black curve, weighted by the classes

of iciness (x axis). Areas below the offset (gray line) are disregarded.

FIG. 2. Outline of the BMC framework: first, the framework is

inspected by projecting from a training period to a verification pe-

riod, where observations are also given (1); then, a training period is

chosen to project to a future period (2). The winter ice index gen-

erated from NCEP reanalysis data (with 66% confidence intervals in

the verification period) is shown as thick black lines, and the BMC

projections (with 66% credibility intervals) as thin black lines.
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than the projections of each single model. A more de-

tailed evaluation of the performance of the BMC is

provided by using scores, see section 4a. In a second

step, we choose a training period to project to future

periods, where no observations are available. The bias

of the GCMs is estimated in the training period and

maintained for the projections. Figure 2 shows, for ex-

ample, that the BMC projections lie below the output

of each single model, just like the observations in the

training period. Our goal is to project the yet unobserved

observations Y0, which we take as mean of the predictive

distribution [Y0jD]. Here the data vector D 5 (X0, X1, . . . ,

XM, Y1, . . . , YM) is given by the vectors of observations

X0 and model outputs in the training period Xi and in the

prediction period Yi. In our example X0 is a winter ice

index created of surface temperature over the oceanic

Arctic region and Xi denotes this ice index computed by

model i over the same region and at the same period.

Bayesian inference presumes that parameters are not

point estimates but have a distribution. For each model

parameter, say, ui, a prior distribution is assumed, which

comprises our knowledge about the uncertainty of the

parameter values. Then we learn from the data D to obtain

the posterior distribution of the parameters, say, [QjD].

This is formalized with Bayes’s theorem (cf. Gelman et al.

2004). Let [DjQ] denote the conditional distribution of

D given Q, that is, the likelihood of the data. We can say

that [QjD] is proportional to the product of likelihood

and prior distribution of the parameters, that is,

[QjD] } [Q][DjQ]. (1)

Integration over all parameters leads to the predictive

distribution of Y0 given D:

[Y
0
jD] 5

ð
Q

[Y
0
jQ][QjD] dQ. (2)

Equation (2) implies the conditional independence of Y0

and D given Q. For further details see Congdon (2003).

a. State-space model

Climate projections for the Arctic often exhibit trends,

which are superimposed by decadal oscillations (Döscher

et al. 2009). To be able to distinguish and track charac-

teristics due to potentially different processes, we model

the evolution of the ice index in time. To do so a se-

quential data assimilation procedure is employed within

our Bayesian framework (cf. DelSole 2007).

We permit a gap of G9 time steps between the training

and prediction periods and introduce G 5 T 1 G9; thus

t 5 G 1 1, . . . , G 1 P is the time index of the prediction

period of length P (see Fig. 2). At each time point t in

1, . . . , T, G 1 1, . . . , G 1 P, there is a prediction and

update step of the parameter distributions. Let Dt de-

note the vector of data per time step,

D
t
5

(X
0

t
, X

1
t
, . . . , X

M
t
) for t 5 1, . . . , T,

(Y
1

t
, . . . , Y

M
t
) for t 5 G 1 1, . . . , G 1 P.

(

(3)

The relations between model outputs and observations

are given by the data equations

X
i
t
5 c

T
1 m

t
1 d

t
1 b

i
1 �

i
t

for t 5 1, . . . ,T, i 5 0, . . . , M and

Y
i
t
5 c

P
1 n

t
1 d

t
1 b

i
1 e

i
t

for t 5 G 1 1, . . . , G 1 P, i 5 1, . . . , M, (4)

with b0 5 0, and Gaussian distributions for the noise,

that is, �
it

; N(0, l�1
i ), e

it
; N[0, (gl

i
)�1]. Here N(m, s2)

denotes normal distribution with mean m and variance

s2 as parameters; li is the precision of model i and is

equal to the reciprocal value of the variance. The pre-

cision of the observations l0 reflects the natural vari-

ability specific to the season and other physical factors.

In our model l0 is externally given and estimated from

the observations. The parameter g allows for a different

model precision for the training and prediction periods.

It is assumed that all models experience the same degree

of change, that is, g is the same for all models. Moreover,

it is presumed that each GCM has a constant bias bi, and

this bias is transferred from the training period to the

prediction period.

The common means of model outputs and observations

are modeled as composition of an intercept, a stationary

autoregressive component, and a trend component.

This gives the common means for the training period

MTt 5 cT 1 mt 1 dt and for the prediction period MPt 5

cP 1 nt 1 dt. Empirical series often exhibit autocorrelated

noise. Here the assumption of uncorrelated noise may

bias the estimate of the magnitude of the systematic

change (cf. Bloomfield 1992). Therefore, we allow for an

autocorrelated part, which is a common approach in time

series analysis (cf. Cohn and Lins 2005; Harvey et al.

2007). The results for the ice index assessment confirm

this choice: we find significant autocorrelation for all

settings analyzed (see section 4d). The stationary au-

toregressive components mt and nt and the linear trend
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components dt and dt are modeled separately. By doing

so, we differentiate systematic changes and other var-

iations of the common mean (see, e.g., West 1997).

The temporal dependence is modeled by the following

state-space equations:

m
t
5 fm

t�1
1 v

m
t

for t 5 1, . . . , T,

d
t
5 d

t�1
1 k

1
1 v

d
t

for t 5 1, . . . , T,

n
t
5 fn

t�1
1 v

n
t

for t 5 G 1 1, . . . , P, and

d
t
5 d

t�1
1 k

2
1 v

d
t

for t 5 G 1 1, . . . , P,

(5)

with v
mt

; N(0, l�1
m ), vdt

; N(0, l�1
d ), v

nt
; N(0, l�1

n ),

and v
dt

; N(0, l�1
d ) being independent and identically

distributed. The state-space parameters are constructed

such that they have the Markov property (Chib and

Greenberg 1996). Here mt and nt are autoregressive (AR)

components of order one [AR(1) processes]. We sup-

pose short-term variability to be an intrinsic character-

istic of the system assessed; therefore, the autoregressive

parameter f is transferred from the training period to

the prediction period. On the other hand, there may be

a gap of several decades between the training and pre-

diction periods. Consequently, transferring trend slope

estimates from the training period to the prediction pe-

riod is not feasible. Here the unknown potential trend

in the prediction period is therefore inferred from the

GCM projections. In this way trend slope and intercept

may differ in both periods; k1 and k2 denote the trend

slopes times Dt, which is the time difference between

two consecutive observations (see, e.g., Dethlefsen and

Lundbye-Christensen 2005).

The parameter vector at time t is given by

Q
t
5

(c
T

, m
t
, d

t
, l

1
, . . . , l

M
, f, k

1
, b

1
, . . . , b

M
, l

m
, l

d
) for t 5 1, . . . , T,

(c
P

, n
t
, d

t
, l

1
, . . . , l

M
, g, f, k

2
, b

1
, . . . , b

M
, l

n
, l

d
) for t 5 G 11, . . . , G 1 P.

�
(6)

Conditional independence from the data of previous time steps given the parameter values is supposed, that is,

[Q
t
jQ

t�1
, D

1
, . . . , D

t�1
] 5 [Q

t
jQ

t�1
] for t 5 1, . . . , T, G 1 1, . . . , G 1 P,

[D
t
jQ

t
, D

1
, . . . , D

t�1
] 5 [D

t
jQ

t
] for t 5 1, . . . , T, G 1 1, . . . , G 1 P. (7)

Thus, the model given by Eqs. (4) and (5) has the form

D
t
5 H

t
Q

t
1 K

t
1 S

t

for t 5 1, . . . , T, G 1 1, . . . , G 1 P and (8)

Q
t
5 F

t
Q

t�1
1 U

t
1 W

t

for t 5 1, . . . , T, G 1 1, . . . , G 1 P, (9)

with St and Wt being the respective error matrices. The

state-space parameters are assumed to be independent;

consequently, both matrices have nonzero values only in

the diagonal; Ht, Kt, Ft, and Ut contain either zeros or

constants and can be deduced from Eqs. (4) and (5).

To keep the number of parameters low, we chose a

simple structure of the state-space variables; however,

more complicated structures can be easily integrated (cf.

Harvey et al. 2007). The distinction between trend and

autoregressive components may be difficult, as outlined

in Kallache et al. (2005). A state-space model, as pre-

sented in Eq. (5), is a possibility to represent time series,

which may consist of those both components. Its ap-

propriateness has been explored by Koop and Van Dijk

(2000), for example. Moreover, we verify the adequate-

ness of our model given by Eqs. (4) and (5); the results are

provided in section 4a.

b. Sequential updating

As common in data assimilation, alternating update

and prediction steps of the state-space variables are

performed. Here this is also done in the prediction pe-

riod, and the GCM outputs are treated as biased obser-

vations. A projection Y
0t

is based on this evolution.

The update formula or filtering formula is given by

[Q
t�1
jD

1
, . . . , D

t�1
] 5

[D
t�1
jQ

t�1
][Q

t�1
jD

1
, . . . , D

t�2
]

[D
t�1
jD

1
, . . . , D

t�2
]

} [D
t�1
jQ

t�1
][Q

t�1
jD

1
, . . . , D

t�2
].

(10)

With respect to Qt, the marginal likelihood of the data

[DtjD1, . . . , Dt21] is a constant, so we neglect this term.

This update step is equivalent to the calculation of the

posterior distribution of the parameters at time step t,

with the prior distribution given as [QtjDt21].

The prediction formula is denoted by

[Q
t
jD

1
, . . . , D

t�1
]

5

ð
Q

t�1

[Q
t
jQ

t�1
][Q

t�1
jD

1
, . . . , D

t�1
] dQ

t�1
, (11)
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and Eqs. (10) and (11) are the Bayesian solution to cal-

culate the state-space model given in Eqs. (8) and (9).

The state-space model consists of linear and Gaussian

equations; therefore, we apply the Kalman filter to ob-

tain the posterior distribution of the parameters. In this

way the integral in Eq. (11) can be derived by charac-

teristics of the normal distribution. Let Qt�1jDt�1 ;

N(Q̂t�1, St�1) with Q̂t�1 and St21 being the expected

value and the variance of Qt21jDt21, and then Q
t
jD

t�1
;

N(F
t
Q̂

t�1
F9

t
, F

t
S

t�1
F9

t
1 W

t
) (see, e.g., Meinhold and

Singpurwalla 1983).1

c. Prior distributions

We choose uninformative priors because of the lack of

prior knowledge. The precisions li, i 5 1, . . . , M and lm,

ld, ln, and ld are assumed to have uniform prior den-

sities U(0, c). A uniform prior for the precision l is

proportional to a uniform prior for the standard de-

viation s (see, e.g., Gelman 2006). Similarly, we choose

g ; U(0, c) as a prior for g. The upper bound c 5

1 000 000 is chosen to be large to include any plausible

prior value and to avoid an impact of this choice on the

results. The uniform distribution is conditionally con-

jugate to the normal distribution. Therefore, this prior

results in a posterior gamma distribution, similar to when

choosing an informative gamma distribution as prior.

However, by using a uniform prior, we avoid distortions

of the posterior (cf. Harvey et al. 2007) and do not have to

specify hyperparameters for a gamma prior, which may

result in an improper posterior density in case these

hyperparameters tend to zero.

For mt and dt a nearly flat prior, that is, a normal

distribution with variance near to infinity, is selected,

and the same applies for nt and dt, respectively. We

model a trend and an autoregressive component. There-

fore, the autoregressive component is assumed to be

stationary, and for the parameter f a uniform prior on

the interval (21, 1) is chosen. The trend slope pa-

rameters k1 and k2, the intercepts cT and cP, and the

model biases b1, . . . , bM have uniform priors on the real

line.

d. Calculation of the posterior distribution

The joint posterior distribution of the parameters

[QjD] is the target density, which we will obtain by

means of Eq. (1) and sequential calculation of the time

dependent parameters.

The likelihood of the data is given by

[DjQ] 5 [X
0
, X

1
, . . . , X

M
, Y

1
, . . . , Y

M
jQ] } P

M

i51

ffiffiffiffiffiffi
gP

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

(T1P)
i

q
exp �

l
i

2
�
T

t51
[X

i
t
� (c

T
1 m

t
1 d

t
1 b

i
)]2

8<
:

*0
B@

1 g �
G1P

t5G11
[Y

i
t
� (c

P
1 n

t
1 d

t
1 b

i
Þ]2

9=
;
+1A3 exp �

l
0

2
�
T

t51
[X

0
t
� (c

T
1 m

t
1 d

t
)]2

8<
:

9=
;. (12)

To consider the dependencies within the parameters, we

separately assess the constant components of the pa-

rameter vector Qstat 5 (cT, cP, g, f, k1, k2, l1, . . . , lM,

b1, . . . , bM, lm, ln, ld, ld) and the state-space compo-

nents mt, dt, nt, and dt. The posterior distribution of the

constant parameters is given by

[Q
stat
jm, d, n, d, D] } [DjQ] 3 [m, d, n, djQ

stat
] 3 [c

T
] 3 [c

P
] 3 [g] 3 [l

1
] 3 . . . 3 [l

M
] 3 [l

m
] 3 [l

d
] 3 [l

n
] 3 [l

d
] 3 [f]

3 [k
1
] 3 [k

2
] 3 [b

1
] 3 . . . 3 [b

M
].

(13)

Inference of the analytic form of the posterior distri-

bution of the parameters cannot be drawn, but the priors

of the stationary parameters are conjugate to the like-

lihood. Thus, the marginal conditional densities of the

parameters are given, and a MCMC simulation through

a Gibb’s sampler is employed to approximate the marginal

posterior distributions of the parameters (cf. Tebaldi

et al. 2005). Further details are provided in the ap-

pendix. The posterior distribution of the intercepts cT

and cP is normal with variance [T(l0 1 �M

i51li)]�1 and

(gP�M

i51li)
�1. The mean of the intercepts is a weighted

average of observations and model outputs, whereas the

precisions li serve as weights:1 The vector F9t is the transpose of Ft.
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(14)

The posterior distribution of the state-space parame-

ters [mt, nt, dt, dtjQ, D] at each time step t 5 1, . . . , T,

G 1 1, . . . , G 1 P is obtained by applying the update

and prediction steps of Eqs. (10) and (11) by means of a

Kalman filter–based simulation smoother (Meinhold and

Singpurwalla 1983; De Jong and Shephard 1995; Durbin

and Koopman 2002; Harvey et al. 2007). The Kalman

filter and smoother are run at each Gibb’s sampling it-

eration (i) with the current stationary parameters Q
(i)
stat.

The predictive distribution Y
0t

at time t is derived by

using the corresponding parameter vector Qt for Eq. (2).

This parameter vector is actually calculated by utilizing

all data information D, because a Kalman smoother is

employed for the state-space variables (cf. Dethlefsen

and Lundbye-Christensen 2005).

e. Approximation of the predictive distribution

Let the conditional distribution of Y0 given the pa-

rameters be Y0jQ ; N(cP 1 nt 1 dt, l0
21). The assumption

of a similar variability of the observations in the training

and prediction periods is commonly used (cf. Min et al.

2004; Raftery et al. 2005). Other modeling approaches

would require detailed physical knowledge of the pre-

diction period. We use Monte Carlo integration to cal-

culate the predictive distribution of Y0t
; that is, equation

(2) is interpreted as the calculation of the expectation

of [Y0jQ], which is the predictive distribution (Davison

2003). As an approximation of the posterior predictive

distribution, we get

[Y
0

t
5 y

0
s
jD] 5 R�1 �

R

r51
[Y

0
5 y

0
s
jQ

r
], (15)

where Q1, . . . , QR represent draws from the posterior

probability of the parameters [QjD], which are obtained

by Gibb’s sampling. Equation (15) is evaluated for each

y
0s

, s 5 1, . . . , S, where the set of y
0s

covers the whole

domain of the posterior predictive distribution; R

denotes the number of Gibb’s sampling iterations kept

for evaluation (see the appendix for further details).

4. Ice index assessment

The BMC framework is applied to an ice index rep-

resenting the ice accumulation over the oceanic Arctic

region for a freezing season (see section 2). The index is

derived from surface temperature, a climatic variable,

and is not directly related to sea ice physics.

We combine single runs of several GCMs; thus, the

natural variability of the GCMs themselves is not con-

sidered. However, Gregory et al. (2002) and Zhang and

Walsh (2006) do not find a major influence of internal

model variability on the trends of sea ice extent. Given

the strong decrease of the ice accumulation index for the

prediction periods (see section 4d), we deduce that in-

ternal model variability may also be neglected for the

quantitative interpretation of the ice index assessment

results.

Our results are verified by comparisons with an ice

index created from reanalysis data. Bromwich et al.

(2007) find NCEP reanalysis data to be a suitable tool to

study the Arctic region, despite some deficiencies. Suf-

ficiently accurate observations were not available until

now. Sea ice volume or thickness can only be measured

with large uncertainty, since the data are derived from

submarine sonar measurements, which do not have suf-

ficient coverage (Gregory et al. 2002), or from satellite

measurements (Laxon et al. 2003; Kwok and Rothrock

2009).

a. Verification

For verification, training periods of different lengths

are used, namely, freezing seasons spanning 5 (1977–81),

10 (1972–81), 15 (1967–81), and 20 (1962–81) yr. The

verification period covers from 1992 to 1999 and the

derived predictive distributions are compared to ob-

servations for this period.

We utilize common measures for verification, such as

the mean absolute error (MAE) or the root-mean-square

error (RMSE). Furthermore, we employ the continuous

ranked probability score (CRPS) and the ignorance score

(IS) to evaluate distributions. The CRPS gets better the

closer a verification y is to the center of the predictive

cumulative distribution function F(�). The CRPS is the

integral of the Brier score at all possible threshold values

t for the continuous predictand and is defined as

CRPS(F, y) 5

ð‘

�‘

[F(t)�H(t � y)]2 dt, (16)
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where H(t 2 y) denotes the Heaviside function with

H(t 2 y) 5 0 for t , y and H(t 2 y) 5 1 otherwise (see

Gneiting et al. 2005). To approximate the CRPS, we use

the discretized predictive distribution evaluated at 200

quantiles (cf. Hersbach 2000). The IS is the negative

logarithm of the predictive density f(�) at the verifica-

tion y, that is,

IS(f , y) 5�logf (y). (17)

Both scores indicate a better performance when having

a lower value. All comparisons are done with the aver-

age of these scores over the whole verification period.

To further evaluate the Bayesian framework, we

carried out simulation studies with artificial data (results

not shown). The data were generated from a Gaussian

white noise process or from an AR(1) process and a

linear trend or no trend was added. Then we calibrated

the BMC model in a training period and projected to

a verification period. The scores described in this section

were used as an evaluation criterion. In all cases the

simulation studies showed good performance of the BMC

framework and superiority to just taking the multimodel

ensemble mean.

b. Size of the multimodel ensemble

Thirteen GCMs cover the historical period and the

two projection periods (see section 2). In Fig. 3 the

precision li of all models is shown. The precision sig-

nifies how closely the GCMs vary around the common

means. It is an indicator for the quality of the models,

and the contribution of each model to the constant part

of the common means, cT and cP, is weighted by the

precision, which is apparent in Eq. (14).

Six of the GCMs include natural forcing in their

20C3M runs, such as variations in solar input and vol-

canic forcing. Most of those models have a high pre-

cision (see Fig. 3). However, anthropogenic forcing is

assumed to be the main factor for the increase of north-

ern SAT (Kaufman et al. 2009) and the decrease of Arctic

sea ice extent (cf. Gregory et al. 2002; Johannessen et al.

2004) observed for the last third of the twentieth cen-

tury. It is expected that Arctic sea ice extent will con-

tinue to decline through the twenty-first century also

because of atmospheric greenhouse gas loading (Stroeve

et al. 2007). To evaluate the potential advantage of using

solely GCMs, which include natural forcing, we compare

BMC ice index projection skills of the sets of GCMs with

and without natural forcing (results not shown). The

projection period of 1989–95 is taken, because here

Stroeve et al. (2007) found a stronger downward trend

for sea ice extent, which is not well reproduced by the

IPCC Fourth Assessment Report (AR4) models. Stroeve

et al. (2007) attributed this effect to an intense positive

state of the winter northern annular mode, which in turn

is linked to solar activity (cf. Ruzmaikin and Feynman

2002). Thus, strong differences of the ice index pro-

jections for this period are expected. However, the set

of GCMs that include natural forcing did not amelio-

rate the reproduction of the observed decline of the ice

index for this period. This indicates that other model

characteristics—for example, the implementation of sea

ice, ocean and atmospheric physics, and the coupling

between those modules—might have a stronger influence

on the ice index evolution than the inclusion of natural

forcing. Thus, we consider all 13 GCMs as valid candi-

dates for our analysis.

Figure 3 reveals that some models have a very low

precision, which points at reducing the number of GCMs.

To decide whether to delimit the number of models for

the projection, we compare the prediction scores of the

set of all models and a selection of seven models with

good precision (the precision box plot of the selection is

accented gray in Fig. 3). The prediction scores of the

smaller set of models are on a par with the set of all

models for all verification settings except the one with

15 yr of training length (see Fig. 4). Therefore, we chose

to utilize the selection of seven models with the best

precision in the further analysis.

c. Length of the training period

The influence of the length of the training period is

evaluated by comparing prediction scores for different

training period lengths and a verification period from

1992 to 1999 (see section 4a). Results are depicted in Fig. 4.

In Figs. 4a,b the RMSE and MAE for the BMC pro-

jections and the MEA are shown. Apparently, the BMC

projections outperform projections made by just taking

the multimodel ensemble average. The CRPS and IS

scores for different training period lengths are depicted

FIG. 3. Box plots of GCM precisions li, which are estimated by

using the historical period 1962–99. The models with high precision

are accented in gray. Models that include natural forcing in their

20C3M run are listed in bold italic.
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in Figs. 4c,d, respectively. They reveal that a longer

training period does not necessarily result in better

scores. However, the longest training period leads to

comparatively good results. We also could not find any

physical reasons to dismiss parts of the historical data,

and no signs of overfitting because of too much infor-

mation were apparent. Therefore, we chose the whole

historical period (1962–99) as the training period for the

projections. Here also the scores of the set of seven

models with high precision, which we choose for the

analysis, are on par with the BMC projections of all the

models.

d. Results

Projections are carried out for the A2 and B1 sce-

narios. Scenario A2 is a rather pessimistic scenario; a

regionalized, heterogeneous world with high population

growth and energy use and slow technological evolution

is assumed, which results in high CO2 concentrations

hitting about 840 ppm at the end of the twenty-first

century. By contrast B1 expects low population growth

and energy use and a medium technical evolution, and is

therefore a low-emission scenario. In Fig. 5 exemplarily

marginal posterior parameter distributions for the pro-

jection to years 2082–99 and the A2 scenario are shown.

The posterior parameter distributions are a means to

test for significance. The slope of the trend in the train-

ing period (Fig. 5a) and prediction period (Fig. 5b) differ

in size, but both are significant; that is, zero is not in-

cluded in the slope distributions. With a length of ap-

proximately 20 years, the prediction periods are relatively

short. Therefore, the term significance is related to the

existence of a trend in presence of noise rather than

pointing to an irreversible downward trend. For the B1

scenario, no significant trend could be found for the

years 2082–99. The parameter f, shown in Fig. 5c,

reflects the autocorrelation present in the data, and in

Fig. 5d a model bias is depicted. The BMC projections are

the basis for the examination of the future ice accumu-

lation over the oceanic Arctic region. This might give

insight into the minimal ice accumulation of the oceanic

Arctic ice at the end of the summer, in case the relation

to SAT temperature is the same for the end of the

twentieth and twenty-first centuries, which is assumed

when projecting the ice index. This index allows for

a qualitative assessment of the ice accumulation, since

quantitatively the ice amount estimated from NCEP re-

analysis data differs from the actual amount of ice. Figure 6

shows projections for years 2046–65 and 2082–99 and

the A2 (Fig. 6a) and B1 (Fig. 6b) scenarios. Apparently,

the variability of the mean of the predictive distribu-

tions, which we take as point projection, is very low. This

might be a side effect of Kalman filtering. However, the

projection is expected to occur within the bandwidth of

the whole predictive distribution. Thus, the variability of

the observations is more or less preserved for the pro-

jections. The first projection period shows a comparable

decline of the ice index for both scenarios. Under the A2

scenario, this tendency of reduction of the ice accumu-

lation over the oceanic Arctic region in the freezing

season continues in the years 2082–99, whereas for the

B1 scenario, interestingly, a stabilization of the ice ac-

cumulation is indicated. Correspondingly, Zhang and

Walsh (2006) and Gregory et al. (2002) find a decreasing

trend for sea ice extent for those scenarios and the

twenty-first century. However, they do not analyze the

evolution of this trend.

To evaluate the choice of the state-space model, we

compare our results in Fig. 7. Here the evolution of the

FIG. 4. (a) RMSE, (b) MAE, (c) IS, and (d) CRPS for the BMC

projections using the seven models with the highest precision

(black solid line), the BMC projections using all the models (black

dashed line), and the MEA projections (gray line) for training

periods using freezing seasons spanning 5 (1977–81), 10 (1972–81),

15 (1967–81), and 20 (1962–81) yr. The verification period is from

1992 to 1999.
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distribution of the common means MTt is shown for the

training period (Fig 7a) and MPt for the prediction pe-

riod 2082–99 for the B1 scenario (black lines; Fig. 7b).

Furthermore, the following state-space models are as-

sessed: The common means being composed of intercept

and trend (gray lines), of intercept and AR component

(black dashed lines), and of a constant intercept only

(gray dashed lines). The width of the densities reflects

the uncertainty of the estimate of the common means,

not the variability of the projected observations. We find

that the projected common means are estimated with

approximately the same accuracy as the common means

in the training period; all distributions span about 4 3

109 km2 8C. Furthermore, the less complex state-space

models are capable of estimating the projected common

means with comparable good accuracy. Similar results

are obtained for the other three projection periods (not

shown). In Fig. 8 results for the four state-space models

are compared for the A2 scenario projection period

2046–65. In Fig. 8a the densities of the difference of the

common means in the training and projection periods

are shown (the densities of the nonstationary state-space

models have been averaged over the training period and

the prediction period, respectively). This important fig-

ure indicates the expected average change of the ice

index. In line with Fig. 7, it is nearly the same for all four

state-space models. The mean of the densities is at about

216 3 109 km2 8C; that is, a decrease of the ice index of

26% is expected. We find for the B1 scenario and this

period an expected change of 22.9%, and for the second

FIG. 5. Posterior distribution of the trend slope in the (a) training period k1 and (b) prediction period k2,

(c) AR(1) parameter f, and (d) estimated bias b1 of Canadian Centre for Climate Modelling and Analysis

(CCCma) Coupled General Circulation Model, version 3.1 [CGCM3.1(T47)] for the projection to years 2082–99

under the A2 scenario.
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prediction period 2082–99 expected changes of 28.4%

for the B1 scenario and 45.7% for the A2 scenario,

which indicates nearly a halving of the ice volume. In

Fig. 8b the evolution of the projected observations Y0

are shown. Here the advantage of including a trend

component becomes obvious (in case the GCM pro-

jections reflect the right trend behavior). The inclusion

of an AR component (black dashed line) does not lead

to deviations of the projections of a constant common

mean (gray dashed line). However, the nonzero estimate

FIG. 6. Ice index generated from NCEP reanalysis data (black line, with 66% confidence interval) and BMC

projections of the ice index (black dots, with 66% credibility interval) into future periods 2046–65 and 2082–99 for

the (a) A2 and (b) B1 scenarios.

FIG. 7. Evolution of the distribution of the common means: (a) MTt in the training period and (b) MPt in the

prediction period 2082–99 of the B1 (black lines) scenario. In addition, results for other state-space models are

shown, including the common means composed of intercept and trend (gray lines), of intercept and AR component

(black dashed lines), and of an intercept (gray dashed lines). For clarity some of the common mean distributions in

the training period are indicated by black triangles and exemplarily only one distribution is depicted for the other

nonstationary state-space models.
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of the AR parameter f hints at the necessity of including

an AR component. This component causes differences in

the trend behavior (a comparison of black and gray lines),

as discussed earlier.

In case constant common means are assumed, the

approach of Tebaldi et al. (2005) is recovered (results

are depicted as dashed gray lines in Figs. 7, 8). Thus, the

main difference to this approach consists of nonstationary

projections. Furthermore, we do not explicitly introduce

any dependence between GCM outputs in the training

and prediction periods.

To investigate the robustness of our results with re-

spect to the different training periods, we compare the

projections of training periods 1962–79 (T1), 1971–89

(T2), and 1981–99 (T3) to the period 1946–65 for the A2

scenario. In Fig. 9a the mean of the GCM biases for the

different training periods and their average are shown.

The dispersal of the bias among the models is similar for

all the training periods evaluated, and the averaged

biases are very close together. The training period 1981–

99 has the highest averaged model bias, which may be

related to the fact that IPCC GCM runs do not re-

produce well the decrease of sea ice extent within this

period (Stroeve et al. 2007). The average precision of all

models is on par for nearly all training periods; it is

slightly worse for 1971–89 (results not shown). However,

these differences do not strongly influence the projec-

tion results: Figure 9b exemplarily shows the distribu-

tion of the common mean for year 2054. In our model we

assume the same bias for the training and projection

periods. The bias correction is largest for the training

period 1981–99; therefore, those projections lie below

the other projections. The width of the density of the

common mean is largest for the training period 1962–79,

which hints at a larger spread of the model outputs

during that period. The use of a longer training period

(gray lines) does not lead to a coarser density of the

common mean estimate. Nevertheless, a longer training

period allows for a better estimation of the constant

parameters such as model biases, which are meant to

represent average values. In Fig. 9c the evolution of the

common means are depicted. We find comparable trend

tendencies within the projection period for all the train-

ing periods assessed. All in all the projection results show

to be robust. This is due to the little differences in model

bias and precision for the training periods chosen.

In Fig. 10 the BMC projections are depicted in com-

parison to the total global cumulative CO2 emissions (cf.

Nakicenovic and Swart 2000). A direct link between

global emission amounts and the ice index, which rep-

resents dynamics on the comparatively small oceanic

Arctic region, might not exist. However, for the first

projection period, the emission paths for both scenarios

overlap significantly, whereas for the second prediction

period already a clear separation appears visible. This

fits well with the evolution of the ice index for both

scenarios. Furthermore, the potential stabilization of the

ice accumulation decrease for the B1 scenario and the

second prediction period is accompanied by a deceler-

ated increase of the cumulative CO2 emissions: In the

B1 scenario an actual reduction of the global annual

CO2 emissions is achieved from 2050 on, whereas this

annual contribution never ceases to increase for the

A2 scenario. This seems to have an effect on the SAT

FIG. 8. (a) Expected average change of the ice index and (b) evolution of the projected observations Y0 for years

2046–65 under the A2 scenario. Results for the different state-space models are depicted, i.e., common means

comprising all three components (black lines), intercept and trend (gray lines), intercept and AR component (black

dashed lines), and intercept (gray dashed lines).
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and therefore on the ice accumulation over the oceanic

Arctic.

5. Conclusions

In this paper we present a Bayesian method to enhance

projections. Information from a multimodel ensemble is

combined within a statistical framework. The parame-

ters of the statistical model are estimated by regarding

observations and multimodel outputs as random vari-

ables, which float (with a potential bias) around a common

mean. This allows assess to model-specific deficiencies,

namely, variability and bias. It is advantageous that all

parameters are estimated together, which reduces esti-

mation errors. Although we start from diffuse priors,

informative posterior distributions are derived for all

parameters. The methodology is applied to an ice index

representing the ice accumulation over the oceanic

Arctic region during cold seasons. Under the A2 sce-

nario, we find a continuing decrease of the ice index,

whereas for the B1 scenario, stabilization appears visible

by the end of the twenty-first century. The stabilization

hints at the retention of a minimum of ice rebuilding

capacity in the freezing season for this scenario, which is

important for questions related to adaptation and resil-

ience (cf. Chapin et al. 2006; Laidler 2006).

Information from the entire training and prediction

period is utilized for the BMC projections, whereas for

simple averaging, only GCM outputs at one time step

are relevant. Furthermore, here the models are not com-

bined additively. In this way we do not have to adjust the

length of the training period to the amount of infor-

mation available. The Bayesian combination of multi-

model ensembles were shown to potentially ameliorate

projection skills in comparison to single-model projections

or to the average of ensemble projections. A possible

extension is the integration of expert knowledge on the

GCM outputs by means of the priors.

FIG. 9. Comparison of projections to period 2046–65 of the A2 scenario with training periods 1962–79 (black lines), 1971–89 (black

dashed lines), 1981–99 (black dotted lines), and with the entire historical training period (gray lines). Shown are (a) model biases and the

average model bias, (b) the density of the common mean at year 2054, and (c) the evolution over the common means over time.

FIG. 10. BMC projections of the ice index into future periods

2046–65 and 2082–99 for the A2 (dark gray line and gray-shaded

credibility intervals) and B1 (black line and black-shaded credi-

bility intervals) scenarios with the axis on the right-hand side. For

comparison total global cumulative CO2 emissions for the A2 (gray

lines) and B1 (black lines) scenario groups are shown [Source: data

tables, appendix VII of Nakicenovic and Swart (2000)].
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APPENDIX

MCMC Routine for Model with Time-Dependent
Parameters

A MCMC routine is used to generate pseudorandom

drawings from the posterior distribution of the state-

space components Q (cf. Harvey et al. 2007). To obtain

the joint posterior [QjD], we divide a Gibb’s sampling

procedure in several blocks: First, the state-space pa-

rameters mt
(i), dt

(i), nt
(i), and dt

(i) are obtained by Kalman

filtering and smoothing; then, marginal conditional like-

lihoods of the stationary parameters are evaluated. Next,

for the parameter f, a Metropolis–Hastings step is inte-

grated in the Gibb’s procedure. The algorithm converges

to the joint posterior distribution of the parameters (cf.

Chib and Greenberg 1996).

The vector of initial values for the stationary pa-

rameters Q
(0)
stat 5 (c

(0)
T , c

(0)
P , g(0), f(0), k

(0)
1 , k

(0)
2 , l

(0)
1 , . . . ,

l
(0)
M , b

(0)
1 , . . . , b

(0)
M , l(0)

m , l(0)
n , l

(0)
d , l

(0)
d ) is provided. Then,

the MCMC routine is run to produce a sequence of draws

Q(i), i 5 1, . . . , R. We utilize a burn in the period of 5000

steps, set R 5 100, and keep the parameter values only every

50th iteration to avoid correlations between the Q(i21)

and Q(i). In each iteration step, we proceed as follows:

1) To draw m(i), n(i), d(i), and d(i) out of [m(i), d(i), n(i),

d(i)jQstat, D] given the most recent iterate of Q
(i�1)
stat ,

a Kalman smoother proposed by Dethlefsen and

Lundbye-Christensen (2005) is employed (see also

Durbin and Koopman 2002). We restrict the trend

components to have mean 0; a potential deviation

from this is captured by the intercepts cT and cP.

2) We sample Qstat in block from [Q
(i)
statjm(i), d(i), n(i),

d(i), D] by using the Gibb’s sampler. The constant

parameters have independent priors and their pos-

terior distribution is given by Eq. (13). We only use

information of the training period to estimate the

precision of the models li and their bias bi. There-

fore, we obtain

l
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The marginal posterior distribution of the change

in precision g is given by
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For the precisions of the state-space model,
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holds, and the posterior marginal distributions of k1

and k2 are given by
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3) The autoregressive parameter f is drawn from

[fjk
1
, k

2
, b

1
, . . . ,b

M
, c

T
, c

P
, g, l

1
, . . . ,l

M
, l

m
, l

d
,

l
n
,l

d
,m,d,n,d,D]} [DjQ][m,d,n,djQ

stat
][f]

} [m,d,n,djQ
stat

][f]. (A5)

As posterior marginal distribution, we obtain
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whereas f is sampled from a truncated normal. The

state-space variables depend on f, and the relation

is more complex than for the other parameters.

Therefore, we include a Metropolis–Hastings step to

sample f: a proposal value f* is obtained from a

symmetric proposal distribution, and Eq. (A6) is

evaluated for f(i21) and f*. If [f*j�] . [f(i21)j�], the

proposal f* is accepted, that is, f(i) 5 f*; otherwise,

f* is accepted with probability [f*j�]/[f(i21)j�].
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