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Abstract:  
 
In the Water Framework Directive (European Union) context, a multimetric fish based index is required 
to assess the ecological status of French estuarine water bodies. A first indicator called ELFI was 
developed, however similarly to most indicators, the method to combine the core metrics was rather 
subjective and this indicator does not provide uncertainty assessment. Recently, a Bayesian method 
to build indicators was developed and appeared relevant to select metrics sensitive to global 
anthropogenic pressure, to combine them objectively in an index and to provide a measure of 
uncertainty around the diagnostic. Moreover, the Bayesian framework is especially well adapted to 
integrate knowledge and information not included in surveys data. In this context, the present study 
used this Bayesian method to build a multimetric fish based index of ecological quality accounting for 
experts knowledge. The first step consisted in elaborating a questionnaire to collect assessments from 
different experts then in building relevant priors to summarize those assessments for each water body. 
Then, these priors were combined with surveys data in the index to complement the diagnosis of 
quality. Finally, a comparison between diagnoses using only fish data and using both information 
sources underlined experts knowledge contribution. Regarding the results, 68% of the diagnosis 
matched demonstrating that including experts knowledge thanks to the Bayesian framework confirmed 
or slightly modified the diagnosis provided by survey data but influenced uncertainty around the 
diagnostic and appeared especially relevant in terms of risk management. 
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1. Introduction 51 

Coastal and estuarine ecosystems are particularly vulnerable to evolution of human activities 52 

(Henocque and Denis, 2001; Hoegh-Guldberg and Bruno, 2010) and their degradation is widely 53 

observed, e.g. Elliott and Hemingway (2002). In that context, regulation tools such as the European 54 

Water Framework Directive (WFD) aims at stopping this degradation process and at restoring aquatic 55 

ecosystems to a good ecological status (WFD – Directive 2000/60/EC; European Council, 2000). To 56 

fulfil this objective, multimetric indices are widely used to assess the ecological quality of aquatic 57 

ecosystems (Hughes and Oberdorff, 1999). A metric is defined as a measurable variable having an 58 

ecological meaning, which can be associated to any structural or functional aspect of biological 59 

assemblages (Coates et al., 2007). Combining several metrics in a multimetric index assures that the 60 

resulting indices are holistic and sensitive (Deegan et al., 1997; Karr and Chu, 1999). A large variety of 61 

multimetric indices aims at detecting the ecological impact of stressors, e.g Hering et al. (2006).  62 

As fish integrate a large variety of anthropogenic pressures (Elliott et al., 1988; Karr, 1981), fish 63 

assemblages are generally considered as appropriate to develop indicators of ecosystem quality. 64 

Consequently, numerous fish-based multimetric indices have been developed in the context of the 65 

WFD (Pont et al., 2006), especially in transitional waters, e.g. Borja et al. (2004), Breine et al. (2010), 66 

Breine et al. (2007) and Delpech et al. (2010). However, most of those indices suffered from two main 67 

weaknesses. First, qualitative estimates of the respective weight of metrics, correlations among them 68 

and redundancy in information made combinations of metrics in those indices sensitive to the 69 

calculation method. Second, most of those indices did not quantify uncertainty around their 70 

assessment (Perez-Dominguez et al., 2012) though it is especially important for managers (Breine et 71 

al., 2007; McAllister and Kirkwood, 1998). Indeed, the probability for a water body to reach a score 72 

below good status is necessary in terms of risk management (WFD – Directive 2000/60/EC; European 73 

Council, 2000). Bootstrap methods were applied with success by Pont et al. (2006) to estimate these 74 

probabilities but they required a large amount of data, making them inappropriate in data poor 75 

situations, especially in estuarine systems where large standardized sets of surveys data are lacking 76 

(Nicolas et al., 2011). 77 

Delpech et al. (2010) proposed an indicator called ELFI to assess the ecological status of French 78 

estuaries. This indicator was based on pressure-impact models, as proposed by Courrat et al. (2009), 79 



in order to select relevant metrics that are sensitive to anthropogenic pressures. However, this 80 

indicator suffered from the two weaknesses previously mentioned. Recently, an original method to 81 

build multimetric stressor specific indices was proposed and applied on the French lagoons 82 

(Drouineau et al., 2012). This approach based on the Bayesian theory took up both two challenges. 83 

First, based on the Bayesian theory, it allows an objective combination of the metrics by incorporating 84 

all the information in a probabilistic framework. Secondly, this method provides a measure of 85 

uncertainty in its assessment. Consequently, it is hoped that applying this framework to the indicator 86 

developed by Delpech et al. (2010) would significantly improve the indicator. 87 

 Drouineau et al. (2012) proposed to further incorporate experts knowledge within the French lagoons 88 

fish-based index in order to combine both experts knowledge and fish data in the ecological 89 

assessment. Integrating experts knowledge in such multimetric index could lead to valuable 90 

improvement (Martin et al., 2005; Murray et al., 2009). Experts knowledge may provide a qualitative 91 

but global image (Knapp et al., 2011) of the ecological status of an ecosystem not only based on a 92 

particular ecological feature (ecological communities or habitats). Furthermore, it does not require 93 

expensive scientific surveys. Indeed, most indices are based on surveys with a limited time and space 94 

scale, sampling a limited fraction of fish assemblages. Consequently, they are based on restricted 95 

image of the ecosystem.  96 

In this context, the present approach developed a fish-based multimetric index for French estuaries, 97 

applying the Bayesian method proposed by Drouineau et al. (2012) and incorporating experts 98 

knowledge. This index proposed to fulfil weaknesses of the index developed by Delpech et al. (2010) 99 

while using its pressure-impact approach and the method developed by Courrat et al. (2009) to select 100 

core metrics. The combination of fish data and experts information into the Bayesian framework is 101 

described, the impact of the integration of the experts knowledge in the ecological assessment and its 102 

interest for monitoring estuarine ecological status are analysed. 103 

2. Materials and method 104 

The proposed multimetric index illustrated in Figure 1 was based on two types of data: fish data from 105 

scientific surveys and experts knowledge. Fish data were correlated to an anthropogenic pressure 106 

index using pressure-impact statistical models (Courrat et al., 2009; Delpech et al., 2010) (top box in 107 

Figure 1). Then models were used to convert fish observations in probabilities of experiencing 108 



pressures (Drouineau et al., 2012) (left part of the second box). Experts assessments were 109 

aggregated to provide a global assessment per water body (right part of the second box) that was 110 

used as a prior in a Bayesian framework that combined both types of data (Drouineau et al., 2012) 111 

(third box). This allowed to put forward a pressure level applied on the fish communities of the studied 112 

water body. Pressure was decomposed in 5 equal pressure classes. Probability for a water body to be 113 

in each class was calculated (fourth box). Last, this level was associated to a quality level (last box). 114 

2.1.  Data sets 115 

2.1.1.  Fish data and pressure-impact models 116 

A panel of 36 water bodies located along the French coasts of the English Channel and the Bay of 117 

Biscay were sampled between 2005 and 2009. A subset of 22 water bodies was sampled in 2010 to 118 

complete the WFD schedule (Fig. 2). Indeed, each water body had to be sampled at least 3 years 119 

during the 6-year WFD program. A detailed description of the sampling protocol was provided by 120 

Delpech et al. (2010) and Lepage and Girardin (2006). Each monitored water body was sampled in 121 

spring and autumn with a beam trawl. Hauls were distributed along the salinity gradient and 3 salinity 122 

classes were defined (Delpech et al., 2010): oligohaline class ([0–5] g.L-1), mesohaline class (]5–18] 123 

g.L-1) and polyhaline class (>18 g.L-1). In each season, at least 6 hauls were carried out in each 124 

salinity zone of each water body. A minimum of 12 hauls was carried out in the water bodies having 125 

only one salinity zone (e.g. Downstream Seine). In each trawl haul (sample), each fish was identified 126 

to the species level and each species was assigned to functional ecological guilds related to its diet 127 

and its use of the estuarine ecosystems along its life cycle (Elliott and Dewailly, 1995). 128 

The lack of pristine estuaries to define reference conditions involved the use of statistical modelling 129 

(Delpech et al., 2010; Pont et al., 2006). A solution was to develop pressure-impact models (Borja et 130 

al., 2006). However, a proxy of anthropogenic pressure is generally required to link fish data to human 131 

disturbances. In this study, an index developed by Courrat et al. (2009) was used. This index was 132 

based on a principal component analysis carried out on heavy metals concentrations measured by the 133 

French national network of quality of the French marine environment since 1979 in suspension feeder 134 

molluscs from various French estuaries. This index was normalized on the range [0;1].  135 



Based on those data, Courrat et al. (2009) proposed to build pressure-impact models (generalized 136 

linear models) to select metrics that are sensitive to anthropogenic pressure. Delpech et al. (2010) 137 

selected 4 metrics among the 12 metrics tested (density of (i) benthic fish, (ii) diadromous species, (iii) 138 

marine juveniles migrants and (iv) total density of fish respectively denoted DB, DDIA, DMJ and TD) 139 

because they significantly responded to a variation of anthropogenic pressures, and consistently with 140 

expert judgments (Delpech et al., 2010). The pressure-impact models were then used to predict the 141 

expected value of each metric at 3 distinct levels of anthropogenic pressures, providing thresholds for 142 

each metric. A scoring method was then applied to combine the 4 metrics in the indicator. 143 

Pressure-impact models as proposed by Courrat et al.( 2009) and Delpech et al. (2010) appeared 144 

appropriate to select metrics negatively correlated to pressure, and potentially relevant to be included 145 

in the index. Consequently, the metrics selected by Delpech et al. (2010) were used, except the total 146 

density metric (TD) given its redundancy with the combination of the 3 others (DB, DDIA and DMJ). 147 

Pressure-impact models were fitted and included in the framework proposed by Drouineau et al. 148 

(2012). Models options depended on data distribution of the different metrics. The use of linear 149 

models, consistent for DB metric, was inappropriate for the other metrics composed of 0 inflated. 150 

Thus, a delta type model that consisted in a combination of two models was used: one for 151 

presence/absence modelling, another one for positive values modelling. Those models were similar to 152 

models developed by Delpech et al. (2010), except for the use of generalized linear mixed models 153 

(GLMMs) rather than generalized linear models (GLMs). Indeed, an “estuary” random effect was 154 

incorporated in the model to avoid correlation between hauls carried out within an estuary. To assess 155 

estuaries quality in 2010, the models were fitted on previous fish data collected between 2005 and 156 

2009, using R software (R Development Core Team, 2011). This dataset (2005-2009) was considered 157 

for calibration of pressure-impact models. Akaike Information Criterion was used to select the most 158 

relevant and parsimonious models (Akaike, 1973). 159 

GLMM of a metric M(i) can be written on a matrix form (Drouineau et al., 2012): 160 

g(i)(E(M(i))) = α(i)X + β(i)
 Pr + Reffect 161 

with g(i)(E(M(i))) the link transformed (function g(i)) expected value of the i-th metric, α(i) the regression 162 

parameters for covariables, X the model matrix for the covariables, β(i) the regression parameter for 163 

the pressure, Pr the vector of pressure values and Reffect the random effect linked to estuaries. Two 164 



kinds of covariables detailed in Delpech et al. (2010) were tested: (i) ‘season’ and ‘salinity class’ were 165 

effects of protocol and (ii) ‘size’ and ‘ecoregion’ were estuarine features. Fitted GLMMs enabled to 166 

establish the following likelihood function with pressure as a parameter: 167 

L(fish data;pressure) = f(fish data|pressure)  168 

With f(fish data|pressure), the density of probability for a fish observation given a level of pressure. 169 

This was used to convert 2010 fish data into probability densities; so that metrics were combined on a 170 

common scale (Drouineau et al., 2012). 171 

2.1.2.  Experts knowledge 172 

A panel of 23 experts was interviewed to collect knowledge on the different water bodies. Experts 173 

having information on fish data collected in 2010 were not included in the panel to avoid hindsight bias 174 

(redundant information between fish data and experts opinions) (Morgan and Henrion, 1990). Experts 175 

were selected for their abilities to assess a global pressure level for one part of the sampled water 176 

bodies. Finally, the 23 experts provided 100 assessments for the 22 studied water bodies (between 3 177 

and 8 assessments per water body except Risle with only 2 assessments).  178 

A user-friendly graphical interface was developed to collect experts assessment per water body. A 179 

cursors system was used to assess both mean level of pressure and to provide a reliability measure of 180 

the assessment (Fig. 3). This reliability box is a self-evaluation of the level of confidence the expert 181 

have on his assessment. 182 

In order to guide his reflection, three sub-pressures (pollution, morphology and hydrology) had to be 183 

considered by the expert before assessing the global pressure (Fig.3). A manual provided 184 

explanations about the definition of each sub-pressure, the scale corresponding to the WFD reference 185 

conditions and the use of probability distributions. Moreover, a table at the end of the questionnaire 186 

presented a summary of all water bodies assessments realized by the expert, so that he could 187 

compare and adjust his assessments. 188 

Experts assessments were aggregated in a unique informative prior per water body. To represent the 189 

experts diversity and get a stable prior, a minimum number of opinions is required (Kuhnert et al., 190 

2005), but a limited number of 3 to 5 experts is suggested to provide a compromise between 191 



redundant information and a good representation of experts intervariability (Clemen and Winkler, 192 

1985; Ferrell, 1985; Makridakis and Winkler, 1983). To get a consistent framework between priors 193 

given the limited number of available assessments per water body, 3 experts distributions were used 194 

to build each prior. Given that experts could assess a water body even with a low knowledge level, the 195 

assessments with the highest precisions were used to assimilate a good quality of information in 196 

priors. 197 

A beta distribution was fitted on the mixture of the 3 assessments to build a consensus prior (O'Hagan, 198 

1998) for each water body (wb), ranging from [0;1] and denoted priorwb. 199 

2.2. Computing the index 200 

Experts priors and fish data collected in 2010 were used to assess the quality of the different water 201 

bodies using the following Bayesian equation (Drouineau et al., 2012): 202 

The probability that the pressure level applied on a water body denoted wb was in a restricted 203 

pressure class, given J fish observations, is (1):  204 

 205 

With [ci min;ci max] and [pmin,pmax] the domains of definition respectively of the pressure class i and the 206 

whole pressure, f(fish datawb j |pressurewb) the density of probability of fish observation j (j in [1:J]) 207 

given a pressure level directly calculated from the outputs of GLMMs, g(pressurewb) a density of 208 

probability coming from a prior distribution of pressure. 209 

This equation was summarised as the following relationship in Figure 1 (2): 210 

 211 

To analyse the influence of experts knowledge, two indices were computed for each water body. The 212 

first index included the prior based on experts knowledge (the resulting distribution is denoted 213 

indexwb,exp) corresponding to the final indicator. The second index did not use experts prior but an 214 

uninformative prior which was a uniform distribution between [0;1] (the resulting distribution is denoted 215 

indexwb,non). WinBUGS (Lunn et al., 2000) was used to compute the a posteriori distribution, with a 216 



Gelman Rubin test (Brooks and Gelman, 1998) to check chains convergence. Probability densities 217 

corresponding to each index were arbitrarily decomposed into 5 equal classes corresponding to 5 218 

quality classes. 219 

For each water body, both the posterior probability in percentage in each quality level and the related 220 

mean class were computed for the 3 variables (priorwb, indexwb,exp and indexwb,non). The comparison of 221 

these variables would inform on (i) the agreement level between experts knowledge and information 222 

from field data and on (ii) the effect of the combination of both information sources on quality statuses 223 

assessment. Results were synthesised in a Principal Components Analysis (PCA) where the 22 water 224 

bodies were individuals and the variables the 3 mean quality values. 225 

3. Results 226 

3.1.  Generalised linear models  227 

The selected models were detailed in Table 1. Regression parameters of pressure were negative 228 

demonstrating that pressure and fish data were negatively correlated as expected. Regarding log 229 

normal models (positive fish data for metrics DDIA and DMJ), the standard deviations for the among-230 

estuaries random effect, estuary sd, of the 3 metrics DB, DDIA and DMJ were respectively 0.70, 0.45 231 

and 0.88, while residuals variations among all fish data, model sd, were respectively 1.35, 1.22 and 232 

1.26. The relative high values of standard deviations of the random effect clearly justified the interest 233 

to include it in the models to provide accurate uncertainty assessments.  234 

3.2.  Quality diagnosis 235 

3.2.1.  Overview of the diagnosis provided by the 3 indices 236 

The results of the 3 indices are summarized in Table 2. Mean classes for indexwb,non (i.e. diagnosis 237 

from fish data) and priorwb (i.e. diagnosis from experts knowledge) were similar for only 32% of the 238 

water bodies. However, only 18% differed from more than one class, demonstrating a rather good 239 

consistency between fish data and experts knowledge (correlation rate of 0.63), with nonetheless an 240 

important discrepancy in the case of the Vilaine estuary. The final indicator, indexwb,exp (i.e. diagnosis 241 

from fish data and experts knowledge), was distributed between all quality classes, from high quality 242 

for Vilaine and Baie du Mont Saint Michel to bad quality for Bidassoa, Downstream and Central 243 



Gironde, Upstream, Central and Downstream Seine. The associated credibility intervals at 95% were 244 

heterogeneous covering from 1 (e.g. Central Seine) to 3 (e.g. Seudre) quality classes. Consequently, 245 

the index precision was variable from one water body to another; it was lower for upstream water 246 

bodies of estuaries and for small estuaries. Comparing indexwb,exp to the two other indices showed that 247 

mean class was either between indexwb,non and priorwb (14% of water bodies), or that it matched with 248 

both of them (32%), or only with one of them (36% with indexwb,non and 18% with priorwb).  249 

3.2.2.  Quality diagnosis and Water Framework Directive objectives  250 

According to the normalized scale of quality retained in the present approach, 5 out of 22 water bodies 251 

fulfilled the objective to be at least in the good quality status and only 2 (Baie du Mont St Michel and 252 

Vilaine) without significant risk, i.e. with insignificant probability to be in the quality statuses lower than 253 

the good status. The Blavet had a high probability to be in a lower quality range and the risk was also 254 

significant respectively at 18% and 14% for Baie des Veys and Laita (Table 2).  255 

3.2.3.  Global comparison between the 3 indices 256 

The three variables (mean values of quality for indexnon,wb , priorwb and indexexp, wb) were correlated to 257 

the first principal component of the PCA (Fig. 4), representing 86 % of the inertia and separating 258 

deteriorated from low-impacted water bodies. Indexexp, wb was in intermediate position between 259 

indexnon,wb and priorwb, providing a consensus between fish data and experts knowledge but giving 260 

more weight to fish data. Indeed, the correlation rate of indexexp, wb and indexnon,wb is 0.96 while the 261 

indexexp, wb and priorwb one is 0.75 and the indexnon,wb and priorwb one is 0.63. 262 

3.2.4.  Diagnosis general trends  263 

The position of the water bodies in the first PCA plane highlighted geographic contrasts (Fig. 4). The 264 

negative correlation between the first principal component and the Adour Garonne district water 265 

bodies revealed their bad quality contrasting with the Loire Bretagne district status. The Seine 266 

Normandie district water bodies were distributed in all quality scale. Moreover, the water bodies of the 267 

largest estuaries, Seine, Loire and Garonne/Gironde, were the most deteriorated of their respective 268 

districts.  269 



Three main types of experts knowledge effects on the assessments are illustrated in Figure 5. In the 270 

Charente, the mean classes obtained with indexwb,non and priorwb were very different (respectively low 271 

pressure and high pressure) though the precision was similar. As a consequence, indexwb,exp provided 272 

a consensus, i.e. medium class with an important uncertainty. A second situation occurred when mean 273 

classes obtained with indexwb,non and priorwb were adjacent such as for Baie du Mont Saint Michel. For 274 

this water body, indexwb,exp provided an assessment consistent with indexwb,non but with a lower 275 

precision. Finally, for some water bodies, indexwb,non and priorwb were consistent, such as for the Risle. 276 

In this case, indexwb,exp was consistent with both indexwb,non and priorwb with a greater precision. 277 

4. Discussion  278 

Many fish indicators were recently developed in the context of the Water Framework Directive. 279 

However, many of those indicators suffered from two main drawbacks: (i) assessments of 280 

uncertainties around quality diagnostics are missing (Perez-Dominguez et al., 2012) and (ii) the choice 281 

of core metrics combination is rather subjective. Regarding French estuaries, an indicator called ELFI 282 

was developed by Delpech et al. (Delpech et al., 2010), based on pressure-impact models proposed 283 

by Courrat et al. (Courrat et al., 2009). Pressure-impact approach proved to be a relevant method to 284 

choose appropriate metrics, however ELFI still suffered from the two weaknesses. Consequently, this 285 

paper developed an indicator based on ELFI pressure-impact models but applying a Bayesian 286 

framework developed by Drouineau et al. (2012). In addition, a method was proposed to collect and 287 

summarise expert judgments in order to combine them in the Bayesian framework with fish data. This 288 

approach found several interests detailed further.  289 

4.1.  The pressure-impact Bayesian models 290 

The index was based on generalised linear mixed models, and not on previously used generalised 291 

linear models (Delpech et al., 2010). Indeed, fish data were not perfect replicates but pseudo-292 

replicates: several trawl hauls were collected in each estuary, generating dependency. Given that the 293 

estuary effect could not be taken into account, the independence assumption of data was corrupted. A 294 

rigorous solution was to use random effect in mixed models, with, as a consequence, an increase of 295 

the standard error and uncertainty around the parameters. A random effect of year was also tested but 296 

was not significant. Other random effects such the interaction between salinity class and estuary were 297 

also considered but the present GLMMs were finally considered as suitable. The index was finally 298 



assessed on a Bayesian framework (Drouineau et al., 2012) and presented the advantages provided 299 

by this framework: (i) an objective combination of the core metrics and (ii) a quantification of the 300 

uncertainty around the diagnostic.  301 

GLMMs were fitted with a pressure index based on water contamination in heavy metals (Courrat et 302 

al., 2009). As mentioned by Courrat et al. (2009), this index is highly correlated to many anthropogenic 303 

activities (industry, urbanisation, agriculture), consequently resulting pressure-impact models should 304 

be more considered as the global effect anthropogenic pressures than a direct effect of heavy metal 305 

contaminations. However, comparing results with models fitted on others global pressure indices could 306 

be relevant to assess the robustness of this hypothesis. It would also be interesting to apply the 307 

method to each different type of pressure separately (for example pollution, hydrology and 308 

morphology) to identify the more likely type of pressure impacting the ecological status. However, the 309 

water bodies are generally affected by various pressures simultaneously, consequently pressures are 310 

highly correlated and it would probably not be possible to conclude on the most likely pressure 311 

impacting a given water body. Moreover, to fulfil the WFD requirements, a method to combine the 312 

results on the different pressures in a unique indicator would be required. Bayesian Network may be 313 

an interesting method in the future to fulfil those challenges. 314 

Regarding the indicator calibration and validation, it was chosen to calibrate the indicator on data 315 

collected from 2005 to 2009 and then to apply it on data collected in 2010. Usually, to cross-validate a 316 

model, a random subset of the entire dataset is used to calibrate and the other part of the data-set is 317 

used to validate the model. However, as proposed by Wenger and Olden (2012), it was chosen to 318 

apply a non-random cross-validation strategy which is appropriate to assess time transferability of the 319 

model. This strategy is consistent with the Water Framework Directive context: to assess the 320 

ecological status in a given year, all data from previous years will be used to calibrate the indicator 321 

since time series are often limited. 322 

4.2. Taking experts knowledge into account 323 

The assessment realized in the Bayesian framework was based on both experts opinions and 324 

scientific surveys. Only another WFD-like index integrated directly experts knowledge in its 325 

architecture (Cabral et al., 2012). Indeed, experts knowledge was rarely considered in ecological 326 

indicators (Carpenter, 2002).  327 



4.2.1.  A method to collect and standardize knowledge 328 

Before assessing the global pressure, it was asked the experts to assess three sub-pressures for 329 

every water body. But assessing sub-pressures before the global one may introduce bias since it may 330 

influence experts judgments. However, it is required to enhance the reproducibility of those experts 331 

assessments. To limit the potential bias, no weighting rates were proposed to establish global 332 

pressure, so each expert provided them on his own. 333 

In addition, experts assessments may contain biases linked to the lack of neutrality (Choy et al., 2009; 334 

Dennis, 1996). Moreover, experts are usually overconfident (Hora et al., 1992; Kadane and Wolfson, 335 

1998; Winkler, 1967a, b). Consequently, too precise priors may drive parameters assessment rather 336 

than only provide a direction (Dennis, 1996). To get around both issues, knowledge of several experts 337 

was used to build priors to counterbalance both the bias linked to each expert background (Martin et 338 

al., 2005) and overconfidence. Indeed, the inter-variability between experts is generally higher than 339 

the variability of any expert opinion (Kuhnert et al., 2005; Uusitalo et al., 2005). Consequently, prior 340 

precision was mainly influenced by the agreement level between experts rather than the confidence 341 

level of each assessment. 342 

Alternative methods exist to collect experts opinions. For instance, a simple choice in a range of 343 

different values is efficient if the number of experts is sufficient (Kuhnert et al., 2005; Martin et al., 344 

2005). In other cases, and especially in the present approach, the limited number of experts involved 345 

the use of probability distributions. Assessing successive percentiles (Garthwaite and Dickey, 1996; 346 

Kadane and Wolfson, 1998) is a precise method but time consuming. A faster but less precise method 347 

(O'Hagan, 1998) aims at assessing a mean and a credibility interval of 50%. Both these methods can 348 

suffer of underestimation of distribution tails (Hora et al., 1992; Winkler, 1967a, b). Accordingly, 349 

assessing a graphical distribution directly was here preferred for its simplicity and user-friendliness, in 350 

order to use the instinct qualities of experts. A pressure scale with a colour gradient was developed 351 

instead of any common numerical scale to prevent the halo effect (Nisbett and Wilson, 1977), i.e. bias 352 

linked to the distorted perception of numerical scales of a repeated question. 353 

Different solutions may be investigated to improve the precision of priors. The DELPHI method 354 

(Jacobs, 1995; Linstone et al., 1975) allows a prior to be elicited from several experts. A consensus is 355 

constructed indirectly after several assessment rounds. Between each round, each expert consults the 356 



assessments and associated rationales provided by the others before updating his opinion. This kind 357 

of method generally provides a more precise prior though a direct consensus between experts could 358 

also be supported (O'Hagan, 1998). However, such method is time and costs consuming for the 359 

experts. In addition, they may suffer from a potential strong influence of few dominating experts, 360 

leading to a precision overestimation (Kuhnert et al., 2005). Another method (Coolen and Newby, 361 

1994) consists in defining a range of possible values, i.e. possible pressure levels here, selected by 362 

experts. A uniform prior is defined on the range. Such a prior is very informative because some 363 

pressure levels are unconsidered in the final index, leading to an unsuitable minor influence of fish 364 

data, and often to some problems in the convergence of Monte-Carlo Markov Chains. 365 

4.2.2.  Insights provided by experts knowledge  366 

The questionnaire used in the present approach proved to be efficient, with an answer rate greater 367 

than 75%. As a positive side-effect, it also proved to be an interesting communication tool: experts 368 

were interested by sharing their opinions and felt involved in the index development. On the whole, 369 

experts knowledge was rather consistent with fish data, demonstrating that the indicator provides an 370 

objective consensus between both data sources. Nevertheless, some discrepancies allowed to point 371 

out that experts knowledge may provide information not included in the data. Especially, the Vilaine 372 

estuary appeared rather specific, with a large disagreement between fish data and experts knowledge. 373 

In this estuary, a dam was built in 1970 and greatly impacted the water body (i.e. meso-haline and 374 

oligo-haline have entirely disappeared and this water body is considered as heavily modified in the 375 

WFD (Borja and Elliott, 2007)) explaining the negative assessment provided by the experts. However, 376 

the impact was not detected from surveys in the remaining poly-haline zone and the assessment 377 

based on fish data only was positive. Indeed, the impacts of removing parts of estuarine system were 378 

difficult to quantify from fish data given samplings were performed in remaining surfaces (Courrat et 379 

al., 2009). Though the small prior precision did not allow the assessment to be influenced significantly, 380 

this example legitimises the interest of experts knowledge in the indicator.  381 

On one hand, when experts disagreed with the conclusion provided by fish data (e.g Vilaine but also 382 

Charente and Baie du Mont Saint-Michel), the impact of the prior on the indicator depended on two 383 

factors. The more precise and in contradiction with fish data was the experts consensus, the more the 384 

final main quality class was modified. So, the weighting between fish data and experts knowledge in 385 



the final index is directly linked to their relative precisions. On the other hand, when experts knowledge 386 

and fish data matched, experts knowledge increased the final index precision (e.g. Risle). This last 387 

point illustrates another yet main advantage when using experts knowledge as the final assessment 388 

gains precision in a legitimate way. Applying experts knowledge appeared particularly essential in 389 

those situations where the most reliable assessment as possible should be obtained. 390 

4.3.  Ecological status assessment of estuarine water bodies from fish data and experts knowledge 391 

Using the present approach, the probability of the fish based index to be in any range of stressor 392 

values can be easily calculated. This allocation was here based on an arbitrary decomposition into 5 393 

equal classes of quality. A calibrating phase of the thresholds with the other European indices would 394 

be necessary to provide a relevant index with the WFD. Indeed, this approach focused on the interest 395 

of incorporating experts knowledge in fish index to improve quality assessment. It appeared especially 396 

appropriate to visualize sensitivity in allocation on a range of classes with well distributed data. In a 397 

WFD context, these classes do not necessary fit with five classes of environmental status. A 398 

calibrating phase of the thresholds with the other European indices will be necessary to provide a 399 

relevant index with the WFD. Nevertheless, this approach allowed to analyse patterns in quality 400 

assessment and associated variability among both estimation methods and water bodies. 401 

The current index appeared particularly appropriate in the context of risk management, a notion 402 

developed by McAllister and Kirkwood (1998), and precautionary approach. In the WFD context, the 403 

risk may be defined by the probability of not being in a good ecological status which is provided by the 404 

Bayesian method (Drouineau et al., 2012). This might lead to different management measures for two 405 

water bodies such as Baie des Veys and Blavet. Both were qualified as having a good ecological 406 

status, but with different levels of risks (respectively 18% and 45%). In that context, though it had a 407 

moderate effect on the final mean class, including experts knowledge was a significant improvement 408 

because it often had a significant effect on the assessment precision. 409 

According to the indicator, large estuaries (Seine, Gironde and Loire) were shown to be the most 410 

deteriorated estuaries of their district. As precision was high for these estuaries, this statement could 411 

be considered as reliable. As a consequence, specific restoration effort should be dedicated to large 412 

estuaries. Assessments from fish data tended to be less precise for upstream water bodies than for 413 

corresponding downstream water bodies. This indicated more restricted knowledge, perhaps linked to 414 



the choice of metrics or the fishing gear (beam trawl) used during the surveys, less appropriate for 415 

upstream water body. Similar remarks could be made when comparing small estuaries, which quality 416 

estimates were uncertain, to large ones. Two converging facts explained that point. First, the size of 417 

small estuaries limited sometimes the number of trawl hauls and consequently the assessment 418 

precision. Secondly, given small estuaries were not as studied as the large ones in the past, prior 419 

precision was globally smaller and did not match with fish data as much as for the large water bodies. 420 

In that context, new data acquisition should be obtained from upstream and small water bodies in 421 

priority, either from other surveys or by consulting specific experts.  422 

The index proposed here appears especially relevant in data poor situation. For example in France, 423 

only 22 water bodies have presently been monitored (for 14 more, a previous estimate was realized 424 

between 2005 and 2009) though 54 estuarine transitional water bodies are listed in the WFD context. 425 

For the remaining estuaries, given the cost of scientific surveys, the index may first provide an 426 

assessment only based on experts knowledge. However, in this situation, these very preliminary 427 

assessments would be based on experts opinion including all the implied subjectivity. Moreover, the 428 

lack of quantitative assessment will prevent from measuring effects of restoration if water bodies are 429 

not considered in good ecological status.  430 

In conclusion, the Bayesian approach is a generic method fulfilling WFD index objectives. It can be 431 

used for any index based on a pressure-impact approach. Its main advantages are (i) its flexibility in 432 

the modelling phase, (ii) its estimates of uncertainty and (iii) its possibility to integrate easily and 433 

rigorously experts knowledge. The presented method to collect and combine experts opinions in a 434 

prior should not be ignored given its cost-efficiency and its adequacy with the common availability of 435 

experts.  436 
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 Figure captions: 574 



 575 

Fig. 1: General methodology to develop the index 576 



 577 

Fig. 2: Study area and investigated water bodies in 2010 gathered in 3 geographical groups 578 

corresponding to 3 districts; an estuary can be made up of several water bodies 579 



 580 

Fig. 3: Interface provided for experts to assess the pressure level of each water body: a) Table to fill by 581 

each expert; b) related representation 582 

 583 

Fig. 4: Correlation circle of the PCA on the 3 indices (indexwb,non, priorwb and indexwb,exp), the scale is 584 

twice the original one; individuals (water bodies) are gathered according to their respective district in 585 

the first factorial plan of the PCA 586 



 587 

Fig. 5: Distributions of each index (indexwb,non, priorwb and indexwb,exp) for 3 water bodies (Charente, 588 

Baie du Mont Saint Michel, Risle), the number in each stick represents the rounded probability in 589 

percentage to be in the associated pressure class 590 

Metric (density of fish) Model type Model 

Benthic (DB) Log normal 
Log(DB+1) ~ season + salinity + size + pressure + estuary random effect 

pressure rp:  -1.62, estuary sd: 0.70, model sd: 1.35  

Diadromous (DDIA) Delta 
Bernoulli 

Logit(DDIA0/1) ~ season + salinity + size + ecoregion + pressure + estuary random effect 
pressure rp:  -1.36, estuary sd: 1.19 

Log normal Log(DDIA+) ~ season + salinity + size + ecoregion + pressure + estuary random effect 
pressure rp:  -2.57, estuary sd: 0.45, model sd: 1.22 

Marine juveniles (DMJ) Delta 
Bernoulli 

Logit(DMJ0/1) ~ season + size + ecoregion + pressure + estuary random effect 
 pressure rp:  -4.78, estuary sd: 1.16 

Log normal 
Log(DMJ+) ~ season + salinity + size + pressure + estuary random effect 

pressure rp:  -2.75, estuary sd: 0.88, model sd: 1.26 

 591 

Table 1: Models structure of the 3 metrics used; an arbitrary value of 1 is added to each value of DB 592 

metric; delta type models composed of one sub model for presence/absence (0/1) and another one for 593 

positive values (+); pressure regression parameter is denoted pressure rp; standard deviation of the 594 

estuary random effect is denoted estuary sd; model residuals standard deviation is denoted model sd 595 

 596 
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 599 

 600 

 601 

 602 

 603 

 604 



Water body   High Good Moderate Poor  Bad 

DISTRICT: SEINE NORMANDIE  

Upstream Seine*  0 0 0 7 93 

Central Seine*  0 0 0 4 96 

Downstream Seine*  0 0 0 40 60 

Risle  0 19 58 22 1 

Baie des Veys  13 69 17 1 0 

Orne  1 37 53 9 0 

Baie du Mont Saint Michel  68 32 0 0 0 

DISTRICT: LOIRE BRETAGNE 
 

Morlaix  0 12 62 25 1 

Laita  31 55 14 0 0 

Blavet  0 55 44 1 0 

Vilaine  71 29 0 0 0 

Loire*  0 4 57 38 1 

Sevre Niortaise  0 31 66 3 0 

DISTRICT: ADOUR GARONNE  

Charente  0 25 61 14 0 

Seudre  0 5 50 43 2 

Upstream fluvial Garonne*  0 0 11 63 26 

Fluvial Dordogne*  0 5 20 44 31 

Central Gironde*  0 0 0 23 77 

Downstream Gironde*  0 0 0 35 65 

Upstream Adour  0 2 34 57 7 

Downstream Adour  0 0 4 72 24 

Bidassoa  0 0 0 15 85 

 605 

Table 2: For each water body ranked by district, posterior probabilities (in %) from the index with 606 

experts prior, indexwb,exp, to be in each quality class; the mean classes are indicated for indexwb,exp 607 

(bold character), indexwb,non (box) and priorwb (shaded); the water bodies of large estuaries are 608 

indicated with the symbol: * 609 
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