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ABSTRACT: The northern Adriatic Sea has been historically subjected to phosphorus and nitrogen 
loading. Recent signs of increasing eutrophication include oxygen def~ciency in the bottom waters and 
large-scale formation of gelatinous macroaggregates. The reason for the formation of these macroag- 
gregates is unclear, but excess production of phytoplankton polysacchandes is suspected. In order to 
study the effect of different nutrient (nitrogen~phosphorus:silicon) ratios on phytoplankton production, 
biomass, polysacchandes, and species succession, 4 land-based enclosure experiments were  per- 
formed with northern Adriatic seawater. During 2 of these experiments the importance of zooplankton 
grazlng as a phytoplankton loss factor was also investigated. Primary productivity in the northern Adri- 
atic Sea is thought to be phosphorus limited, and our experiments confirmed that even low daily phos- 
phorus additions Increased phytoplankton biomass. However, this only occurred when nitrogen addi- 
tions were high. Alternatively, when nitrogen was added in low concentrations, u l th  simultaneous high 
phosphorus a d d ~ t ~ o n s ,  phytoplankton biomass declined Nitrogen deficiency induced the highest pro- 
duction of polysacchandes per unit of cell carbon, while nutrient-sufficient and phosphorus-deficient 
treatments caused a higher production of polysaccharides in total. In order to decrease the frequency 
of algal blooms and high polysaccharide production in the northern Adnatic, it appears necessary to 
reduce the amounts of incoming nutrients. Since phosphorus has a high turnover rate in low P :  high N 
waters of the northern Adnatic, and slnce our experiments show that a shortage of nitrogen can pro- 
duce reduced levels of phytoplankton biomass and total polysaccharides, a reduction of the nitrogen 
discharge would probably be the best countermeasure for eutrophicat~on In the northern Adnatic Sea.  
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INTRODUCTION Adriatic Sea has been undergoing eutrophication for 
decades due to large loadings of phosphorus (P) and 

Eutrophication due to anthropogenic nutrient load- nitrogen (N) originating from agriculture, industries 
ing in coastal marine waters is a growing problem and sewage (Justic 1987). Although anoxic events in 
throughout the world (Likens 1972, Caraco et  al. 1990, the bottom waters of the northern Adriatic Sea have 
Nixon 1990, Vollenweider et al. 1992). The northern occurred sporadically for several centuries (Piccinetti & 

Manfrin 1969), the frequency of occurrence and size of 
'E-mail: edna.graneli@ng.hik se  the areas exhibiting oxygen deficiency have dramati- 
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Fig. 1. Location of the sampling station for the water used in 
the enclosure experiments 

cally increased during the last 2 decades (Justic 1987, 
1991). 

Another possible sign of increasing eutrophication in 
these waters is formation of gelatinous macroaggre- 
gates of huge proportions, known locally as 'mare 
sporco' or 'dirty water' (Stachowitsch et al. 1990, Mar- 
chetti 1992). These gelatinous masses are thought to 
be related to phytoplankton blooms, and have caused 
beach fouling throughout the northern Adriatic Sea, 
with substantial economical losses for an  otherwise 
flourishing tourism industry. These phenomena have 
not been associated with severe oxygen deficiency, 
however, probably due to the low content of organic 
matter in the gelatinous mass (Marchetti 1992). How- 
ever, oxygen deficiency has been observed in the bot- 
tom waters after large accumulations of gelatinous 
macroaggregates during the summers of 1988 and 
1989 (Degobbis 1989). Other harmful blooms occurring 
in this area include those of toxic phytoplankton spe- 
cies (Boni et  al. 1993, Fonda Umani et al. 1993). 

The main source of nutrients for the northern Adri- 
atic Sea is the PO River (Degobbis & Gilmartin 1990, 
Vollenweider et al. 1992), with a mean discharge of 
about 1500 m3 S-' (Cati 1981) of water containing high 
concentrations of N and P. The total amount of P reach- 
ing the northern Adriatic is approximately 30000 tons 
yr-l, of which the PO River contributes about 60% (Chi- 
audani & Vighi 1982). Approximately 152000 tons yr-' 
of N reaches coastal waters, of which 75% is dis- 
charged by the PO River (Chiaudani et  al. 1980a). The 
large transport of nutrients to the relatively shallow 
sea, markedly increases the primary production in 
these waters (Gilmartin & Revelante 1980, Malej et al. 
1995). 

For most marine coastal waters and inland seas N is 
thought to be the most limiting nutrient for phyto- 
plankton production (Ryther & Dunstan 1971, Howarth 
1988, Graneli et al. 1990, Oviatt et al. 1995). However, 
a few cases have been reported where P limits produc- 
tion (Berland et al. 1980, Smith 1984), and P has been 
suggested to be limiting in marine coastal waters only 
when large nutrient loads with high N:P ratios reach 
coastal waters (Howarth 1988). 

Phosphorus has been suggested to be the most limit- 
ing nutrient for phytoplankton primary production in 
the northern Adriatic Sea. Indeed, 80% of the inor- 
ganic N:P ratios found in the surface waters suggest 
that P is limiting phytoplankton growth (Chiaudani et 
al. 1980b), and bioassay experiments have confirmed a 
marked stimulation of phytoplankton growth when P 
was added (Pojed & Kveder 1977). 

The main objectives of our experiments were to 
investigate: (1) the effects of different N, P and silicon 
(Si) ratios and concentrations on phytoplankton 
growth, biomass, production, polysaccharide produc- 
tion, biochemical composition and changes in the 
intracellular content of carbon (C), N and P; (2) the 
effects of these nutrient manipulations on the abun- 
dance and composition of natural phytoplankton com- 
munities; and (3) the impact of zooplankton grazing on 
these phytoplankton communities. 

Experiments were performed in May 1993, June 
1993, May 1994 and August 1994 in land-based enclo- 
sures in Fano, Italy. Nutrient, phytoplankton biomass, 
primary production and polysaccharide production 
results for the June 1993, May 1994 and August 1994 
experiments will be presented in this paper. Effects of 
different nutrient ratios and concentrations on phyto- 
plankton species composition in the June 1993 and 
May 1994 experiments will be presented in the second 
paper in this series (Carlsson & Graneli 1999, in this 
issue). Fluctuations of zooplankton in enclosures and 
results of zooplankton grazing experiments from the 
May 1993 and June 1993 experiments will be pre- 
sented in the third paper in this series (Turner et al. 
1999, in this issue). 

MATERIALS AND METHODS 

Experiments were performed in land-based enclo- 
sures using northern Adriatic seawater. The construc- 
tion of this land-based enclosure system has been pre- 
viously described in Olsson et  al. (1992). The water 
containing the natural phytoplankton communities 
was pumped from 1 to 2 m depth from a station 15 km 
off the east coast of Italy, offshore from Fano (Fig. l ) ,  
and filled into 500 1 dark-blue plastic containers. 
While filling the tanks on board the ship, the water 
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was filtered through 100 pm mesh in order to remove 
extraneous mesozooplankton. We realized that this 
sieving could also remove some chain-forming 
diatoms, if present, but since initial inspections 
revealed that the phytoplankton was dominated by 
small microflagellates, we considered that removal of 
extraneous grazers from the containers was more 
important than the error caused by possibly removing 
some chain-forming diatoms. The containers were 
lifted from the ship and placed on a truck for immedi- 
ate transport to the experimental site (this procedure 
lasted for about 1 h and there was no significant tem- 
perature change in the water). The enclosures con- 
sisted of 100 1 white polyethylene cylinders with lids, 
and the cylinders were immersed in a plastic swim- 
ming pool supplied with running water in order to 
keep the temperature inside the cylinders close to the 
temperature of the surrounding sea (15 to 18°C in 
May 1994, 21 to 24°C in June 1993, and 24 to 31°C in 
August 1994). At the experimental site, the water was 
transferred from the tanks to the cylinders by siphon- 
ing using a 40 mm diameter tube. Water was filled 
into each cylinder for 20 S at a time, continuously 
alternating between the cylinders. In this way the 
cylinders were filled with equal amounts of water 

from the different 500 1 plastic transport containers 
and any initial patchiness in the sampled water was 
integrated. 

After filling the cylinders with 100 1 of seawater, 
samples were taken from all the cylinders for immedi- 
ate analyses of nutrients (NOs, NH,, PO, and Si(OH),), 
chlorophyll a (chl a), primary production, and particu- 
late C, N and P. The phytoplankton communities were 
exposed to different N:P:Si regimes (Table 1). Based on 
the concentrations found for the different nutrients in 
the collected water, additions of PO,, NO, and Si(OH)4 
were made to the different cylinders in order to obtain 
different nutrient ratios in the May 1994, June 1993, 
and August 1994 experiments. In the May 1993 exper- 
iment a surplus of macro- and micronutrients was 
added (see Carlsson & Grankli 1999, Turner et al. 
1999). Each treatment was performed in triplicate 
cylinders. Iron, EDTA and trace metals (Cu, Zn, CO, 
Mn and MO) were added at concentrations corre- 
sponding to 1/20 of the culture medium 'f' (Guillard & 

Ryther 1962), in order to prevent any limitation of 
phytoplankton growth by these substances. For the 
same reason, vitamins (B12, biotin and thiamin) were 
added according to Schone & Schone (1982) (as 1/20 of 
the original description). 

Table 1. Nutrient concentrations in the initial water used in the experiments and the different concentrations reached in the 
experimental cylinders after nutrient additions. The nutrient additions were either made as 1 initial addition (Expt 1) or as daily 
additions (Expts 2 and 3). In Expts 2 and 3 the limiting nutrient was added daily while the other nutrients that were in excess were 
added only when their concentrations were significantly reduced. In the N-deficient Expt 1 treatments, no addition of nitrate was 

made until the concentration of inorganic nitrogen (nitrate + ammonium) had decreased to 1 pM 

Treatment P04 (PM) No3 (PM) SiOz (PM) NH4 (PM) 

June 1993 Expt 1 
Initial concentrations Mean 0.21 1.03 4.23 1.02 

SD 0.01 0.52 0.08 0.09 
P-deficient 1 4 0 4 0 
N-deficient 2 20 4 0 
Si-deficient 2 40 20 
Nutrient sufficient 2 40 40 
May 1994 Expt 2 
Initial concentrations Mean 0.12 3.33 1.39 

SD 0 0.12 0.03 
P-deficient 0.2 0.2 20 20 
P-deficient 0.8 0.8 20 20 
N-deficient 1 1.3 1 20 
N-deficient 4 1.3 4 20 
Si-deficient 1 1.3 20 1 
Si-deficient 4 1.3 20 4 
Nutrient sufficient 5 0.3 5 5 
Nutrient sufficient 20 1.3 20 20 
August 1994 Expt 3 
Initial concentrations Mean 0.14 1.21 0.72 

SD 0 0.20 0.08 
P-deficient 0.2 0.2 20 20 
N-deficient 1 1.3 1 20 
Si-deficient 1 1.3 20 1 
Nutrient sufficient 20 1.3 20 20 
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Fig. 2. Inorganic nu- 
trient concentrations 
In the cylinders dur- 
ing the June 1993 
expenment (each 
data p o ~ n t  is the 
mean of 3 repli- 
cates, error bars are  
+ l  SD; where no er- 
ror bars are  vislble, 
they are so small 
that they are  hidden 
by the data polnts) 

In the 1994 experiments, the water in the cylinders 
was filtered once more through a 100 pm nylon net 
after 3 d .  This was done in order to remove the cope- 
pods that had developed from nauplii and eggs that 
passed through the initial sieving. This second filtra- 
tion procedure was designed to prevent a copepod 
population from developing in the cylinders during the 
sampling period (as had occurred in the 1993 experi- 
ments). The pool was covered with a black plastic net 
(mesh size of approximately 0.5 cm) that, together with 
the white plastic lids, decreased the light intensity by 
65 to 70 %. This was expected to prevent photoinhibi- 
tion and excessive solar heating of the phytoplankton. 

Samples were taken daily for analyses of nutrients 
(NO3, NH,, PO, and Si(OH),), chl a concentrations, and 
for identification and counting of phytoplankton cells 
(see Carlsson & Graneli 1999). 

Primary production was measured, and samples 
were filtered onto precombusted Gelman A/E filters 
(450°C, 2 h) for analyses of particulate C ,  N and P was 
also performed at  least every third day. In the May 
1994 experiment, samples were also taken every third 
day for polysaccharide analyses by the methods of 
Dawson & Liebezeit (1981). 

Nutrients were analyzed manually following meth- 
ods of Valderrama (1995). Chl a was measured in a 

Turner fluorometer model 10 AU after extraction in 
dark for at least 12 h with 95% ethanol according to 
the method of Jespersen & Christoffersen (1987). Fluo- 
rescence units were transformed to pg 1-' of chl a after 
spectrophotometric analysis of extracted chl a using 
the initial water used in the experiments. Primary pro- 
duction was measured as I4C-uptake using the method 
of Ertebjerg-Nielsen & Bresta (1984). Two pCi of 
radioactive NaHI4CO3 were added to 25 m1 glass flasks 
contaming sample water and incubated in the center of 
each cylinder at 0.5 m depth for 2 h (usually between 
10:OO and 12:00 h).  One light bottle was incubated for 
each cylinder and 1 dark bottle was incubated for each 
treatment. Primary production was calculated as pg C 
1-1 h - ~  (dark bottle values were subtracted from light 

bottle values). 
Light was measured with a QSL-100 spherical quan- 

tameter (Biospherical Instruments Inc., San Diego). 
Light intensity, measured as photosynthetically active 
radiation (PAR), varied between 80 and 1200 pm01 m-2 
S-' in the center of the cylinders during the incuba- 
t i o n ~ ,  depending on the time of day and the degree of 
cloudiness Analyses of particulate C (POC) and N 
(PON) were done using a Fisons CHN analyser model 
1108 and the analyses of particulate P (POP) followed 
the method of Solorzano & Sharp (1980). 
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RESULTS 

Nutrients 

In the June 1993 experiment, nutrient declines re- 
flected heavy phytoplankton utilization. Phosphate de- 
creased to low values ( ~ 0 . 2 5  pm01 l-') from Days 4 to 6 
in the P-deficient treatment (Fig. 2). For nitrate the con- 
centrations became low (<OS pm01 1-') in the N-defi- 
cient treatment between Days 6 and 8, while Si reached 
a minimum of 0.8 pm01 l-l on Days 7 and 8 in the Si-de- 
ficient treatment. In all treatments, including the 'nutri- 
ent-sufficient' cylinders where N:P:Si was added corre- 
sponding to the Redfield ratio, there was probably 
nitrate deficiency between Days 6 and 8, even if nitrate 
was added in surplus (N:P ratio 40:l and N:Si ratio 40:2 
in the P-deficient and Si-deficient treatments, respec- 
tively) at the beginning of the experiment. The low con- 
centrations of nitrate in all treatments possibly resulted 
in the phytoplankton being under physiological stress, 
and increased heterotrophic activity could have led to 
the observed increases in ammonium concentrations on 
the last day of the experiment (Fig. 2). 

In the May 1994 experiment (Fig. 3),  each of the dif- 
ferent deficient nutrients and the 'balanced' nutrients 

were supplied at 2 levels, 1 low and 1 higher. In the P- 
deficient treatments (0.2 and 0.8 pm01 1-' PO, d-') 
phosphate was probably limiting phytoplankton 
growth during Days 6, 7 and 8 in both treatments. 
Phosphate concentration also became very low and 
probably limited phytoplankton growth in the Si-defi- 
cient cylinders where Si was added to reach a concen- 
tration of 4 pm01 I-' d-' (Days 6 and 7) and in the 
nutrient-sufficient treatment (N:P:Si = 5:0.3:5 pm01 1-' 
d-l), for Days 6 to 10. In all other treatments phos- 
phate concentrations were always above limitation 
levels. Nitrate concentrations decreased to the detec- 
tion limit of the analysis method (<0.1 pm01 1-l) from 
Days 5 to 10 for both N-deficient treatments, i.e. in the 
cylinders where nitrate was added to reach concen- 
trations of 1 or 4 pm01 1-' NO3 d-l. Also, in the treat- 
ments N:P:Si 5:0.3:5 and 20:1.3:20, the nitrate concen- 
trations became lower than 0.1 pm01 1-l. The 
phytoplankton was never able to reduce the concen- 
tration of Si below 0.55 pm01 1-l. This concentration 
was measured from Days 5 to 10 for both treatments 
with Si deficiency and in the N:P:Si 5:0.3:5 treatment. 
Measurements of low concentrations of Si (<0.1 pm01 
I-') in blanks prepared in artificial seawater were rou- 
tinely performed without any problems. Ammonium 

May 1994 
Phosphorus deficient Nitrogen deficient Silicon deficient Nutrient sufficient 

SI deficient l pM Nulrisnl sulticent 20 pM 

P 

C 

l 2 3 4 5 6 7 8 9 1 0 1 1  

Fig. 3. Inorgan~c 
nutrient concen- 
trations in the 
cylinders during 
the May 1994 ex- 
periment (each 
data point is the 
mean of 3 repli- 
cates; error bars 
are &l SD; where 
no error bars are 
visible, they are 
so small that they 
are hidden by the 

data points) Days Days Days Days 
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concentrations decreased in all treatments and even 
to the detection limit of the analysis method at Day 6 
in the N-deficient treatments. However, in all the 
treatments ammonium increased from Day 7 until the 
end of the experiment. 

In the August 1994 experiment (Fig. 4) phosphate 
and nitrate were probably limiting phytoplankton 
growth in their respective P- or N-deficient treatments 
from Days 5 to 11. Only by the last 2 days did Si reach the 
same low concentrations found in the May 1994 experi- 
ment, i.e. about 0.55 pm01 1-'. In this experiment ammo- 
nium was reduced to very low or zero values in the N- 
deficient treatment, while in the other treatments the 
ammonium concentrations increased from Day 7 until 
the end of the experiment, as in the other experiments. 

Chl a 

In the June 1993 experiment, chl a concentrations in 
the nutrient-sufficient and the Si-deficient cylinders 
increased to maximum values of 45.6 + 7.9 (mean + SD) 
and 41.7 * 8.2 pg 1-', respectively (Fig. 5) .  In the P- and 
N-deficient cylinders, somewhat lower chl a concen- 
trations of 32.8 + 6.4 and 32.4 + 1.1, respectively, were 
found as maximum values on Day 6 of the experiment. 

In the May 1994 experiment, the 2 levels of N defi- 
ciency (1 and 4 pm01 1-' NO3 added daily) produced the 
lowest maximum values of all the treatments, 9.1 and 
22.1 pg 1-' of chl a,  respectively (Fig. 5). The nutrient- 
sufficient treatments supplied with the low addition of 
nutrients (N:P:Si = 5:0.3:5) produced a maximum value 
slightly higher than that produced by the 4 pm01 1-' N- 
deficient treatment (25.5 pg I-'). The treatments where 
phosphate and Si were added at low levels (additions 
of 0.2 p 0 1  1-' P and 1 pm01 1-' Si d-', respectively) pro- 
duced higher concentrations of chl a (44.6 + 3.3 and 
43.2 + 1.7 pg I-', respectively). The hlghest chl a con- 
centrations were found in the nutrient-sufficient treat- 
ment with a higher addition of nutrients (N:P:Si = 

20:1.3:20), and in the P-deficient treatment supplied 
with 0.8 pm01 1-' P d-': 121.4 k 3.9 and 98.1 t 6.9 pg I-', 
respectively. 

In the August 1994 experiment, N deficiency (1 pm01 
1-' N o 3  added daily) again caused the lowest chl a con- 
centrations found in all the treatments (1  1.1 + 1.5 pg 
I-') (Fig. 5). The treatment with the second lowest chl a 
concentration was the Si-deficient treatment (1 p 0 1  
1-' Si added daily), where maximum chl a values were 
3 times higher than the maximum found in the N-defi- 
cient treatment (39.0 ? 1.4 pg I-'). The highest chl a 
concentrations were found in the P-deficient and nutri- 
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Fig. 5. Chlorophyll a concentrations in 
the cylinders during the June 1993, 
May 1994 and August 1994 experi- 
ments (each data point is the mean of 
3 replicates; error bars are + l  SD; 
where no error bars are visible, they 
are so small that they are hidden by 

the data points) 

Days Days Days 

June 1993 May 1994 August 1994 

ent-sufficient treatments (56.3 k 5.1 pg 1-' and 68.5 + 
6.0, respectively). 

Growth rates 

Based on increases in the phytoplankton cell C (see 
Carlsson & Graneli 1999) and chl a, the nutrient-suffi- 
cient treatments induced the highest rates of cell divi- 
sion, followed by the treatments with Si- and P-defi- 
cient conditions. The lowest growth rates were found 
when N was the deficient nutrient (Table 2). 

Primary production 

The primary production rates followed the same 
trends as the chl a in the different nutrient treatments 
in all experiments, i.e. the lowest C uptake was found 
in the N- followed by the P- and Si-deficient cylinders, 
and the highest values were measured in the nutrient 
sufficient cylinders (Fig. 6). When the inorganic nutri- 
ents became deficient in the June 1993 experiment, 
primary production started to decrease 1 d before chl a 
concentrations dropped. 

Influence of nutrient ratios and concentrations on 
phytoplankton species composition 

The general trend from these experiments was that 
small flagellates and diatoms from a few genera 
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Fig. 6. Primary production in the 
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Table 2.  Growth rates (divisions d-l) based on increase in cell 
carbon and chlorophyll content for the phytoplankton com- were the most important phytoplankton in the north- 

munities in the exponential growth phase in the May 1994 ern Adriatic Sea, whereas dinoflagellates were a 
mesocosm experiment minor component of the phytoplankton in these 

Carbon Chl a 

Nutrient sufficient 1.25 1.70 
SI-deficient (1.0 pM Si d-'1 0.68 1 02 

(4.0 pM Si d-l)  0.73 1.24 
P-deficient (0.2 pM P d-l) 0.68 0 33 

(0.8 pM P d ' )  0.69 0 99 
N-deficient (1.0 pM P d.') 0.53 0 0 

(4.0 PM P d-l) 0.58 0.43 

waters during late spring and summer months. Some 
diatom species were favored under P-deficient condi- 
tions, while N deficiency caused some other diatom 
types to dominate (see Carlsson & Graneli 1999). 
Small flagellates were favored by either S1 deficiency 
(because these flagellates do not require Si as the 
dlatoms do) or by N deficiency. A surplus of N, P and 
Si favored the development of some fast-growing 
diatoms. 
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Fig. 7.  Total polysaccharides (as pM glucose- 
amlne equivalents) on Day 10 of the May 1994 
experiment (histograms are means of 3 repli- 

cates; error bars are k 1 SD) 
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Polysaccharide production 

One of the most important results found in 
our enclosure experiments was on polysac- 
charide production during the May 1994 
experiment. The highest amount of total poly- 
saccharides produced was under nutrient- 
sufficient and P-deficient conditions (Fig. ?). 
However, N deficiency induced the phyto- 
plankton in our cylinders to produce more 
polysaccharides per cell C or chl a (Fig. 8). 

Nutrient sufficient Nutrient sufficient 

* Nutrient su~lclenl 20 pM 

Phytoplankton chemical composition 

The phytoplankton chemical composition 
changed from the beginning to the end of the 
experiments. These changes were more ac- 

, , K, 
1 2 3 4 5 6 7 8 9 1 0 1 1  

Days  

0- 
1 2 3 4 5 6 7 8 9 1 0 1 1  

Days  

centuated between the different nutrient 
treatments than between experiments. The May 1994 May 1994 
POC. PON and POP increased steadily Fig. 8. Total po1ysaccharides:POC (weight:weight) and total polysaccha- 
toward the end of the experiments in the rides:chl a (weight:weight) in the May 1994 experiment (each data point 
nutrient-sufficient conditions in the is the mean of 3 replicates; error bars are r l  SD; where no error bars are 

treatments where the limiting nutrient was visible, they are so small that they are hidden by the data points) 

added at the higher levels to the tanks 
(Figs. 9, 10 & 11). The exception was when N was added gan 1995) and our experiments support this in that P 
daily at the lowest concentration (1 p o l l - '  N d-') where additions in low (0.2 pm01 1-' P d-l) or high (0.8 to 
POC and PON were found at the lowest concentrations. 1.3 pm01 1-' P d-l) amounts increased phytoplankton 

biomass. However, this was only possible when N was 
kept at high concentrations (above 10 pm01 1-l). When 

DISCUSSION N was added in low concentrations (1 pm01 1-l d-l), the 
resulting phytoplankton biomass was much lower than 

The northern Adriatic Sea is considered to be P lim- when P was added at the low concentrations found in 
ited (Pojed & Kveder 1977, Thingstad & Rassoulzade- situ during the sampling for the first experiment. In 



4 6 Aquat Microb Ecol 18: 37-54, 1999 

Phosphorus deficient 

Nitrogen deficient 

+ N deficient 1 &M 

200 

0  1 2 3 4 5 6 1 8 9 1 0 1 1  0 1 2 3 4 5 6 7 8 9 1 0 1 1  0 1 2 3 4 5 6 7 8 9 1 0 1 1  

0 Silicon deficient 

Nutrient sufficient 

& NuIrIenl Sufficient 20 WM !!l/, 300 

, , i/J, ;/p 200 

100 

0 
0  1 2 3 4 5 6 7 8 9 l 0 1 1  0 1 2 ' 3 4 5 6 7 8 9 1 0 1 1  O l  2 3 4 5 6 7 8 9 1 0 1 1  

Days Days Days 

June 1993 May 1994 

terms of environmental policy management, it was 
only the 'low' levels of N that could keep the phyto- 
plankton biomass under control. 

The phytoplankton was never able to reduce Si con- 
centrations below 0.55 pm01 I-', a concentration that 
was measured from Days 5 to 10 for all treatments with 
Si-deficiency, and in the N:P:Si 5:0.3:5 treatment. Our 
measurements of concentrations in standards were 
performed on artificial seawater, without any problem 
measuring Si concentrations below these levels. Thus, 
either the diatoms in the Adriatic were unable to utilize 
Si at these concentrations or the cells were not Si lim- 

August 1994 

Fig. 9. Particulate organic car- 
bon (POC) during the June 
1993, May 1994 and August 
1994 experiments (each data 
point is the mean of 3 replicates; 
error bars are *l SD; where no 
error bars are visible, they are 
so small that they are hidden by 

the data points) 

ited. The latter might have been the case as diatoms 
dominated in almost all treatments in all experiments. 
The concentrations of Si in the northern Adriatic Sea 
are between 4.7 * 1.5 and 2.6 + 0.9 pm01 1-' in surface 
and intermediate-depth layers, respectively, during 
summer periods (Franco & Michelato 1992). This 
makes it unlikely that Si would ever limit diatom 
growth in these waters. 

Ammonium increased toward the end of the experi- 
ments, except for the N-deficient treatment in the Au- 
gust 1994 experiment, when ammonium concentrations 
were low throughout the entire experiment. This in- 
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Fig. 10. Particulate organic nitrogen 
(PON) during the June  1993, May 
1994 and August 1994 experiments 
(each data point is the mean of 3 
replicates; error bars are  + l  SD; 
where no error bars a r e  visible, they 
are so small that they are  hidden by 

the data points) 

Phosphorus deficient 

U P deficient 0 2 pM 

100 

P 

Nitrogen deficient 
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Days 

June 1993 

crease in ammonium was possibly a result of suboptimal 
conditions for some of the phytoplankton under different 
nutrient-deficient conditions, causing higher hetero- 
trophlc activity by bacteria and heterotrophic flagellates. 

The ratio for the inorganic N to P compounds in the 
Adriatic Sea is usually higher than the Redfield ratio, 
suggesting that P could limit the production of phyto- 
plankton biomass (Chiaudani et al. 1980b). Bioassay 
experiments have confirmed that P can limit phyto- 
plankton biomass (Chiaudani & Vighi 1982, Mingazz- 
ini et al. 1992). However, extensive field data from the 
northern Adriatic shows that at almost all times of the 

Nutrient sufficient 
I U Nutrient sunlclent 5 NM I 

Days 

May 1994 

Days 

August 1994 

year there are high concentrations of both inorganic N 
and phosphate occurring in the surface water (see 
> l 0  yr of monitoring data in the reports of Regione 
Emilia Romagna, Franco & Michelato 1992). Thus, the 
normal situation is that neither phosphate nor inor- 
ganic N are totally depleted. The conclusion from this 
is that the phytoplankton usually will not deplete the 
water of either inorganic N or P, even if a high phyto- 
plankton biomass is present. The notion that P should 
limit the phytoplankton production is therefore only 
true during the periods of the year when the phyto- 
plankton have used all the available P. 
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Why then are neither phosphate nor inorganic N 
fully utilized during most of the growth season? The 
explanation for this may be that the phytoplankton 
cells are removed from the water column faster than 
they grow, either by zooplankton grazing or by the f i l -  
tration activity from the benthos. The grazing expen- 
ments in our study (see Turner et  al. 1999) showed that 
even 10 times higher than normal mesozooplankton 
abundance could not curtail phytoplankton growth in 
our enclosures, and that the phytoplankton ultimately 
have the potential to use all inorganic nutrients pre- 
sent. Therefore it seems that zooplankton grazing is a 

Days 

August 1994 

Fig. 11 Particulate organic 
phosphorus (POP) during the 
June 1993, May 1994 and 
August 1994 experiments (each 
data point 1s the mean of 3 repli- 
cates; error bars are *l SD; 
where no error bars are visible. 
they are so small that they are 

hidden by the data points) 

minor factor limiting phytoplankton depletion of the 
inorganic nutrients in the northern Adriatic Sea. Al- 
ternatively, the filtration activity of the benthos is 
potentially substantial, and it has been shown that all 
phytoplankton can be removed from a 10 m deep, 
well-mixed water column by the benthic suspension 
feeders in 1 to 3 d in Scandinavian waters (Loo & 

Rosenberg 1989). Perhaps in the shallow northern part 
of the Adriatic Sea, the high biomass of benthic sus- 
pension feeders may have the capacity to remove such 
large quantities of phytoplankton that no real limita- 
tion of either N or P normally occurs. 
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In our experiments, diatom growth was likely only 
marginally affected by low Si concentrations in the Si- 
deficient treatments. This can be seen in the P0C:chl a 
ratios (Fig, 12), which were always below 100, indicat- 
ing healthy, growing cells (Goldman 1980), and in the 
high growth rates, based on increases in chl a,  which 
were always > l  d-' (Table 2) .  In the Si-deficient treat- 
ments, diatoms used the Si that was added each day 
such that silicate concentrations were reduced to 0.5 to 
0.6 pm01 1-' the day after additions. This is in the range 
of, or slightly higher than, reported half saturation con- 
stants for various marine diatoms of 0.02 to 0.5 pm01 1-' 

(Paasche 1980). The conclusion is that the diatoms 
could grow quite well in our experiments in spite of low 
Si concentrations. In the June 1993 experiment, how- 
ever, diatoms were not so numerous in the initial com- 
munity, and increased in treatments with high Si addi- 
tion. However, the small autotrophic flagellates kept 
their dominance in the Si-deficient treatment, indicat- 
ing that lack of Si could restrain the growth of diatoms 
in this experiment (see Carlsson & Graneli 1999). 

Different diatom species have been shown to have 
different demands for Si compared to P (Si:P = 96:l to 
1:1, Kilham & Hecky 1988). If we assume that the N:P 
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demand is 16:l (Redfield ratio), then diatoms with a 
low Si:P demand (around 1) would need very small 
amounts of Si compared to N. 

In the P-deficient treatment with the hlghest daily P ad- 
dition (0.8 pm01 l-' d-'), the phytoplankton never became 
P-deficient (P0C:chl a was always below 100) (Fig. 12). 

Growth rates and phytoplankton 
chemical composition 

Nutrient deficiency or sufficiency in phytoplankton 
is not only defined by the nutrient concentrations and 
ratios in the medium where the phytoplankton are 
growing, but also in terms of the intracellular chemical 
composition. The latter gives a better indication nu- 
trient limitation (Droop 1974). Many studies using 
cultures have shown that it is difficult to relate phyto- 
plankton growth rates to external nutrient concentra- 
tions, and that growth rates are  related instead to the 
internal nutrient conditions (Hecky & Kilham 1988 and 
references therein). 

Different chemical compositions (C:N:P) between 
and within different algal groups may explain differ- 
ences in composition of particulate material between 
different treatments in our experiments (Healy & 
Hendzel 1979, Hecky & I(llham 1988). Also, luxury 
consumption of P may give very low N:P ratios (Mack- 
ereth 1953, Reynolds 1984). 

Some phytoplankton species appear to be uptake spe- 
cialists, whereas others are storage specialists (Tilman et 
al. 1982, Sornmer 1986). The pulsed addition of nutrients 
in our experiment should have been beneficial to the 
species adapted to rapidly take up nutrient pulses. 

In our experiments, as expected, the P0C:chl a ratios 
were very high in the N-deficient cylinders (lowest = 

80:1, weight basis in August 1994). This indicates that 
the cells were N-starved and unable to build up chl a 
due to the lack of N. Goldman (1980) proposed that 
such low values could not support growth rates ( p )  
above 0.1. Indeed p was zero in the May, 1994 N-defi- 
cient cylinders where 1 pm01 1-' N was added daily, but 
0.43 in the N-deficient treatment where 4 pm01 1-' N 
was added daily, although the P0C:chl a ratio was 
above 100 in both treatments in August 1994. 

The ratios of C:N:P showed a different pattern from 
their concentrations in the particulate material. Duarte 
(1992), comparing intracellular concentrations and ra- 
tios for C:N:P for 96 phytoplankton species from the lit- 
erature, found that there was a broad range of variation 
for the ratios of these elements. Carbon was the ele- 
ment showing the highest variability for the different 
groups. Diatoms had the lowest concentrations while 
the highest were found for dinoflagellates and green al- 
gae. The explanation seems, at least for dinoflagellates, 

to be the thick cell wall of cellulose (Sakshaug et al. 
1984). In our cylinders diatoms made up the bulk of the 
biomass in most experiments. Thus, the variations in 
our ratios were not as large as those found by Duarte 
(1992). The variations in C:N:P ratios in our tanks 
mostly depended upon whether the phytoplankton 
were nutrient limited or not, and the values differed 
maximally by about 2-fold. For instance, PON: POC 
and POP : POC ratios either remained at the same levels 
or decreased in the nutrient-deficient treatments. This 
occurred in the N- and P-deficient cylinders for the May 
1994 and August 1994 experiments. This suggests that 
the phytoplankton in these treatments were growing 
suboptimally due to N or P limitation, and accumulating 
excess C from photosynthesis at the same time. 

The P0N:chl a and P0P:chl a ratios (Figs. 13 & 14) 
decreased from high initial values to low ones during 
the middle of the experiments. These ratios increased 
again most markedly in the N- and P-deficient treat- 
ments, although less markedly in the latter. Silicon 
deficiency did not provoke such strong response in the 
phytoplankton cells. The reason seems to be that, even 
if the diatoms made up the bulk of the phytoplankton 
biomass in all the containers, they could grow at low Si 
concentrations without suffering from severe Si defi- 
ciency. This is also supported by the fact that the 
POP: POC or PON: POC ratios in the Si-deficient treat- 
ments did not increase markedly at the end of the 
experiments. The decrease seen in the P0P:chl a and 
P0N:chl  a ratios indicates that initially there was a 
pool of PON (between 1.5 to 2.9 pm01 I-') and POP 
(between 0.3 and 0.8 pm01 1-') which probably was not 
in the phytoplankton but rather in detritus. 

The POC: chl a ratios were also higher initially in all 
treatments, indicating that a substantial pool of detri- 
tus or other particulate material unrelated to the 
phytoplankton was present. However, after a few days 
when the phytoplankton biomass increased, these 
ratios reached levels considered to be normal for non- 
nutrient-limited phytoplankton cells (between 40 and 
60 on a weight basis). Toward the end of the experi- 
ments these ratios increased again. Inorganic nutrient 
concentrations in the tanks during the experiments in 
May 1994 and August 1994 suggested that the phyto- 
plankton cells were nutrient limitated in the P- and N- 
deficient cylinders. However, in the June 1993 experi- 
ment the POC: chl a ratios did not increase at  all. This 
experiment was different from the others, however, in 
that after the fifth day we did not mix the water in the 
cylinders before sampling. Samples were taken both 
from the surface water and sedimented material in an 
attempt to see if mucilage was being produced by sed- 
irnenting diatoms during stable conditions. We did not 
observe any mucilage formation by the sedimenting 
diatoms, however, in any of the treatments. 
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Fig. 13. P0N:chl a ratios during 
the June 1993, May 1994 and 
August 1994 experiments (each 
data point is the mean of 3 repli- 
cates; error bars are i 1  SD; where 
no error bars are visible, they are 
so small that they are hidden by 
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Polysaccharide production pelagic diatoms, and they were able to produce high 
quantities of polysaccharides. We do not know 
whether benthic diatoms would produce the same 
amount or even more, since benthic diatoms did not 
comprise a substantial part of the microalgae biomass. 

The higher amounts of polysaccharides produced 
per unit of cell C were under N-deficiency. This agrees 
with reports from elsewhere which show that exudate 
production is stimulated when the algae are first sub- 
jected to high N:P ratios, and thereafter are subjected 
to low nutrient concentrations (Myklestad 1977, Monti 

The mucilage formation in the northern Adriatic Sea 
has long been believed to be due to exudates of ben- 
t h c  diatoms (Forti 1906, Zanon 1931). Conversely, 
Degobbis (1995) collected information from several 
independent sources and came to the conclusion that 
mucilage is a result of polysaccharide production by 
pelagic and not benthic diatoms. This theory fits well 
with our results. The phytoplankton in our cylinders 
during the May 1994 experiment was dominated by 
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et al. 1995). Thus, as Degobbis (1995) suggested, the 
high production of polysaccharides seems to be related 
to runoff pulses (mostly from the PO river), followed by 
a period with nutrient depletion. 

Conclusions 

The input of inorganic nutrients (N  and P) to coastal 
areas of the northern Adriatic Sea appears to be suffi- 
cient to produce the large algal biomass responsible for 
the large production of polysacchandes seen in the 

area. This is despite the fact that P is in 'limiting' 
amounts in relation to the 16:l optimal Redfield ratio for 
N and P thought to be beneficial for phytoplankton 
growth. Since a low daily addition of P produced ap- 
proximately double the biornass of phytoplankton com- 
pared to an  equivalent Redfield N addition, only when 
a high concentration of inorganic N was present, we 
suggest that a reduction of N discharges to the northern 
Adriatic Sea would result in a reduced eutrophication 
situation in the area. The anomalous production of 
phytoplankton induced by P addition compared to N 
addition may well be caused by the fast recycling of P. 
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