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Abstract

It has been suggested that observed spatial variation in mackerel fisheries, extending over several hundreds of kilometers, is
reflective of climate-driven changes in mackerel migration patterns. Previous studies have been unable to clearly
demonstrate this link. In this paper we demonstrate correlation between temperature and mackerel migration/distribution
as proxied by mackerel catch data from both scientific bottom trawl surveys and commercial fisheries. We show that
mackerel aggregate and migrate distances of up to 500 km along the continental shelf edge from mid-November to early
March. The path of this migration coincides with the location of the relatively warm shelf edge current and, as
a consequence of this affinity, mackerel are guided towards the main spawning area in the south. Using a simulated time
series of temperature of the shelf edge current we show that variations in the timing of the migration are significantly
correlated to temperature fluctuations within the current. The proposed proxies for mackerel distribution were found to be
significantly correlated. However, the correlations were weak and only significant during periods without substantial
legislative or technical developments. Substantial caution should therefore be exercised when using such data as proxies for
mackerel distribution. Our results include a new temperature record for the shelf edge current obtained by embedding the
available hydrographic observations within a statistical model needed to understand the migration through large parts of
the life of adult mackerel and for the management of this major international fishery.
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Introduction

Changes in global climate and the aspiration for sustainable

fisheries management have highlighted the requirement for

improved understanding of the effects of the marine climate on

the behaviour of important fish species [1]. Mackerel (Scomber

scombrus) is an abundant migratory pelagic fish in the north-east

Atlantic, where it plays an important ecological role by feeding on

zooplankton and on the pelagic larval and juvenile stages of

a number of commercially important fish stocks [2,3]. Further-

more, mackerel is itself targeted by whales, fish and a large pelagic

fishing fleet with annual landings of between 500 000 and 1 000

000 tonnes [2,4]. The largest mackerel fishery targets and follows

mackerel aggregations throughout autumn and winter. Marked

historical changes in the timing and spatial distribution of this

fishery have been observed, but remain unexplained [4–7]. The

fishing fleet is composed of modern pelagic trawlers and seiners

that use sonar to locate schools of adult mackerel and are highly

mobile, regularly steaming hundreds of kilometres from port. As

a result of this adaptive behaviour, it is feasible that the observed

changes in the timing and spatial distribution of commercial

landings are representative of the spatiotemporal dynamics of the

mackerel population.

It has been hypothesized that temperature is an important

modulator of the autumn/winter spawning migration. An acoustic

and oceanographic survey in December 1995 demonstrated

a relationship between the location of mackerel in the Northern

North Sea prior to the onset of migration and the local

temperature field [8]. It has also been noted that mackerel

behaviour appeared to be related to temperature while the

mackerel stayed to the north and west of the Shetland [9,10]. If the

distribution of the fishery reflects the distribution of the mackerel

and the mackerel distribution is related to the water temperature,

then we would expect the temperature field to be reflected in the

spatiotemporal distribution of the fishery. However, previous

studies have not revealed any simple correlation between these

variables [5–7].

Using fisheries independent data from scientific bottom trawl

surveys and commercial landings statistics we investigate the

mackerel migration from October to March and test

i) whether data from commercial fisheries and scientific bottom

trawl surveys can form the basis for useful proxies of the

distribution of adult mackerel

ii) whether changes in the temperature of the shelf edge current

are related to the significant temporal and spatial variation

observed in these proxies

We consider our results in the light of other factors that

influence the fishing fleet behaviour such as fisheries development,

legislation and distance to home port. Finally, we discuss our

findings within a larger oceanographic context of circulation
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patterns and global warming, review possibilities for hindcasts and

forecasts, and implications for fisheries management.

Materials and Methods

Fisheries Data
Quarterly landings in the autumn-winter fishery were used as

reported to the International Council for Exploration of the Sea

(ICES). Due to the fact that the autumn-winter fishery overlaps

two calendar years, first quarter landings were treated as being

a ‘5th’ quarter of the previous year. Thus, Q4 landings are those

reported in October–December and Q5 corresponds to January–

March of the following year. The study area encompasses the

northern limit of the reported catches and includes the majority of

the total reported catch (83% in Q4 and 56% in Q5) (Figure 1).

Commercial landings data were reported to ICES as quarterly

totals per ICES statistical rectangle (1u latitude by 0.5u longitude).

The position and time of the catch was assumed to be at the center

of the reported rectangle and midway through the quarter. The

landings consisted primarily (.95%) of adult fish [4].

To investigate the spatial variations in the behavior of the fleet

the reported landings were projected onto a curvilinear ‘Conti-

nental Shelf Edge’ (CSE) axis in the style of [11], from 54.5 N

10.5 W in the south, and following the 200 m isobath, passing

north of the Shetland Islands before turning south and following

the Norwegian Trench into the North Sea (Figure 1). The total

length of the CSE axis is approximately 1700 km. Each reported

landing was projected onto the CSE axis by selecting the closest of

1000 equally spaced positions along the CSE axis. Distances were

calculated based on great circle (WGS84 ellipsoid) distances. Both

the position projected onto CSE axis and the distance of the

reported landing from the axis were calculated and stored for

further analysis.

The quarterly CSE axis distributions were then represented by

a single metric for further comparison with temperature. Two

alternative metrics were explored;

i) the center of gravity of landings (CoG)

ii) the position of 50% cumulative landings (Po50%CL)

CoG was calculated by year and quarter as the weighted

average of distances. The weighting factor was the mass (in kg) of

each projected landing record. Po50%CL was calculated as the

position along the CSE where the cumulative landings represented

50% of the total landings by year and quarter.

A literature survey and an interview with the skipper of a vessel

that fished throughout the study period were carried out in order

to identify periods where changes in the behavior of the

commercial fishery were driven by factors other than mackerel

behavior.

Bottom Trawl Survey Data
Data from international bottom trawl surveys (IBTS) carried out

in quarter 1 (January–March) between 1985 and 2011 on the shelf

out to 500 m were downloaded from the ICES repository (http://

datras.ices.dk). The study area was limited to the area described

for the commercial landings. Relatively few mackerel were caught

outside the study area, e.g. in Kattegat/Skagerrak [12] and over

90% were from surveys in March. Further south, in the Bay of

Biscay, mackerel arrive at the spawning grounds around the time

of this survey [13]: the present dataset therefore covers the

northern part of the NEA mackerel population. Catch per Unit

Effort (CPUE) of adult mackerel was calculated as catch in

numbers per trawl hour, where adult mackerel were defined as

being longer than 27 cm (most mackerel first spawn at the age of 2

(58%) and the mean length at age 2 in Q1 west of Scotland is

27 cm [4]). For ease of comparison with the commercial landings

dataset, first quarter surveys were treated as being a ‘5th’ quarter of

the previous year. Hauls were projected onto the CSE axis as

described for commercial landings and the CoG and Po50%CL of

CPUEs calculated.

Temperature Data and Modelling
In the present study, we investigate links between water

temperature and mackerel distribution that could support the

hypothesis of a temperature-driven migration. The continental

shelf edge current which flows along the shelf edge to the

northwest of Scotland, north and then east of the Shetland Islands,

along the western edge of the Norwegian trench and into the

northern North Sea, is warmer than both the surrounding coastal

waters and the oceanic waters off the shelf during winter (Figure 2)

[8,9]. It is the temperature of this water mass that is of interest in

this study. Unfortunately, relevant observations are not available

for the entire study period. A relevant temperature record was

therefore obtained by embedding the available hydrographic

observations within a statistical model. The modelled area is

shown in Figure 1 and was selected because it is the coldest area of

the warm core of the current (Figure 2) and therefore the area

where cold avoidance by mackerel would be most pronounced.

Also, there are a significant number of observations available for

this area.

It is within this core of relatively warm water in the northern

North Sea that acoustic surveys found mackerel to aggregate in

50–220 m depth in early winter [8–10,14]. Due to the fact that

water is cooled throughout the winter, both downstream (along)

and away from the CSE, temperature was modeled with year, day

of year, distance parallel (CSE) and perpendicular (dCSE) to the

CSE axis as explanatory variables i.e:

Temperature~b4(Year)zb3S3(Day)zb2S2(dCSE)

zb1S1(CSE)zb0ze,

where CSE is the distance along the CSE axis from the start of the

Figure 1. Map of study area and place names referred in the
text. Continental shelf marked in grey (bottom depth ,250 m). Blue
polygon indicates the study area. Blue bold arrow shows the
Continental shelf edge axis. Red shaded area marks the area of
temperature profiles.
doi:10.1371/journal.pone.0051541.g001
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axis (in the south) to the projected sample position, dCSE is the

distance from the sample site to the projected position, day is the

number of days elapsed in the year, from 1st of February (day 32)

to 31st of January (Day 386). Year is the year of the observation

and, S() is the penalized cubic regression spline smoothing function

implemented in the ‘‘mgcv’’-R-package as cardinal spline [15].

Day, CSE and dCSE were thus modeled as smoothed predictor

variables with smoothing parameters (k = number of ‘‘knots’’) set

to 3, in order to allow for a non-linear temperature development

through the season and along the CSE whilst avoiding overfitting,

whilst Year is treated as a categorical factor (i.e. one parameter per

year). 1056 temperature profiles from CTD stations and bottle

sampling between November and January were downloaded from

the ICES hydrographic database [16] and used to fit the model

using the ‘‘mgcv’’ package in R [15]. Model building was done by

sequentially removing non-significant parameters (i.e. those with

p.0.05). The final model was then used to predict a time series of

temperatures in early winter (15th of December), at the center of

the area (1326 km along CSE axis from starting point) where

mackerel were known to be present [8].

For validation purposes, we compared the GAM temperature

time series with

i) a similarly modeled time series further upstream (west of

Scotland, 35 km from CSE in the area 55–65uN 10uW-5uE) in

February–March, and

ii) a coarser modeled and validated dataset of sea surface

temperatures (SST) obtained from the Hadley Centre SST

data set (HadSST2) [17], by averaging over a larger geo-

graphical box covering the North Sea-SE Norwegian Sea area

(55uN- 65uN, 0–5uE) and including the months from

November to January.

Finally, correlation analysis of the mackerel distribution metrics

described above and modelled temperature field were performed.

All correlation analyses were adjusted for autocorrelation if this

exceeded the 95% confidence limits of white noise (+2
ffiffiffiffiffiffiffiffiffiffi

N{1
p

,

where N is sample size) [18]. Adjustments were done by

substituting the degrees of freedom with the effective number of

degrees of freedom [19].

Results

The final temperature model identified Year, Day of Year and CSE

as significant explanatory variables. In line with expectations,

temperature decreased through the winter (Figure 3, p,0.001)

and downstream along the CSE axis (Figure 4, p,0.001). The

modeled temperature time series shows an overall increase

throughout much of the study period with a decrease in the most

recent years (Figure 5). The model explained 81% of the variance

in the data (adj. R2 = 0.81). Parameter estimates for all years are

given in table S1. As a rough validation for the overall

development of the temperature time series, we found it to be

significantly positively correlated to a modeled temperature time

series in the area west of Scotland in February–March 1985–2010

(P = 0.005, R2 = 0.36, Figure S1, same GAM model structure as

the primary temperature series), and also to the Hadley time series

of sea surface temperature in November–January 1948–2010

(P,0.001, R2 = 0.48, Figure S2).

There was a strong tendency for commercial and bottom trawl

catches to be associated with the area along the CSE axis, with

Figure 2. Map of average sea surface temperature in January 1990–2011 showing the relatively warm high-saline eastern Atlantic
water flowing north-eastwards on and along the continental shelf edge, flanked by cooler water masses. Temperature measurement
measured by satellite and mapped with permission from Bundesamt für Seeschifffahrt und Hydrographie, Germany (www.bsh.de).
doi:10.1371/journal.pone.0051541.g002
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74% of the commercial landings in Q4, 92% in Q5 and 87% of

the survey catches were taken within a 75 km distance of the CSE

axis (Figure 6). We therefore chose to reduce the complexity of the

spatial distributions by disregarding the across-axis information,

i.e. considering the catches projected onto the CSE axis. Visual

inspection of Center of Gravity (CoG) and Position of 50%

Cumulative Landings (Po50%CL) overlaid on the distributions

(Figure 7) indicates that both metrics are appropriate representa-

tions of the commercial landings and survey catches.

Landings in Q4 followed a consistent spatial pattern with

generally small variance within and between years (Figure 7, left).

Landings in Q5 and especially bottom trawl survey catches show

greater variance (Figure 7, mid-right).

A progressive southwesterly shift along the CSE axis is evident

in the commercial landings data from quarter 4 to 5 (Figure 7, left-

mid) and also in the survey catches in late Q5 (Figure 7, right). The

average shift of the CoG was found to be 360 km from Q4 to Q5,

and 140 km from landings in Q5 to the survey in late Q5.

On a decadal scale, commercial landings (Figure 7, left-mid)

show spatial shifts of the commercial fisheries over several

hundreds of kilometers, consistent with that reported in the

literature [4].

A literature review and an interview with an experienced fishing

skipper with first-hand experience of the mackerel fishery during

the study period (Tables 1, 2), suggests that factors other than the

distribution of mackerel could have influenced the behavior of the

fishing fleet, particularly for the Q4 fishery between 1990–1995

and also prior to 2000 for Q5 (see Tables 1, 2). After the collapse

of the North Sea Mackerel stock in the 1970s, management

measures were put in place in an attempt to protect the remainder

of the population [20]. However, since Western and North Sea

mackerel mix and are present in the northern North Sea at various

times of the year, effective area based management proved

difficult. Individual country quotas restricted vessel movements

and their ability to target the migrating mackerel. Compounded

by the temporal and spatial variability in the migration, this lead to

significant misreporting of commercial catch between areas IVa

and VIa (and to a lesser extent between IIa and IVa), especially

during the 1990s. Incremental changes were made to the

management regimes in an attempt to mitigate this misreporting,

including partial relaxation of the area-based quotas, modifying

area closures, and increased monitoring of the fishery.

Further data analysis was restricted to periods where the

influence of management measures on the fleet behavior was

expected to be minimal. This restricted the landings data from Q5

to only 10 observations (2000–2009), and is therefore why we draw

our main conclusions based on the correlation analysis of landings

in Q4 and scientific surveys.

The spatial development of the fishery (Figure 7) during these

periods, shows i) a southwestern distribution in Q4 in 1977–1989,

ii) a steady northeastern distribution in 2000–2007 (Q4+Q5),

followed by iii) a movement toward southwest in 2008–2010

(Q4+Q5). Detailed maps of relative distributions of commercial

landings and CPUE from bottom trawl survey in these three

periods confirm this pattern (Figure 8). Annual maps of relative

Figure 3. Day of Year parameter in the temperature model.
Parameter estimate (solid line) with 95% confidence interval (dashed
lines) and partial residuals (dots) relative to mean predicted value.
doi:10.1371/journal.pone.0051541.g003

Figure 4. CSE parameter in the temperature model. Parameter
estimate (solid line) with 95% confidence interval (dashed lines) and
partial residuals (dots) relative to mean predicted value.
doi:10.1371/journal.pone.0051541.g004

Figure 5. Year parameter in the temperature model. Parameter
estimate (solid line) with 95% confidence interval (dashed lines) relative
to mean predicted value.
doi:10.1371/journal.pone.0051541.g005
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distributions as well as annual and periodic maps of actual catches

are given in Figure S3.

An examination of the consistency between the three Po50%CL

proxies for spatial distribution showed significant positive correla-

tions between the quarter 4 fisheries and the quarter 5 trawl survey

(1985–2010 ex.1990–1995, p = 0.031, R2 = 0.23). This was also

the case when the quarter 4 and quarter 5 fisheries were analysed

(2000–2009, p = 0.040, R2 = 0.43). However, no significant

correlation was found between the short time series of commercial

landings in Q5 and the trawl survey (2000–2009, p.0.05).

Comparisons of the modelled temperature time series with the

Po50%CL proxies for mackerel distribution (Figure 9) reveal

a significant positive correlation with fisheries-independent surveys

(1985–2010, p = 0.007, R2 = 0.27), and with commercial landings

in Q4 from 1977–2010 (ex. 1990–1995) (p,0.001, R2 = 0.59), but

not with the short time series of commercial landings in Q5 (2000–

2009, p.0.05). Correlation analyses are summarized in table 3.

Discussion

Our analyses demonstrate that when the NEA mackerel return

in late summer from the feeding areas on the European shelf and

in the Nordic Seas [4], they aggregate through autumn and early

winter along the continental shelf edge, where they are targeted by

commercial trawlers and purse seiners. Later in winter the

commercial fleets and the fisheries independent bottom trawl

survey find the mackerel further towards the southwest. The path

of the migration, as suggested by the location of commercial and

survey catches coincides with the location of the relatively warm

high-saline eastern Atlantic water flowing north-eastwards on and

along the continental shelf edge, flanked by cooler water masses.

We present a modelled new time series of temperature in this

current and find it to be significantly correlated with two proxies

for spatiotemporal mackerel distribution. The proxies are derived

from data over a significant period of time and a large proportion

of the European shelf and encapsulate large scale changes in

distribution. Our results indicate that

i) the mackerel population is found further upstream in warmer

waters as the current cools through winter

ii) this process is associated via climatic variability, with large

impacts on the mackerel migration and fisheries, and suggest

a mechanism where

iii) this affinity for warm water leads the mackerel towards the

main spawning areas.

These results are in accordance with earlier studies of mackerel

during autumn and winter [5–10].

Figure 6. Distance from catch position to continental shelf
edge (CSE) axis. Positive values are off the shelf. In the North Sea
positive values are northeast of the axis.
doi:10.1371/journal.pone.0051541.g006

Figure 7. Hovmüller plot of mackerel distributions proxies from commercial landings in October to December (left), January to
March (mid) and bottom trawl surveys in March (right). The spatial aspect have been reduced to one dimention by projecting the catch
location onto the CSE axis. Greyscale in cells range in 10%-steps from 0–10% (white), to 90–100% (black). Thick line represents position of 50%
cumulative landings (left, mid) or CPUE (right) and thin line shows the center of gravity of the distances.
doi:10.1371/journal.pone.0051541.g007
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The present work illustrates the limitations associated with the

available data and underlines that caution should be exercised

when utilising catch data as a proxy for distribution. The relatively

low trawling speed and small scale trawls employed by standard-

ized scientific surveys are unsuited for catching a fast pelagic

species like mackerel. Furthermore, changes in vertical distribution

and schooling behaviour reduce the signal-to-noise ratio in the

trawl survey data and contributes to the low levels of explained

variance (R2) in correlations that include this variable. In contrast,

commercial fishing employs much more efficient methods.

Commercial landings data are, however, only appropriate for

inferring changes in stock movements over time when other factors

remain relatively constant. This was not the case for the Q4 fishery

between 1990 to 1995, when the management regime restricted

the ability of vessels to target fish migrating through areas IVa and

VIa and fisheries technology and techniques changed the

behaviour and increased the efficiency of the fleet (Table 1). An

approach to circumvent this problem has been used in a previous

study, where high resolution catch data from a validated subset of

the fleet showed that the observed change from late 1970s to late

1990s leveled out from 1989 to 1994 [5]. This is consistent with

our conclusions, as this was the period where fisheries and

temperature deviated (Figure 9).

Other major changes in mackerel fisheries have occurred

through the period 1977–2010, such as the summer fishery in

Icelandic waters that commenced in recent years [4]. While this

fishery is outside the main scope of this study, it is related to the

westward expansion of the summer distribution [21]. Changes in

the summer distribution could lead to a change in the path taken

during the return migration in late summer and early autumn,

which could potentially affect the autumn-winter distribution.

Further investigation of this effect is therefore warranted.

The results presented are in accord with recent investigations

that link climatic variability and spatiotemporal dynamics of

mackerel spawning [12,22,23,33]. Mackerel differ from most other

exothermal organisms by being i) purely pelagic through all life

stages, and ii) relatively fast and constantly swimming [24], able to

react to the environment by migrating over long distances. This

dynamic spatial behavior enables the mackerel to avoid poor

temperature conditions during its migration in search of optimal

areas for reproduction and feeding. This seems to be most evident

during the cold season when other constraints such as feeding and

reproduction are reduced or absent. The effect of temperature on

the spatial shifts of the mackerel distribution is suggested to be on

a scale of hundreds of kilometers during winter (Figure 9), much

larger than in spring where spawning has been moving only 40 km

north per uC [23] and in summer where polar water merely forms

an outer boundary of the extremely large area occupied by

mackerel [4,25]. It is understood that the primary activity during

winter is the maturation of eggs and sperm. It may be that the

specific temperature conditions selected by the mackerel are an

adaptation to optimize development of reproductive products. The

present findings facilitate testing of this hypothesis and exploration

of further importance for spawning.

Table 1. Factors affecting spatiotemporal distribution of the commercial fishery in Q3–4.

Years Q3–4

1977–1983 Landings data reflected the traditional Q3 Norwegian fishery in the Northern North Sea, and the development of Q3 fisheries more coastal to
Eastern Scotland and in the Minches.

1984–1995 The Q3 landings reflect a putative temporal and spatial change in fish availability. Main landings were caught progressively later (ending up
in Q4) and north-eastwards from 1983 to 1997 [7]. The large north-eastwards shift from the mid-1980s to mid-1990s occurred in times when
fisheries were developing and legislation were changing. However, fisherman observations confirm the spatial development of the fishery
was, at least in the beginning, a response to changes mackerel migration patterns as they encountered the mackerel progressively further
north-east (Pers. Com. Capt. Alex Wiseman, July 2011). This statement seems reliable, because if the mackerel had been available further
north-east in the late 1970s and early 1980s, it would have been economically beneficial to fish on those schools rather than steaming all the
way to the Minches from the pelagic ports in north-east Scotland. Later, this fishery (now a Q4 fishery) fluctuates between the coast of
Norway and the Shetlands, but remains predominantly east of 4uW.

1996–2010 From about 1996 onwards the fishery was well established in Q4, and its movements through this period was not known to be affected by
other large changes than movements of the mackerel stock.

doi:10.1371/journal.pone.0051541.t001

Table 2. Factors affecting spatiotemporal distribution of the commercial fishery in Q5.

Years Q5

1977–1983 Fishery was predominantly in the Cornwall area. However, in this period a new fishery was developing to the north-west of Ireland
and west of Scotland

1984 The area around Cornwall was then closed in 1984 to protect the juveniles in this nursery area

1985–1990 The bulk of the landings were from the north of Ireland and west of Scotland moving progressively northwards. The fishery were
mainly targeting adult mackerel when they were resident in an area or migrating slowly. However, during this period, development
of the pair-trawling technique facilitated the fishery on fast migrating mackerel. Movement of landings in this period may therefore
represent a development of the fishery as well as a movement of the stock.

1991–1999 Landings are clustered west of 4 W. This may reflect area misreporting from further east, as the northern North Sea was closed from
31st December.

2000–2010 From 1999 legislation were changed to allow fishing in the northern North Sea up to the 15th of February, and even though this
should have ended area misreporting (as the fish were available in the northern North Sea at this time) there appears to have been
a ‘‘habit’’ of misreporting to a series of rectangles on the 4 W line which persisted [35].

doi:10.1371/journal.pone.0051541.t002
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The physical environment within the shelf edge current is

related to large scale oceanographic circulation patterns. Condi-

tions in the Bay of Biscay and the European shelf seas, to the east

of the continental shelf edge current, are related to the Northern

Hemisphere Temperature trend [26]. This differs from the

oceanic region west of the shelf edge current, which to a greater

extent is regulated by the dynamics of the subpolar gyre [27,28].

The physical environment within the shelf edge current is related

to the northern hemisphere temperature type of variability, but

may also be influenced by the oceanic domain during periods

when the subpolar gyre circulation is particularly strong, such as

during the period 1990–1995 [27]. The shelf edge waters are

furthermore modulated by smaller sub-decadal oscillations, caused

by pulses of eastern water from the Bay of Biscay [29]. Once warm

and saline anomalies have passed the Porcupine Bank, the

geographic divide between the subtropical and the subpolar gyres,

they are destined to continue northward as baroclinic Rossby

waves [30,31], with an advection time of one-two years, to the

Figure 8. Relative distribution of mackerel landings from the commercial fisheries and mackerel catches from fisheries
independent bottom trawl surveys. Data from January–March are shifted back one year to match data in the same season from October–
December.
doi:10.1371/journal.pone.0051541.g008
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entrance of the Nordic Seas [27,32]. This oceanic inertia holds

promise for making projections one-two years into the future.

Shorter-term predictions may be possible based on measurements

of the temperature further ‘‘upstream’’: such predictions could be

of value for the fishing industry as it may reduce the time spend on

searching for mackerel. However, detailed forecasting of mackerel

behavior outside the observed temperature range is not possible

before any additional causal effects and their interactions are

sufficiently clarified.

The results presented have implications for the management,

fishery and monitoring of mackerel. Recent changes in mackerel

distribution have resulted in political disputes over zonal

attachments and led to a break-down of the international

management agreements since 2008. Furthermore, in 2009

fishermen were taken by surprise when the mackerel had departed

the northern North Sea east of 4u (which separates management

areas IVa and VIa) by October [34], significantly earlier than in

previous years. As a consequence, quotas worth over 100 M J

could not be utilized in that year by the Norwegian and Danish

industries [35] whilst, at the same time, Scottish seiners had little

difficulty in catching the mackerel further west. We have

demonstrated that cooling of the continental shelf edge current,

possibly triggered this early migration. In a climate change

scenario where temperatures increase further, our results suggest

that mackerel distribution is likely to be affected with subsequent

effects for the fishery and mackerel prey.

Supporting Information

Figure S1 Temperature time series from November–
January 1977–2010 northern North Sea used in the
analysis of mackerel distributions (solid line as 3 year
running mean). Temperature time series from February–March

1985–2010 west of Scotland (dashed line as 3 year running mean).

Both series modeled as described in material and methods.

(TIF)

Figure S2 3 year running means of temperature time
series 1948–2010. Red: Primary temperature series in Novem-

ber–January northern North Sea. Modeled as described in

material and methods for the shorter time series. Black: Hadley

sea surface temperature anomaly in November–January 55–65 N

10 W–5 E (black). Data from Hadley Centre SST data set

(HadSST2) [17].

(TIF)

Figure S3 Mackerel landings from commercial fisher-
ies and mackerel catches from fisheries independent
bottom trawl surveys. Data from January–March are shifted

back one year to match data in the same season from October–

December.

(TIF)

Table S1 Table with temperature model parameter estimates.

(DOC)
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