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An efficiency model of a scallop (Pecten maximus, L.)
experimental dredge: Sensitivity study
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In order to estimate the abundance of scallops it is necessary to estimate the efficiency
of the experimental fishing gear (scallop dredge with rings of 50 mm diameter, 2 m
wide and a toothed bar with 30 teeth). The age–size structure of catches does not
usually correspond to that of the actual population because of selectivity of the gear.
Several previous studies on the Saint-Brieuc scallop stock (English Channel, France)
have used a ratio estimator per age group: an assumption of increase in efficiency vs.
scallop size is taken into account. The evaluation of the gear efficiency used for this
stock since 1986 has been carried out by diving according to a random sampling plan.
Factors such as sedimentary heterogeneity, tide, current, and depth are neglected.
There are drawbacks as regards to the definition of dredge efficiency by this method:
(1) a ratio estimator is biased when the number of samples is small such as the number
of diving units in this study; and (2) the definition of the estimator using age rather
than scallop size limits the period of assessment validity: intra-annual extrapolations
are not valid. These two difficulties are resolved when dredge efficiency is defined
against scallop size. A logistical curve is used and requires three parameters: (1)
maximum asymptotical efficiency (emax); (2) parameter describing the selection devia-
tion (á) and; (3) size corresponding to 50% of emax (L50). The matrix of variances–
covariances of three parameters is also obtained.
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Introduction

In order to assess the abundance and biomass of scallop
populations, it is necessary to know the efficiency and
selectivity of the fishing gear. The age and size compos-
ition of the experimental catches does not correspond to
that of the actual population. On the one hand, a
multiplicative correction has to be introduced in order to
estimate the population abundance from catches
because only a part of the individuals are retained by
dredging; on the other hand, this term is different
according to age group because available information
shows that the efficiency of the fishing gear increases
according to individual length.

We report on an evaluation of dredge efficiency exper-
iment using divers in the Saint-Brieuc Bay (Western
English Channel, France; Figure 1); a similar method
has also been used to evaluate densities of scallop beds
(Scottish waters: Mason et al., 1979; Western English
1054–3139/99/040489+11 $30.00/0
Channel: Dare and Palmer, 1994). Our experiment esti-
mates the number of individuals per age group escaping
from the dredge which is then used in a ratio estimator
of efficiency as presented by Laurec and Le Guen (1981)
and Buestel et al. (1985):

Materials and methods
The experimental fishing gear

The experimental fishing gear is similar to the dredge
with a pressure plate used by fishermen during the
fishing season (Figure 2). It differs in terms of the
diameter of the metal rings (50 instead of 85 mm) in
order to reduce the effects of selectivity for small sized
? 1999 International Council for the Exploration of the Sea
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scallops. Likewise, the dredge consists of a 2 m wide
toothed bar with 30 teeth instead of 22 used by fisher-
men. In order to improve dredging conditions, tooth
length is variable according to the nature of the sea
bottom: for soft sea bottom, tooth length is 13 mm, and
for rough sea bottom, the length is 9 mm.
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Figure 1. The area studied: the Saint-Brieuc Bay in the western
English Channel.
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Figure 2. The experimental fishing gear. A dredge with a
pressure (diving) plate.
The dredge efficiency against scallop age and size

Using results from diving operations carried out for
stock assessment of Saint-Brieuc Bay in 1986 and 1987,
according to a sampling technique which has been
assumed to be a simple random scheme, it was possible
to apply ratio estimators [Equation (1)] and to estimate
two values of dredge efficiency vs. scallop age (Fifas,
1991).

(1) A first value was related to scallops of age-group 2.
In this case, dredge efficiency was equal to 0.558.

(2) A second value was related to older scallops
(age-groups 3+). Efficiency was equal to 0.675.

Ratio estimators were characterized by low values of
variance (in both cases, coefficients of variation were less
than 10%), but, on the other hand, bias was relatively
high because their values were close to those of the
standard deviations of the numerator and denominator
variables.

The use of a ratio estimator induces three main
problems:

(1) It is recommended to have a relatively high number
of diving samples available, i.e. about 20, because
ratio estimators are influenced by sample size.
Cochran (1977) has written that a low sample size
(less than 30 observations) combined with high
values of coefficients of variation (greater than
10%) for numerator and denominator variables,
can induce a non-normal distribution because of
the positive value of skewness. In fact, the con-
straints of diving (limited number of qualified
divers, diving during low tide in areas with strong
current, the long duration of operations, etc.) mean
that only about 10 dives can be carried out during
the annual stock assessment.

(2) The fact that estimators are defined according to
age and scallop size limits the period of validity of
estimators for short time intervals (i.e. in 1986 and
1987, divings were usually carried out in June).
Consequently, extrapolations are not valid.

(3) Efficiency has been estimated according to a simple
random sampling plan. Its variability with respect
to the type of the sea bottom has not been taken
into account.

As regards this latter disadvantage, it is necessary to
draw up a sampling plan based on the stratification of
the Saint-Brieuc Bay according to sedimentary units;
some recent references (Thouzeau, 1989) are useful in
this case. In the absence of a redefinition of the sedimen-
tary strata, it is assumed that the total area under study
is homogeneous and the impact of the nature of the sea
bottom is residual. On the other hand, difficulties linked
to the first two disadvantages can be overcome if
efficiency is defined against scallop size.

Components of efficiency

An efficiency model of dredges using scallop size as an
independent variable has to be represented by an
increasing monotonic function. Efficiency is made up of
the following components:

(1) A certain number of small sized scallops can escape
through the 50 mm rings: this phenomenon defines
the selectivity of dredge mesh which describes a
component of catchability, called vulnerability
(Laurec and Le Guen, 1981). This term includes
parameters related to the behaviour of the animals
and to their size. The sedentary life of the studied
species reduces selectivity and the study describes
the passive escape of individuals through the rings.
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(2) Nevertheless, scallop dredges present a second type
of selectivity, namely through the teeth which can
be called the selectivity of the toothed bar. On the
one hand, this phenomenon is similar to selectivity
through the rings and can be described by an
increasing monotonic function of the scallop size,
but, on the other hand, it depends on the mechan-
ical and physical conditions of dredging (the setting
of the dredge due to the length of the teeth,
meteorological conditions, etc.). This two-stage
selection and retention process (by toothed bar and
meshes) has already been described in the case of
spring-loaded dredges (Dare et al., 1993).

(3) Note that for the first two components of efficiency,
selectivity is defined according to the smaller di-
mension of the scallop defining the individual linear
growth (h) and is different from larger one which
defines minimum marketable size (l) (Figure 3).

(4) A final component of efficiency is related to the
mechanical and physical characteristics of dredging
which are independent of scallop size. In fact, even
when individuals attain a large size and cannot
escape through the teeth or the rings, all scallops
are not caught on a dredged area: a certain number
of them are still left on the bottom. The third term
is defined as efficiency depending on the physical
(nature of sea bottom, direction and speed of winds
and currents, etc.) and mechanical (speed and
direction of ship during the dredging, etc.) charac-
teristics. If we consider that these different par-
ameters have a residual effect during stock
assessment, we assume that, unlike the first two
components of efficiency, the physical and mechan-
ical components can be represented by a constant
term in our model.
Mathematical formulation

An efficiency model using scallop size as an independent

variable (ei vs. Li) is represented by:
where:
emax=maximum asymptotical efficiency; this term is
considered to be independent of scallop size; it depends
on physical and mechanical characteristics during
dredging.
á=parameter linked to the deviation of selection of
experimental dredge, defined by the difference L75"L25

of scallop sizes where efficiency is equal to 75 and 25%,
respectively, of maximum asymptotical efficiency
[á=2ln(3)/(L75"L25)].
L50=size corresponding to 50% of the maximum
asymptotical efficiency.
îi=unexplained residual error.

For a size Li, the observed efficiency, ei, is written as:

where:
Ni1 and Ni2=number of individuals of size Li, caught by
the dredge and those left on the sea bottom, respectively.

The proposed model is a logistical function, similar to
the one used for selectivity studies, but the number of
parameters is three instead of two. Its curve has an
inflection point at size L50.
l

h
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Figure 3. Different dimensions on a scallop shell. l=marketable
size; h=symmetrical dimension defining the individual growth;
h , h =sizes corresponding to winter rings.
The available data

In the past there were problems with the efficiency curve
vs. size, due to the limited number of size classes which
were frequently represented in experimental catches of
stock assessment (individuals belonging to age-groups 2
and plus). The mean size of 2-year-old individuals is
generally around 65 to 75 mm. As a result, previous
samples gave a mean efficiency value per age-group,
but did not provide either an estimate of the deviation
of selection (and of the parameter á) nor the size
L50 which is probably smaller than the mean size of
age-group 2.

This problem has been partially resolved. Stock
assessments during the 1990s have provided a consider-
able amount of data concerning age-group 1 whose
mean size is 30–60 mm. In order to complete the data
series, it has been assumed that the mechanical condi-
tions of dredging on the sea bottom have not been
modified significantly over the last few years and data
collected in 1987 and 1990 have been pooled.

The fitting of the efficiency function was carried out
for size classes between 27 and 104 mm. The total
number of scallops caught in the dredge was 247 and 494
scallops were sampled by divers from the sea bottom
after dredging.
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Preliminary data have been smoothed by moving
means (Antoine, 1979). This method has advantages
because it is possible to distribute uniformly systematical
bias introduced by measurement. Furthermore, smooth-
ing reduces large differences in efficiency values between
the two contiguous size classes, induced usually by
sampling errors. A smoothing step has been fixed as
1 cm.

Figure 4 presents the size frequency histograms of
smoothed data for scallops caught by dredge and those
which escaped.
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Figure 4. Distribution of length frequencies of scallops. Samples used for fitting model. (a) Scallops caught by dredges. (b) Escaping
scallops.
Fitting of the logistical curve

Smoothing has not eliminated all sampling errors
because the larger were size classes under-represented in
the catch. In fact, size measurements in the past were
systematically limited to the first three age-groups which
have a more biological and marketable applications for
forecasting the future fishing season. This limitation may
cause problems for fitting because the effect of the large
size classes is important in estimating a maximum
asymptotical efficiency. An examination of the
smoothed data (Figure 4) shows that for the larger size
classes, large variations in efficiency due to a low sample
size are not eliminated. However it does not seem that
efficiency decreases with scallop size (Buestel et al., 1985;
Fifas, 1991). Therefore, we have arbitrarily fixed an
acceptable minimum number of five individuals and a
maximum size of 90 mm for the model.

For the fitting of logistical curves expressing size-
selectivity of fishing gears, different algorithms based on
conditional maximum likelihood model (Millar, 1991)
or multinomial likelihood method (Perez-Comas and
Skalski, 1996) have been developed. A comparison of
direct and linear fitting methods has been presented by
Caddy and Defoe (1996).

The fitting of the logistical curve has been conducted
according to the following principles:

(1) The fitting has been done using the Simplex method
presented by Nelder and Mead (1965) and it has
been chosen because it does not need any statistical
constraint (e.g. no formal statistical distribution of
estimates needs to be assigned).

(2) The Simplex algorithm proceeds by minimizing the
sum of the weighted residual squares: for a given
size class i, weight is the corresponding total
number of scallops, including scallops caught by
dredge (Ni1) plus those sampled on the sea bottom
by divers (Ni2). This procedure attributes greater
weight to intermediate size classes and probably
helps to reduce uncertainty in parameters á and
L .
50



493Efficiency study of an experimental dredge
The vector of parameters (emax, á, L50) is estimated by
minimizing the following quantity:

where: nc=number of size classes taken into account for
fitting.
Matrix of variances–covariances of parameters.
Variance of efficiency

The simplex method does not give an estimate of the
matrix of variances–covariances of the three parameters.
In this case, it is often recommended to apply non-
parametric techniques such as the Bootstrap method
(Caddy and Defoe, 1996). In this paper, the calculation
of the matrix of variances–covariances was carried out
according to a parametric procedure used by Lin (1987)
and Fifas (1991).

These authors indicate that matrix of variances–
covariances is obtained by the following relationship:

(M)=s2 · (I)"1, (5)

where:
(M)=matrix of variances–covariances;
(I)"1=inverse of matrix of information;
s2=sum of mean residual squares of the fitted function:

In order to calculate the matrix of information (I), it is
necessary to derive formula (2) relative to the three
estimated coefficients (emax, á, L50). This operation gives
a matrix (Z) of nc lines and three columns:

The matrix of information is obtained by:

(I)=(Z)* · (Z).

[(Z)*=transpose of (Z)].
The matrix of information is inverted using an algor-
ithm presented by Lefebvre (1980).

The matrix of variances–covariances of the three
parameters of the model and the use of partial deriva-
tives of order 1 provide an approximate estimate of the
variance of the variable Ø(L) representing efficiency
against size L. This procedure is possible using limited
developments of order 1 in Taylor’s series (Laurec, 1986;
Laurec and Mesnil, 1987; Chevaillier, 1990; Chevaillier
and Laurec, 1990; Fifas, 1991).

Let Ö be a function and è1, è2, . . ., èk its parameters.
By using Taylor’s polynomial it is possible to present the
variance of Ö by:

In the case of the efficiency of the scallop experimental
dredge, (9) is equivalent to:
Sensitivity study

Let Ø be a function containing the È1, È2, . . ., Èn

parameters; a response, YÈ, is associated to this
function: Ø{È1, È2, . . ., Èn}=YÈ. Let Èi be a
parameter which is subject to a variation according to
ÄÈi and let Y*

È+ÄÈ be the new response to the Ø
function.

By using a sensitivity study, it is possible to estimate
the modification of the YÈ response into Y*

È+ÄÈ against
the variation in Èi parameter, according to ÄÈi. Abso-
lute or relative sensitivities exist; in the latter case, the
modification of the YÈ response into Y*

È+ÄÈ is
expressed in percentage with respect to the variation
of Èi into Èi+ÄÈi, which is equally expressed in
percentage (100 · ÄÈi/Èi).

In the case of non-linear models, i.e. the efficiency
model for scallop dredges, analytical investigation of
errors is impossible and approximative methods must be
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used, e.g. Delta methods based on the approximate
nature of a function in an infinite Taylor series (see
references previously quoted: Laurec, 1986; Laurec and
Mesnil, 1987; Chevaillier, 1990; Chevaillier and Laurec,
1990; Fifas, 1991); those approximations are valid only
if variation increment is too small comparative to the
value of the parameter Èi.

The terms )ei/)emax, )ei,)á, )ei/)L50 used above for
calculation of efficiency variance are called absolute
coefficients of sensitivity of order 1 of the parameters
emax, á, L50. If we represent by Ø(L) the function
‘‘efficiency of dredge using scallop size L as an indepen-
dent variable’’ and by a(emax), a(á), a(L50) the
coefficients of sensitivity, we can write:

The absolute coefficients of sensitivity are involved in
calculating the variance of a dependent variable, but, it
is more common to use the relative coefficients of
sensitivity of order 1 which provide a more concrete
sense. For a parameter è of a function Ö, the relative
coefficient of sensitivity of order 1, written b(è), is
given by:

b(è)=a(è) · è/Ö. (14)

For the parameters emax, á, L50, these coefficients are
equal to:

b(emax)=1. (15)
Results and discussion
Table 1. Fitting of the efficiency function. Number of size
classes nc=64. Sum of weighted residual squares SRQ=0·2564.

Parameter Value
Standard
deviation C.V.

emax 0.646 0.0157 0.0244
á 0.088 0.0043 0.0489
L50 58.620 0.8254 0.0141

Factor of selection: L50/Lmesh=1.172
Deviation of selection: 2.ln(3)/á=24.97 mm

Matrix of variances–covariances
emax á L50

emax 0.249E-03 "0.551E-04 0.119E-01
á 0.185E-04 "0.263E-02
L50 0.681E+00
Matrix of correlations

emax á L50

emax 1.0000 "0.8126 0.9115
á 1.0000 "0.7409
L50 1.0000
Fitting of the efficiency model and the matrix of
variances–covariances

The results of fitting are presented in Table 1 which also
gives the main parameters of the logistical curve (devia-
tion of selection, factor of selection) and the matrix of
variances–covariances and of correlations between the
parameters. Fitting is also presented in Figure 5.
The estimated relationship between efficiency ei and
size Li is written as follows:

A general examination of the results shows that a
fitting has been satisfactorily obtained. In fact, the
maximum asymptotical efficiency 0.646 is close to that
of previous studies on the same area for larger sized
scallops which were not selected by rings or a toothed
bar: Buestel et al. (1985) estimated this value around 0.7.
Furthermore, an efficiency study using a ratio estimator
has given a value of 0.675 for scallops of age-group 3
and plus (Fifas, 1991). For scallops of age-group 2, if we
use growth parameters as presented by Antoine (1979),
the efficiency calculated by the fitted equation is approx-
imatively equal to 0.571 (Buestel et al., 1985: 0.50–0.55;
Fifas, 1991: 0.558).

Our results and those of other researchers (Dare et al.,
1993; Shafee, 1979) show that efficiency estimates for
scallop dredges cover a wide range. Dredge efficiency is
highly dependent upon complex interactions between
the gear, the seabed, hydrodynamic forces (i.e. tide level
and coefficient), and the behaviour of the scallops.
In the case of spring-loaded dredges used in the
Western English Channel, Dare et al. (1993) indicated
efficiencies ranging from 6% for rough ground to
41% on smooth muddy gravel bottom for scallops
greater than 90 mm (legal size). For other Pectinid
species, a relationship between efficiency and duration of
hauls has been shown. For example, Shafee (1979)
observed a decrease in efficiency with duration for
black scallop beds. Studies of dredge efficiencies for
other marine populations show that density can also be
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an explanatory factor. For example, for some crustacean
populations, Zhang et al. (1993) report that dredge
efficiency seems to have declined exponentially as crab
density increased.
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Absolute sensitivities of order 1

Figure 6 presents the curves of the absolute coefficients
of sensitivities of order 1 relative to the three parameters.
These coefficients approach 0 asymptotically except for
the parameter emax which is equal to 1 when L
approaches +£.

The coefficient a(emax) is a logistical function. The fact
that the maximum asymptotical value of this function is
equal to 1 indicates that for a given absolute error of
e , the error of the dependent variable (efficiency)
max
increases against scallop size. Consequently, a diver-
gence of efficiency values is induced.

The coefficient a(á) is represented by a periodic func-
tion; its curve is non-symmetrical at around L50. When
the scallop size approaches 0 or +£, this coefficient is
close to 0. In fact, if the scallop size is not within
intermediary values, the absolute error of á contributes
less significantly to the efficiency error. The coefficient is
equal to zero at L50 and for this size, the contribution of
the absolute error of á to the efficiency error is zero (in
this case, efficiency is always equal to emax/2).

The coefficient a(á) presents two extreme values which
are non-symmetrical at around L50. After derivation of
a(á) relative to scallop size L, the equation is:

1"á(L"L50)+exp["á(L"L50)]
+á(L"L50) · exp["á(L"L50)]=0. (19)

If á(L"L50) is replaced by x, Equation (19) is equiva-
lent to:

which can also be represented by:

x"coth(x/2)=0, (21)

where coth is called ‘‘hyperbolical cotangent’’.
The development of the formula (21) using Taylor’s

series gives:

where: (2k)!=factorial product of 2k.
For every presentation of this function [formulae (20)

to (22)], the value of x maximizing (or minimizing) a(á)
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is independent on á and L50, that is, its value is constant
for every scallop dredge.

A presentation of the analytical expression of the two
solutions of x is not straightforward but x can be solved
for it actively as:

a(á) is minimized by: x= "1.543]L~41.1 mm
(efficiency~0.114)

a(á) is maximized by: x= "1.543]L~76.2 mm
(efficiency~0.532)

The coefficient a(L50) is always negative and it is
represented by a curve which is symmetrical at around
L50. It approaches 0 when L is close to 0 or to +£; and
its function is minimized if L=L50. For L=L50 the
contribution of the absolute error of L50 is at its
maximum.
Relative sensitivities of order 1

Figure 7 presents the patterns of the relative coefficients
of sensitivity of order 1 for the three parameters.

The coefficient b(emax) is constant. The contribution of
a relative error of emax to a relative error of efficiency is
independent of scallop size. Furthermore, its value is
always equal to 1 such that an overestimate of emax

always induces an equivalent overestimate of efficiency.
The coefficient b(á) is negative for sizes less than L50,

and positive above this size, similar to a(á), but it is not
symmetrical. For scallop size less than L50, an overesti-
mate of á produces an underestimate of efficiency; and
for a given relative error of á, the relative error of
efficiency decreases when size increases. b(á) quickly
approaches 0 and is equal to zero for L50. Above L50,
the relative error of á is relatively low and does not
exceed 0.28: for these scallop sizes, an overestimate of á
gives an overestimate of efficiency, the relative error of
the latter never exceeds 30% of the relative error of á.
For this interval, a maximum value exists and, finally,
b(á) approaches 0 asymptotically.

If á(L"L50) is replaced by x, the maximum of the
function b(á) is calculated by resolving the following
equation:

exp("x)"x+1=0, (23)

which has a solution independent of the scallop dredge
similar to a(á).

In order to make the presentation of (23) easier using
a Taylor’s polynomial, we can write:

(x"1)exp(x"1)=exp("1), (24)

which can be more or less approximated to xo=1; the
polynomial of x can be inverted and presented
by a polynomial of exp("1) of the same degree. The
analytical solution of x is given by:

which has certain disadvantages due to a slow conver-
gence.

The value maximizing b(á) is x~1.279; it corresponds
to a scallop size: L~73.1 mm (efficiency~0.505).

The coefficient b(L50) is a monotonic increasing func-
tion and its value is always negative such that an
overestimate of L50 induces systematically an underesti-
mate of efficiency. For a given relative error of L50, the
relative error of efficiency decreases vs. scallop size. This
coefficient is characterized by a sigmoidal curve which
approaches 0 asymptotically and includes an inflection
point at L50.
Calculation of variance
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Figure 7. Relative sensitivity coefficients of the three model
parameters. (a) b(emax); (b) b(a); (c) b(L50).
Description of the function of variance
The variance of efficiency is given in Figure 8. It is an
increasing function which has many local extremes for
the intermediate size range. However, the analytical
formulation is not mathematically simple. Furthermore,
in order to explain the characteristics of the curve of
variance it is important to take into account the com-
bined effects of the three parameters of the model (effect
of covariances, sensitivity coefficients of order 2).

The figure shows that the trends for variance are
characterized by three stages. First of all, for small size
classes, variance increases monotonically with size. In
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the range between 40 and 75 mm, variance is relatively
stable and presents local extreme values of low ampli-
tude and there does not seem to be any specific perio-
dicity. During the third stage, concerning large size
classes, variance increases quickly and asymptotically
approaches that of emax.

The third stage differentiates the variance of the
efficiency model from other logistical functions (selec-
tivity) which have only two parameters. The variance of
efficiency is described as an increasing function unlike
selectivity models which are characterized by a constant
maximum asymptotical value and their variance is close
to zero when size approaches +£. The divergence of
efficiency constitutes a disadvantage. Nevertheless, this
characteristic seems to match reality because the main
problems related to the variability of efficiency usually
concern large sized scallops.

Simulations of variances and covariances of parameters
In order to better understand the effects of variances and
covariances between the three parameters of the model,
two types of simulations have been carried out.

(1) In the three cases, one parameter of the model has
been cyclically assumed as constant: its variance
and covariances with the other two parameters
become zero. It is important to note that variances
and covariances are referred to as estimates of
parameters and not as true values which are
unknown. For this reason, the simulation is handi-
capped. In fact, it is impossible to comment on
true correlations between emax, á, L50 because it is
not valid to attribute a biological or physical sense
to the three parameters of the model except for
emax. The result of the simulation is presented in
Figure 9.

(1.1) Invariability of emax. It is the variability of emax

which contributes mostly to the variance of
efficiency and its function even if its variation
coefficient is not the highest (Table 1). The invari-
ability of emax completely transforms the curve
which presents only a maximum value due to the
strong negative correlation between á and L50 and,
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Figure 9. Simulation of variance of the efficiency with alterna-
tive invariability of one model parameter. (a) V(emax)=0; (b)
V(a)=0; (c) V(L50)=0.
above the size corresponding to this value, it falls
asymptotically to zero.

(1.2) Invariability of á. Non-significant modifications
are induced by this simulation.

(1.3) Invariability of L50. As regards around to L50 size,
the curve becomes similar to that fitted. For size
classes below L50, the simulated curve is different.
The elimination of terms of limited effect on L50

probably contributes in increasing the effect of
covariance between emax and á and of the sensitiv-
ity coefficient a(á). It is important to note that this
simulation produces a variance which is systemati-
cally greater than that of the fitted model. The part
of Cov(emax,L50) seems to be significant because it
is the only negative term which has been elimi-
nated given there is a invariability of L50.

(2) The second type of simulation is based on the
modification of correlation coefficients between the
three parameters. In order to simplify calculations,
we have kept unchanged the values of variation
coefficients of parameters equal to those obtained
by fitting and we have also considered the same
signs of covariances between the three parameters
[Cov(emax,á)<, Cov(emax,L50)>0, Cov(á,L50)<0].
Many cases have been studied and extreme
situations correspond, on the one hand, to a total
absence of correlations and, on the other hand, to
a perfect correlation between the estimates of the
three parameters. The results are presented in
Figure 10. Only the two extreme cases have been
commented upon.
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(2.1) Absence of correlations. This simulation produces a
sharp increase in variance beginning from the
small size classes. After a maximum value (around
75 mm), the curve becomes stable and approaches
asymptotically V(emax).

(2.2) Perfect correlations. This simulation will be com-
mented upon in more details because it is close to
the results obtained in the fitted model. The curve
of variance of efficiency seems to be stable up to
75 mm and it increases very sharply, it approaches
asymptotically V(emax) for the larger size
classes. The variance obtained by this simulation
was always lower than that calculated by zero
correlations.

Opposite signs of correlations gave two sizes with a
variance equal to 0. Perfect correlation allows the sum of
the limited development of order 1 to be transformed as:

V(Ø(L))~[óemaxá(emax)"óáa(á)—óL50a(L50)]2, (26)

where óemax, óá, óL50 are the standard deviations
(estimated by values presented in Table 1).

After developing Equation (26) and replacing L"L50

by y, the solutions of the equation are obtained by:

with: CV(emax)=variation coefficient of emax.
Values resolving this equation were:

y~"8.523]L~50.1 mm (efficiency~0.207)

y~"18.980]L~77.6 mm (efficiency~0.543)

The study of correlations between the three model
parameters shows that:
- The variance of efficiency decreases according to

correlations between the three parameters. In fact,
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Figure 10. Simulation of variance of the efficiency for different
values of correlation between the parameters. The signs of
correlations are the same to fitting results.
Figure 10 indicates the total absence of an inter-
section between the simulated curves.

- For sizes greater than L50, the increase in variance
is greater as the correlations are high; the inverse
situation is produced for sizes less than L50.

- Simulated curves converge asymptotically to V(emax),
but, for the intermediate values of scallop sizes, a
divergence is observed.

The main local extreme curve values, for sizes greater
than L50, are relatively stable in the modification of
correlations between the model parameters.

Conclusion

The fitting of the efficiency model is satisfactory because
it gives parameter coefficients of variation from 1 to 5%.
The fact that data have been collected over several years
probably reduces the effects of interannual variability of
efficiency. On the other hand, it has not demonstrated
that seasonal variability is reduced because data were
sampled during the same season. It is important to
verify, using samples taken during other seasons,
whether this variability can be neglected or not. In order
to achieve an unbiased estimate of parameters it is
necessary to apply re-sampling techniques (Jackknife,
Bootstrap). These methods have not been chosen in this
paper because of the absence of information concerning
the matching of data to a given sample and sensitivity
studies were limited to the order 1 (variances).

The examination of sensitivities, both absolute and
relative, and the study of the function of variance show
the dominant part of maximum asymptotical efficiency
(emax) in the error induced by the fitted function, mainly
as for the larger sized classes. This point constitutes an
important difference between the fitted function and
selectivity curves which include only two parameters.
The variance of efficiency increases sharply above
75–80 mm and approaches asymptotically that of emax.
This point proves it is difficult to reconstitute abun-
dances of scallops for old age-groups. Nevertheless,
strong correlations between the three parameters of the
model produce a significant decrease in variance, mainly
for the intermediate size classes which are the most
frequently represented in scallop fishery in the
Saint-Brieuc Bay.

References

Antoine, L. 1979. La croissance de la coquille Saint-Jacques
Pecten maximus (L.) et ses variations en mer Celtique et en
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platessa, Linné) de la baie de Douarnenez: Croissance,
Régime alimentaire, Reproduction. Thèse Univ. Bordeaux I:
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