INFLUENCE OF TEMPERATURE ON DISEASE TRANSMISSION ASSOCIATED WITH OSTREID HERPES VIRUS OsHV-1 µVar IN RELATION TO SURVIVAL OF JUVENILE *Crassostrea gigas*

Bruno Petton^{1*}, Fabrice Pernet^{2,1}, René Robert¹, Pierre Boudry¹, M. Alunno-Bruscia¹ 1. Ifremer, UMR LEMAR 6539, 11 presqu'ile du Vivier, 29840 Argenton-en-Landunvez, France / 1¹. Ifremer, UMR LEMAR 6539, BP 70 29280 Plouzané, France

. Interner, UMR LEMAR 6539, 11 presqu'ile du Vivier, 29840 Argenton-en-Landunvez, France / 1°. Interner, UMR LEMAR 6539, BP / 0 29280 Piouzane, France 2. Ifremer, Lab. Environnement Ressources Languedoc Roussillon, 34203 Sète, France

Ifremer

*Corresponding author: bruno.petton@ifremer.fr

CONTEXT

Since 2008, heavy mortality of *Crassostrea gigas* juveniles in the field appears to be related to infection by the ostreid herpevirus OsHV-1 μ Var (1). Mortality occurs at water temperature above 16°C while OsHV-1 μ Var is detected in dying oysters (2). Other pathogens, e.g. vibrios, may also play a role (3). Laboratory experiments in which diseased oysters are exposed to a specific pathogen by injection or cohabitation demonstrate a causal relationship (4). But they do not allow to reproduce the natural infection process occurring in the field.

OBJECTIVE

We examine the effect of seawater temperature on disease transmission and related mortality of oysters by applying an original **experimental infection protocol** called "MIR" (Mortality, Imprint & Revelation).

The final aim is to identify the thermal range for transmission of the disease responsible for heavy mortality of *C. gigas* juveniles and the relationship between temperature, OsHV-1 μ Var and vibrios.

MATERIAL & METHODS

Laboratory experiment: testing the effect of water temperature

• 8 temperature values are tested (13.4°C, 14.4°C, 15.4°C, 16.2°C, 17.5°C, 21.9°C, 26.9°C, 29.0°C) on lab-challenged oyster spat.

• Lab-challenged spat held at 13.4 °C for 40 days undergo a lab thermal challenge (LTC, (5)), *i.e.* 21 °C over 30 days.

Microbiology:

• oyster samples are collected at different dates (0, 2, 4, 6, 13, 16 d) at each temperature level; • qPCR assays to detect and quantify OsHV-1 μ Var are run by Idhesa (Quimper, FR) on duplicates of 3 pooled individuals (threshold value for detection: 10⁴ DNA copies of OsHV-1 μ Var per mg wet tissues, (6)).

· Vibrios are quantified on CHROMagar media.

Statistical analyses:

 Regression models: i) between temperature and final survival for field-exposed and labchallenged oysters; ii) between temperature and the time needed to reach peak values of OsHV-1 µVar DNA and vibrio in lab-challenged.

RESULTS

Survival (of field-exposed and lab-challenged spats)

 Seawater temperature (T°C) influences survival of both field-exposed and labchallenged oysters (Fig. 1).

• The highest rate of decrease in survival and the lowest final survival were observed:

only 48.0% in field-exposed animals.

Microbiology (of lab-challenged spat) OsHV-1 μVar

- OsHV-1 μVar is detected in lab-challenged oysters less than 2 days (after cohabitation with field-exposed spat) whatever the seawater temperature.

- Maximum OsHV-1 μVar DNA concentrations in lab-challenged oysters are similar within the range 16.2 <T°C<21.9.

Vibrios

The onset of mortality (*i.e.* time elapsed before at least 5% mortality occurs) follows the outbreak of vibriosis by 2 days (intercept= 2, Fig. 2)
A delay of 1 day (slope= 1, Fig. 2) in the vibriosis outbreak leads to a delay of 1 day in mortality.

Figure 2. Relationship between the number of days required to observe at least 5% mortality and the number of days required to reach 10⁴ CFU of whorks per 100 mg oyster flesh in naïve (lab-challenged) oysters held in cohabitation with field-exposed animals.

DISCUSSION & CONCLUSION

- The MIR infection protocol that includes NSS (*i.e.* "gold-standard" animals, (5)) is a realistic method to expose oysters to pathogens in the field \rightarrow contracted disease is directly linked to observed mortality.
- 16.2 <T°C<21.9: the optimal seawater temperature range for disease transmission, which agrees with field observations (2).
 T°C=13.4°C: 1/ when T°C=13.4°C: the survival of lab-challenged NSS is maximal;
- 2/ when held at 13.4°C for 40 days, lab-challenged oysters do not exhibit any mortality after 30 days at 21°C, *i.e.* recovery and no transmission of the virus to NSS → long-term holding at low T°C (<13°C) may allow to mitigate spat mortality.
 OsHV-1 µVar is detected in lab-challenged spat within 2 days at all temperatures while vibrios are related to onset of mortality.

References.

- (1) Segarra *et al.* 2010. Virus Res 153: 92-99.
- (2) Pernet *et al.* 2012. Aqua. Env. Interact. 2: 215-237.
 (3) Saulnier *et al.* 2010. Microb. Ecol. 59: 787-798.
- (4) Schikorski *et al.* 2011. Vet Res 42: 27
- (5) Petton et al. 2013. EAS2013 Trondheim, poster
- (6) Pépin et al. 2008. J Virol Methods 149: 269-276.
- Acknowledgments. This work was supported by Ifremer within the project "Surmortalities des hultres creuses en France" (2010-12) and is part of the GIGASSAT project funded by ANR (ANR-12-AGRO-0001-01; http://www.gigassat.org/).