Multiphased tectonic evolution of the Central Algerian margin from combined wide-angle and reflection seismic data off Tipaza, Algeria

A. Leprêtre,1 F. Klingelhofer,2 D. Graindorge,1 P. Schnurle,2 M. O. Beslier,3 K. Yelles,4 J. Déverchère,1 and R. Bracene5

Received 23 October 2012; revised 4 July 2013; accepted 30 July 2013; published 26 August 2013.

[1] The origin of the Algerian margin remains one of the key questions still discussed in the Western Mediterranean sea, due to the imprecise nature and kinematics of the associated basin during the Neogene. For the first time, the deep structure of the Maghrebian margin was explored during the SPIRAL seismic survey. In this work, we present a N-S transect off Tipaza (west of Algiers), a place where the margin broadens due to a topographic high (Khayr-al-Din Bank). New deep penetration seismic profiles allow us to image the sedimentary sequence in the Algerian basin and the crustal structure at the continent-ocean boundary. Modeling of the wide-angle data shows thinning of the basement, from more than 15 km in the continental upper margin to only 5–6 km of oceanic-type basement in the Algerian basin, and reveals a very narrow or absent transitional zone. Analysis of the deep structure of the margin indicates features inherited from its complex evolution: (1) an oceanic-type crust in the deep basin, (2) similarities with margins formed in a transform-type setting, (3) a progressive deepening of the whole sedimentary cover, and the thickening of the Plio-Quaternary sediments at the margin foot, coeval with (4) a downward flexure of the basement in the basin. These features argue for a multiphased evolution of the margin, including (1) an early stage of rifting and/or spreading, (2) a late transcurrent episode related to the westward migration of the Alboran domain, and (3) a diffuse Plio-Quaternary compressional reactivation of the margin.

1. Introduction

[2] Research on continental passive margins is largely focused on the understanding of rifting processes and mechanisms of lithosphere thinning leading to continental breakup and spreading. The way in which continental margins exhibit various structural styles according to the setting of rifting, inheritance, magmatic supply, and/or mantle conditions during their formation is well studied [e.g., Bown and White, 1994; Louden and Chian, 1999; Geoffroy, 2005; Ziegler and Cloetingh, 2004]. Nevertheless, during rifting and/or subsequent oceanic spreading stages, the above factors, together with the geodynamical setting, may evolve, conferring to the margins a complex structure. In addition, rifting in back-arc basins might be different in some points from cratonic rifting, though the mechanics of actual fracturing of the continental crust remains similar. The main difference between back-arc and cratonic rifting is the presence of a subducting slab in the mantle beneath the back-arc basin [Currie and Hyndman, 2006; Dunn and Martinez, 2011].

[3] The North African Algerian passive continental margin results from back-arc opening of the Western Mediterranean basin during Oligo-Miocene times [Schettino and Turco, 2006]. While the opening histories of the neighboring basins (Liguro-Provençal and Tyrrhenian basins, Figure 1) are fairly well understood today [Gueguen et al., 1998; Jolivet and Faccenna, 2000; Rosenbaum et al., 2002], the mechanisms for the opening of the Algerian basin are still controversial regarding (1) the rifting processes (asymmetric, symmetric), (2) the rate and direction of opening, and (3) the postrift evolution of its southern margin. This is
Figure 1. Present-day tectonic map of the Western Mediterranean area. Bathymetry and topography are from ETOPO1 1 min Global relief (www.ngdc.noaa.gov). Major tectonics feature are from Frizon de Lamotte et al. [2000] and Billi et al. [2011]. The white arrow shows velocity of the African plate relative to the stable European plate (~5 mm/yr) from GPS measurements [Nocquet and Calais, 2004]. The red rectangle marks the location of the region displayed in Figure 2. The two insets show the Western Mediterranean setting (a) at 35 Ma and (b) at 18 Ma, simplified and modified from Lonergan and White [1997], with the migration of the Internal Zones behind the Tethyan subduction front and the associated back-arc opening of the Algerian basin. The red cross shows the approximative position of our study area.

especially due to the lack of knowledge on the deep geometry of the basin and surrounding margins. The Algerian margin is now one of the few examples of a margin that experienced a tectonic inversion, resulting in the recent and actual compressional field [Serpelloni et al., 2007] attested by the seismicity as well as tectonic and kinematic evidences [Yelles et al., 2009].

[4] Because of its setting, the Central Algerian margin (Tipaza region, west of Algiers) is a key area for attempting the reconstruction of tectonic evolution in this southern part of the Western Mediterranean sea and for understanding the modification of passive margins by reactivation processes. Furthermore, it is the only place where a large-scale tilted block, called the Khayr-al-Din Bank and inherited from the rifting stage, is proposed to be present [El Robrini, 1986; Domzig et al., 2006; Yelles et al., 2009; Strzerzynski et al., 2010].

[5] Among the major unsolved questions, we would like to address the following points: (1) What is the nature and thickness of the crust underlying the Algerian basin? (2) Where is the ocean-continent transition, and what is its origin? (3) What is the nature and deep geometry of the Khayr-al-Din Bank? (4) Is there evidence for deep markers of margin reactivation? (5) What are the implications of these results on models for the evolution of the Algerian basin and its southern margin?

[6] In order to unravel the deep geometry and structures of the Maghrebian margin both onshore and offshore, the SPIRAL (Sismique Profonde et Investigations Régionales en Algérie) project was launched in September 2009 in collaboration between Algerian scientific institutions (Sonatrach; Centre de Recherche en Astronomie, Astrophysique et Geophysique; and Directorate-General for Scientific Research and Technological Development) and French Research organizations (Centre National de la Recherche Scientifique, Institut Français de Recherche pour l’Exploitation de la Mer (Ifremer), Institut de Recherche pour le Développement, and universities). Specifically, new wide-angle seismic transects, together with coincident multichannel seismic (MCS) data provide the first constraints on the margin’s deep structure, on the nature of the ocean-continent transition (OCT), and the associated Algerian basin, as well as on the recent compressive reactivation at crustal scale. In this study we present first results from a deep seismic transect across the Central Algerian margin based on forward modeling of wide-angle seismic data and a coincident multichannel seismic profile and compare it with other margins of the Western Mediterranean sea and the Atlantic ocean.

2. Geological Setting
2.1. The Algerian Margin

[7] The Algerian margin corresponds to the plate boundary between the European and African plates. It is bordered to the north by the Algerian basin and to the south by an Alpine-type belt called Maghrebides (known as the “Tell” north Algeria, Figure 1), resulting from the subduction and closure of the Tethyan ocean under the European plate in Miocene times [Auzende et al., 1973; Frizon de Lamotte et al., 2000].

[8] The evolution of the Algerian margin is closely related to the rollback of the Tethyan slab and the related back-arc opening of the Western Mediterranean basins (Figure 1).
There is a general consensus that the Algero-Provençal basin opened during late Oligocene-early Miocene times in a back-arc position behind the Tethyan subduction zone \citep{Jolivet2000, Gelabert2002, Speranza2002}. In the early Miocene, the stretching of the European plate is assumed to have caused the drifting, spreading, and finally the collision of parts of a continental block, the Internal Zones, called AlKaPeCa (for Alboran, Kabylies, Peloritan, and Calabria; \cite{Bouillin1986}), with the African continent (Figure 1a). Currently, those Internal blocks are scattered around the Western Mediterranean basin, part of them having been accreted along the Algerian margin, such as the Kabylie blocks (Figure 1).

Models of the opening of the Algerian basin remain controversial regarding the kinematics and nature of the margins: (1) Some authors promote an opening of this basin at the rear of a double subduction toward the west (Alboran) and the east (Calabria) \citep{Malinverno1986, Lonergan1997}, after the Kabylie collision with the African continent (18 Ma), resulting in a dominant E-W opening between 16 and 8 Ma behind the Gibraltar arc rollback and Alboran block migration toward the west \citep{Mauffret2004}. The westward migration of the Alboran block \citep{Mauffret2004} would have induced a left-lateral deformation along the Western and Central Algerian margins and right-lateral deformation along the Balearic Promontory \citep{Camerlenghi2009} (Figure 1b). (2) Other authors propose an older NW-SE opening of the Algerian basin behind the retreating of a subduction zone toward the S-SE, whereas no significant displacement (i.e., less than ~200 km) of the Alboran block is considered \citep{Guéguen1998, Gelabert2002, Lonergan1997, Schettino2006}. Whatever model chosen, the westernmost Algerian margin can be assumed to represent a purely strike-slip type margin \citep{Domzig2006}, having formed as a STEP-fault system (subduction-transform edge propagator, \cite{Govers2005}).

The Algerian margin and basin are then marked by a major salinity crisis during Messinian times, which affected the whole Western Mediterranean domain and surrounding margins (~5.96–5.32 Ma, \cite{Hsu1973, Gautier1994, Krijgsman1999}). This event resulted in the progressive closure of the connection between the Atlantic Ocean and the Mediterranean Sea, responsible for a total sea level fall of more than 1500 m \citep{Ryan1978}. It led to an intense erosion of the basin margins, the accumulation of erosional products in the downslope domain \citep{Savoye1991, Sage2005}, and the deposition of the thick evaporitic Messinian sequences in the deep Mediterranean basin \citep{Montadert1970, Hsu1973, Lofi2011} responsible for marked salt tectonics. The Messinian units form a good temporal seismic marker, easily recognizable in the Mediterranean area.

The Plio-Quaternary period was then characterized by the tectonic inversion of the Algerian margin. This major tectonic episode is still in progress and contributes to the general structure of the Algerian margin. Recent kinematic studies indicate a present-day shortening associated with the NW-SE \citep{Stich2006} convergence between the African and European plates of about 5–6 mm/yr at the longitude of Algiers \citep{Nocquet2004} (Figure 1). A significant part (between 1.6 and 2.7 mm/yr) of the deformation may...
LEPRÊTRE ET AL.: CENTRAL ALGERIAN MARGIN EVOLUTION

Figure 3. High-resolution seismic profiles from the MARADJA cruise (2003) across the Khayr-al-Din Bank (modified after Yelles et al. [2009] (vertical exaggeration: 9). The position of each line is indicated by red lines on the map, and the deep seismic profile SPIRAL Spi06 is indicated by the black line. (a) Seismic section showing the steep northern slope of the banc toward the deep basin, and the sedimentary sequence at the top of the banc and at its foot. (b) Seismic section across the central part of the banc. The inset shows the compressive bulge at the foot of the margin identified by Yelles et al. [2009], which is assumed to be related to the presence of a south dipping blind thrust beneath the KADB.

Currently occur offshore Algeria (Serpelloni et al. [2007]; Meghraoui et al. [1996], respectively), and even further north in the SE Iberian margin [Maillard and Maurffret, 2013].

Contractional deformation is supported by the existence of dominantly reverse-type fault plane solutions in the present seismicity, as exemplified by earthquakes of Chenoua (Mw = 6.0, 1989 [Bounif et al., 2003]), Ain Benian (Mw = 5.7, 1996), and Boumerdès (Mw = 6.8, 2003 [Delouis et al., 2004]) (Figure 2). In recent papers, authors describe active offshore structures as folds and south dipping blind thrusts both east and west of Algiers [Domzig et al., 2006; Déverchère et al., 2005; Yelles et al., 2009; Strzerzynski et al., 2010], one of them being tentatively related to the destructive Boumerdès earthquake in May 2003 and attesting to the recent compressional reactivation of the margin (Figure 2). The inversion of the Algerian margin remains an active process, and the North African margin could represent an early stage of incipient subduction, as first suggested by El Robrini [1986]. It is also assumed to represent relics of the Kabylian basement, originally part of the Internal Zones, and the offshore extension of the Chenoua and Algiers internal massifs which outcrop onshore [Domzig et al., 2006; Strzerzynski et al., 2010] (Figure 2).

2.2. Sector of the Khayr-al-Din Bank (KADB)

West of Algiers, the continental shelf significantly widens and forms the bathymetric high of the Khayr-al-Din Bank (KADB, Figure 2). This structure extends over ~80 km in a roughly E-W direction and 45 km in a N-S direction, over looking the deep basin of about 2000 m depth (Figure 2). The northern KADB limit shows a steep slope with a basinward dip of about 12° (Figure 3a). It is bordered onshore by the Sahel structure, the Chenoua and Algiers Internal massifs to the west and the east, respectively (Ch and Al, Figure 2), and to the north by the deep Algerian basin.

The KADB was recently investigated using morphological and high-resolution seismic data (MARADJA 2003 and 2005 cruises [Déverchère et al., 2005; Domzig et al., 2006, Yelles et al., 2009; Strzerzynski et al., 2010]) and is interpreted as a tilted block inherited from the rifting of the Algero-Provençal basin, as first suggested by El Robrini [1986]. It is also assumed to represent relics of the Kabylian basement, originally part of the Internal Zones, and the offshore extension of the Chenoua and Algiers internal massifs which outcrop onshore [Domzig et al., 2006; Strzerzynski et al., 2010] (Figure 2).

Evidence for recent compression is indicated by the presence of an asymmetric ~100 m high bulge at the foot of the slope visible in the morphology and imaged by seismic reflection profiles from the MARADJA cruise (Figure 3b). The asymmetric steeper northern flank of the bulge and the associated basement uplift could be controlled by an active south dipping thrust system located beneath the Khayr-al-Din Bank, although this structure is not directly imaged [Domzig et al., 2006; Yelles et al., 2009] (Figure 3b). In north Algeria, structures inherited from the Miocene phase are generally characterized by a southward vergence, like the Miocene suture bordering the Internal Zones to the south, whereas newly formed reverse structures from the reactivation exhibit an opposite northward vergence [Yelles et al., 2009; Déverchère et al., 2005] (Figure 2).

3. Seismic Data

3.1. Data Acquisition

A wide-angle seismic profile close to Tipaza and the coincident MCS cross-section Spi06 are presented in
channels. MCS and OBS data were recorded with a sample rate of 4 ms.

3.2. Multichannel Seismic (MCS) Data and Processing

[18] The SPIRAL seismic sources were chosen to image deep targets, such as the top and the base of the crust, the OCT, and the deep rooting of the structures. Therefore, the deep penetrating and low-frequency MCS data set is complementary to the high-resolution and superficial data acquired during the MARADJA cruises (2003 and 2005) and was used to image deep structures underneath the salt layer (Figures 4 and 5). A first quality control was undertaken on groups of traces using the SISPEED software, and further processing of the MCS data was then performed using the GEOCLUSTER software. The processing sequence included external and internal mutes, spherical divergence correction, bandpass filtering (3–5–95–105 Hz), and dynamic corrections. Two consecutive velocity analyses were conducted every 200 CMP (common midpoint) leading to the final stack. The last processing step was the application of a frequency-wavenumber migration on the data using a constant 1550 km/s water velocity. The Spi06 profile exhibits a higher resolution than the Spi25 profile, due to the higher frequencies of the source. Therefore, the MCS interpretation presented in this paper is based on the Spi06 profile, whereas interfaces from MCS data integrated during the forward modeling (see the next section) were picked from the Spi25 profile to avoid even minimal differences in time and/or space between MCS and wide-angle arrival times. The wide-angle seismic data aids geological interpretation of the crust by providing deeper and complementary information such as P-wave velocities (Vp) on the structure of the margin.

3.3. Seismic Velocity Modeling of the Wide-Angle Seismic Data

[19] The refraction data were modeled using forward modeling technique, taking into account first as well as secondary arrivals from OBS and land stations, and reflectors picked from the coincident multichannel seismic section (Figure 7).

3.3.1. Data Quality and Preprocessing of the Wide-Angle Seismic Data

[20] OBS data were corrected for clock-drift, and seafloor positions were calculated using the direct water wave. A preprocessing sequence was applied to all data (land stations and OBS) in order to increase the signal-to-noise ratio and to better image far-offset arrivals. This sequence is composed of a deconvolution whitening, a 3–17 Hz Butterworth filter, and an automatic gain control.

[21] The OBS data acquired along the Tipaza profile are of good quality, with a better signal-to-noise ratio on the vertical geophone component than on the hydrophone. The OBS sections show clear sedimentary (Ps1, Ps2, Ps3) and crustal arrivals (Pg1, Pg2), and deep arrivals from the upper mantle (Pn) are identifiable (Vp ≥ 7.6 km/s) up to 50 km offset away from some OBS (Figures 6a and 6b). Sedimentary reflections (PsP1, PsP2) as well as reflections from the top of the basement (Pn) are clearly observed in the deep basin. Moho reflections (PmP) are not always easily discernible in the deep Algerian basin, even after applying the preprocessing sequence. For the forward modeling, picking
uncertainties were defined for each phase using the method of Zelt [1999], based on the ratio of the amplitude 250 ms before and after the picked arrival. A mean error depending on the signal-to-noise ratio was calculated from all the picks, for each phase of each station, and then converted to a traveltime picking errors, for a range in values between 20 and 125 ms. Phases with a high ratio are characterized by a low uncertainty, whereas phases with a low ratio are characterized by a higher uncertainty. Phases names and picks are detailed in Table 1. Whole-angle data acquired in the deep basin are rather homogeneous, whereas data recorded close to the coastline show significant lateral variations, probably induced by strong changes in bathymetry and by lateral structural variations, especially in the crustal part of the profile (Figures 6a and 6b).

Among the 23 land stations deployed, only 11 exhibited a sufficient quality to allow picking identification of arrivals. Most of them were located close to the coastline (Figure 7). Land station sections did not show sedimentary arrivals due to the large distance between the station and the closest shot but only deep arrivals (PmP, Pg) (Figure 6c). Pn arrivals from the upper mantle were not recorded by the land stations.

3.3.2. Forward Modeling

Construction of a forward ray tracing model allows us on the one hand to include information from reflected phases and multichannel data into the model and, on the other hand, to verify that all structures from the forward model are required to fit the data. For the modeling, a minimum structure for the continental crust was used to successfully explain arrivals at the land stations.

Seismic velocities were modeled using the 2-D ray tracing software XRAYINV developed by Zelt and Smith [1992]. This modeling used a layer-stripping strategy, from the top of the model downward. The velocity model is constructed layer after layer and composed of velocity and interface nodes. Depth and velocities were modeled such as to minimize the difference between the observed arrival times and the arrival times computed in the model (Figures 6 and 7).

The set of observed travel times, including refracted and reflected phases, were picked from the 39 OBS and 11 land stations recorded sections. Geometries of the sedimentary layers were determined from interfaces picked from the MCS coincident line. These interfaces include the Messinian erosion surface on the upper margin, as well as the top of the Messinian units, and, where visible, the base of the Messinian salt layer in the deep basin (see geological units, Figures 4 and 5). Arrival times picked from the MCS data were converted to depth using velocities from the forward modeling. For these layers, only the velocities were adjusted to reduce the misfit between observed
3.3.3. Error Analyses

[26] The quality of the forward model can be quantified using the fit between predicted arrival times and traveltimes. The corresponding misfit is 121 ms using 93% of the picks. The number of picks, RMS errors, and χ^2 for each phase obtained for the final forward model are detailed in Table 1.

[27] Two-point ray tracing between source and receiver (Figure 8) shows the well-resolved and the unconstrained areas. Ray coverage for both diving and reflected waves is generally very good due to the excellent data quality and close instrument spacing (Figures 8a and 8b). All sedimentary layers are well sampled by reflected and turning rays in the marine part of the model. The crustal layers, the oceanic Moho, and the upper mantle are well sampled.

[28] Resolution is a measure of the number of rays passing through a region of the model constrained by a particular velocity node and is therefore dependent on the node spacing [Zelt, 1999]. If a layer can be modeled with one single velocity gradient, then the resolution parameter will be high even in areas which have lower ray coverage, as the area is related to only one velocity node. Nodes with values greater than 0.5 are considered well resolved (Figure 9). The velocities throughout the model show a resolution higher than 0.5 except at the southern end of the model. The resolution decreases at the ends of the model where no rays pass through the layers and also decreases at the very shallow onshore sedimentary layer due to missing reverse shots on land. Upper mantle velocities are well constrained at higher levels, however less so at increasing depth due to fewer rays penetrating into this deeper portion of the model.

[29] In order to estimate the velocity and depth uncertainty of the final velocity model, a perturbation analysis was performed. The depths of key interfaces were varied, and an F test was applied to determine if a significant change between models could be detected. The 95% confidence limit gives an estimate of the depth uncertainty of the interface (Figures 9 and 10). In order to better constrain uncertainty at the Moho, both the depth of this interface and velocities in the lower crustal layer were changed systematically (Figure 10). We obtain on our final model uncertainties of $\pm 0.3/\pm 0.4$ km and ± 0.1 km/s for the Moho depth and for velocities in the lower crust, respectively. Results from this analysis show that our preferred model allows a maximum of picks to be explained, with a minimum resulting misfit between the picked traveltimes and arrivals predicted from the modeling. Solutions leading to better fits explain a lower number of picks and are thus less reliable.

[30] In order to additionally test the validity of the forward velocity model, we may also convert velocity to density using an empirical law. This density model is then used to generate a predicted gravity anomaly which can be compared with the measured gravity anomaly. The gravity anomaly was modeled using the software GRAVMOD [Zelt and Smith, 1992] and free-air gravity anomaly data collected during the SPIRAL cruise. This modeling approach is based on the empirical relationship existing between seismic velocities and densities proposed by Ludwig et al. [1970]. The misfit between calculated and predicted gravity

Figure 6. Three examples of representative record sections (wide-angle data). (a) Seismic section of OBS 06 on the upper margin (top), the corresponding ray paths in the forward model (middle), and the observed traveltimes (thick grey lines) and calculated traveltimes (thin black lines) in the forward model (bottom). (b) Seismic section of OBS 26 in the deep basin (top), the corresponding ray paths in the forward model (middle), and the observed traveltimes (thick grey lines) and calculated traveltimes (thin black lines) in the forward model (bottom). (c) Seismic section of land station 43 (top), the corresponding ray paths in the forward model (middle), and the observed traveltimes (thick grey lines) and calculated traveltimes (thin black lines) in the forward model (bottom). These three stations are shaded in Figure 2. All the examples correspond to the vertical component recording, represented with a 6 km/s velocity reduction.
Table 1. Residual Traveltimes and Chi-Square Errors for All the Phases for the Tipaza Transect, Using Forward Modeling

<table>
<thead>
<tr>
<th>Phase</th>
<th>Name</th>
<th>Number of Picks</th>
<th>RMS [s]</th>
<th>(\chi^2) Error</th>
<th>Uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td></td>
<td>1893</td>
<td>0.014</td>
<td>0.460</td>
<td>0.020–0.035</td>
</tr>
<tr>
<td>Sediment refraction in the Plio-Quaternary unit</td>
<td>Ps1</td>
<td>748</td>
<td>0.086</td>
<td>1.261</td>
<td>0.020–0.100</td>
</tr>
<tr>
<td>Sediment refraction in the Messinian units</td>
<td>Ps2</td>
<td>1695</td>
<td>0.104</td>
<td>0.761</td>
<td>0.100–0.125</td>
</tr>
<tr>
<td>Sediment refraction in the Presalt unit</td>
<td>Ps3</td>
<td>1494</td>
<td>0.132</td>
<td>1.895</td>
<td>0.020–0.125</td>
</tr>
<tr>
<td>Reflection at the top of the Messinian unit</td>
<td>PsP1</td>
<td>1710</td>
<td>0.072</td>
<td>6.330</td>
<td>0.025–0.050</td>
</tr>
<tr>
<td>Reflection at the base of the Messinian Salt unit</td>
<td>PsP2</td>
<td>1263</td>
<td>0.097</td>
<td>2.399</td>
<td>0.100–0.125</td>
</tr>
<tr>
<td>Reflection at the top of the basement</td>
<td>PgP</td>
<td>1465</td>
<td>0.128</td>
<td>3.256</td>
<td>0.020–0.125</td>
</tr>
<tr>
<td>Refraction in the upper crust</td>
<td>Pg1</td>
<td>4562</td>
<td>0.137</td>
<td>1.232</td>
<td>0.125</td>
</tr>
<tr>
<td>Refraction in the lower crust</td>
<td>Pg2</td>
<td>6037</td>
<td>0.121</td>
<td>1.456</td>
<td>0.100–0.125</td>
</tr>
<tr>
<td>Reflection at the Moho</td>
<td>PmP</td>
<td>5866</td>
<td>0.142</td>
<td>1.403</td>
<td>0.100–0.125</td>
</tr>
<tr>
<td>Refraction in the upper mantle</td>
<td>Pn</td>
<td>1853</td>
<td>0.127</td>
<td>1.073</td>
<td>0.100–0.125</td>
</tr>
<tr>
<td>All Phases</td>
<td></td>
<td>28586</td>
<td>0.121</td>
<td>1.720</td>
<td></td>
</tr>
</tbody>
</table>

The largest misfit observed, between 15 and 30 km model distance, might be due to the 3-D topography of the KADB (Figure 7).

4. Results

Forward modeling was carried out and coupled with the interpretation of the MCS data on the marine part of the seismic profile in order to (1) constrain the structure of the sedimentary sequence and the basement of the Algerian margin and basin off Tipaza and (2) better understand the kinematic and tectonic history of the Algerian margin. The main sedimentary and crustal features identified are described below.

4.1. Structure of the Sedimentary Units

While the MARADJA data were limited by their penetration (Figures 3 and 4), the MCS profile SPIRAL...
Spi06 (Figure 5) and the coincident wide-angle data define the overall geometry of the margin and locally allow to image below the salt layer and farther toward the deep basin (until about 120 km away from the Algerian coast). From the upper margin toward the deep Algerian basin, we can discern three structural regions:

33. The top of the KADB is marked by a perched sedimentary basin filled with several kilometers of Pli-Quaternary (~1.2 km thick) and Miocene sediments (~1 km thick). This basin is imaged on the Spi06 profile at the top of the bank (Figure 5), where the Messinian Erosion Surface (MES) forms a depression. It is visible in the forward model by an area of low velocities where isovelocity contour deepens at the top of the bank between distances of 5 and 25 km (Figure 7).

34. A sharp 12° slope forms the northern border of the KADB which marks the transition from the upper margin to the Algerian basin. On the slope between OBS 8 and OBS 11 (see location, Figures 2 and 7), only a few Ps1 phases were observed, and no PsP and no PgP phases were recorded. Across this second region, the Plio-Quaternary unit is very thin and the slope particularly steep, rendering the modeling difficult.

35. In the deep basin, evidence for intensive salt tectonics, including local diapirs that outcrop at the seafloor, is imaged by multichannel and wide-angle seismic data (Figures 5 and 6). Tall salt diapirs at the margin foot induce strong undulations of the refracted arrivals on the OBS sections (Figures 6a and 6b).

36. In the deep basin, variations in sediment thickness are observed at two scales: (i) At short wavelengths, both the Pli-Quaternary sediments (1.9 km/s ≤ Vp ≤ 2.7 km/s) and the Messinian sequence (3.9 km/s ≤ Vp ≤ 4.20 km/s) exhibit strong variations in thickness associated with diapirism induced by the Messinian salt. Below these levels, the deepest presalt sedimentary layer (Figure 4) shows a relatively constant thickness of about 1.3–1.4 km along the basin (Figure 7), with velocities ranging from 4.50 km/s at the top to 5.0 km/s at the base. (ii) At larger wavelengths, the total sedimentary cover depicts a regular 3.7 km thickness corresponding to the sedimentary infilling of the distal basin (Figure 7). However, the whole sedimentary cover shows a progressive thickening toward the margin foot, where it reaches more than 4 km in thickness.

4.2. Structure of the Crust and Upper Mantle Velocities

37. Beneath the upper margin (KADB), the Moho evolves at a depth greater than 15 km below the southern part of the KADB (distance 0 on model, Figure 7) and becomes progressively shallower toward the deep basin. This results in a crustal thickness of about 15 km where the perched sedimentary basin is observed (between 5 and 20 km in the model, Figure 7). In the MCS data section, the Moho probably corresponds to some discontinuous reflections observed at 7.2–7.5 seconds two-way travel time (stwtt) between 0 and 12 km along the profile (Figure 5b), comparable with the time-converted forward velocity model (Figure 5c). Crustal P velocities change from 5.2 km/s in the upper part of the crust to 6.3 km/s in the lower part, resulting in a very low vertical velocity gradient of 0.065 ± 0.015 km/s/km.

38. The transition toward the deep basin is marked by a thinning of the crust from more than 15 km thick in the upper margin to only ~6 km at the margin foot (Figure 7), over a distance of 50 km. Underneath the sedimentary cover, the basement is characterized by a two-layered velocity structure and depicts an average total thickness of ~5.5 km in the deep Algerian basin (Figure 7). Velocities evolve from 5.4 to 6.2 km/s in the upper layer and from 6.6 to 7.2–7.3 km/s across the lower layer (Figure 4). The crust in this region can be modeled using only one layer, as no strong
Figure 10. Error analysis by model perturbation. (a) Results from simultaneous variation of the depth of the Moho and velocities in the lower crustal layer. Contours indicate the number of picks explained by the forward model. The uncertainties of the most important boundaries calculated from the 95% confidence limit of the f-test are given in the grey boxes. (b) Results from variation of the lower crustal velocities only. (c) Results from variation of the Moho depth. The uncertainties of the most important boundaries calculated from the 95% confidence limit of the f-test are given in the grey box.

Reflections from intracrustal boundary are clear in the data. However, as a first arrival tomographic modeling performed on the marine part clearly images two layers, an upper layer characterized by a high velocity gradient and a lower layer with a weak gradient, we use a two-layered velocity model for this region. There, in the distal deep basin, the top of the crust is located at a constant depth of ~6.5 km (~5.5 stwt) and the Moho discontinuity at ~12 km (~7 stwt) (Figures 5 and 7). Both the top and the base of the crust, as well as the isovelocity contours, slightly deepen toward the margin foot where the sedimentary cover is thicker (Figure 7).

The southern end of the model, between ~80 and 0 km (Figure 7), corresponds to the onshore part. There, the sedimentary layers cannot be imaged by the seismic data because of the large offset between land stations and offshore shots. Land stations do not provide a good resolution on land but rather help us to constrain the deep structure of the margin with the contribution of Pg and PmP arrivals (Figure 6c). At the southern end of the model, the deep arrivals enable us to model the Moho depth between ~35 and 0 km in the profile where it reaches ~20 km depth at about 35 km from the coastline (Figure 7).

Upper mantle velocities are constrained by Pn arrivals between distances of 20 and 115 km along the forward model (Figure 8a). The velocities range from 7.9 to 8.0 km/s just below the crust, when using velocities of 8.2–8.3 km/s at 30 km depth during modeling. PmP arrivals reflected on the Moho beneath the margin foot and the deep basin are of lower amplitude when compared with those reflected beneath the KADB (Figure 6). This observation supports a lower velocity contrast between crustal and mantle velocities at the transition between lower crust and upper mantle along Domains 2 and 3 relative to Domain 1, where velocities are lower at the base of the crust.

4.3. Nature of the Crust

According to 1-D velocity-depth profiles from forward modeling (Figure 11), three different domains can be distinguished along the transect (Figure 7). These profiles were compared with preexisting compilations of velocity-depth profiles extracted from below the top of the basement, for typical thinned continental crust [Christensen and Mooney, 1995] and Atlantic-type oceanic crust [White et al., 1992] in order to provide information on the nature of the basement across the different domains.

1. The first domain corresponds to the upper margin marked by the Khayr-al-Din Bank (Domain 1, Figure 7). It is located between 0 and 30 km from the coastline. In this domain, the crust shows velocities and a velocity gradient consistent with typical continental crust (curve 1, Figure 11). The vertical velocity gradient is low, and the velocities are lower than those of oceanic-type crust. The velocity-depth profile falls into the range of velocities compiled by Christensen and Mooney [1995] of velocities for an extended continental crust type (Figure 11). The continental nature and geometry of the KADB support the hypothesis of its origin as a block inherited from the rifting stage, as proposed in earlier work [El Robrini, 1986; Domzig et al., 2006; Yelles et al., 2009].

2. The second domain is located at the foot of the margin, between 30 and 40 km along the section (Domain 2, Figure 7). In this area, the model depicts intermediate velocities faster than in typical continental crust and slower than in typical oceanic crust (Figure 11), in a very narrow transition zone (~10 km wide or less). However, the resolution of our velocity model does not allow us to discriminate between a narrow transition zone or direct contact between continental and oceanic crust.

3. The third domain is located beneath the deep basin at ~40 km from the coastline, toward the north.
The thickness of the Plio-Quaternary layer changes from an average of 0.9 km (e1, Figure 5) in the deep basin between diapirs, to 1.6 km (e2, Figure 5) at the margin foot, indicating a thickening of about 700 m. (2) Along our section, the top of the Messinian sediments as well as the base of the Messinian salt progressively deepen toward the continent. The top of the Messinian sequence evolves from 4.1 to 4.75 stwtt (Figure 5), equivalent on the forward model to a depth of 3.6 to 4.5 km (Figure 7), whereas the base of the Messinian salt evolves from about 4.8 stwtt at the northern end of the Spl06 profile to 5.3 stwtt at the margin foot, equivalent in the forward model to a depth of 4.9 km in the northern part to a depth of 5.5 km at the margin foot (Figures 5 and 7). (3) The thickening of the Plio-Quaternary sequence and the long-wavelength deepening of the top of the Messinian layer toward the continent (Figure 5) are coincident with a south dipping trend in the basement top (Figure 7). (4) The steep slope of the northern border of the KADB may be another indication for compressional reactivation of the Algerian margin in the study area associated with a verticalization of the block, as suggested by Yelles et al. [2009].

5. Discussion

5.1. Deep Structure of the Algerian Margin and Its Basin (Sector of Tipaza)

[46] Our velocity modeling together with the MCS data provides us an image of the sedimentary and crustal structure of the Algerian basin and of the ocean-continent transition zone. The deep structure of the margin is discussed here in its upper, lower, and transitional parts defined in the previous section, which can be distinguished from their seismic structure and the nature of the basement.

5.1.1. Continental Crust (Domain 1)

[47] At the upper margin formed by the KADB, the velocity structure as well as the crustal thickness are typical of thinned continental crust [Christensen and Mooney, 1995] (Figure 11), with indications for the existence of a possible former tilted block. Both the continental nature and the location of the KADB between the two Algiers and Chenoua Internal massifs outcropping onshore (Figure 2) favor an origin of the KADB basement from the Internal Zones. The northern boundary of the bank would thus represent the sharp offshore border of these European paleo-terranes, off Tipaza. Beyond the bank, the smooth topography and the velocity structure of the basement exclude any tilted blocks farther north. South of the bank, the location of the southernmost Internal Zones boundary is difficult to define due to the lack of geological outcrops and the presence of the Neogene Mitidja basin (Figure 2). Nevertheless, it might be found close to the coastline because of the presence of the External domain (paleo-African margin [Bouillin, 1986]) farther south.

[48] On land, between the coast and southward along the profile (Figure 7b), the Moho deepens and reaches ~20 km depth at about 50 km from the coastline. This shallow Moho depth on land compared with the topography seems to involve a local undercompensation of the area. In order to test this hypothesis, the Bouguer gravity anomaly from the BGI was used to estimate the gravity isostatic anomaly [Balmino et al., 2012, and references therein] for the land part. We modeled the Bouguer gravity anomaly expected in

Figure 11. The 1-D velocity/depth profiles in the basement extracted from forward velocity model at distances of 20 (curve 1), 35 (curve 2), and 85 km (curve 3) along the model. The dark grey area represents a velocity compilation for extended continental crust extracted from Christensen and Mooney [1995], and the light grey area represents a velocity compilation for Atlantic oceanic crust from White et al. [1992].

4. Sedimentary and Crustal Geometry at the Margin Foot

[45] Four main observations can be made about the sedimentary and crustal geometry: (1) In the deep basin, the whole sedimentary cover thickens at the margin foot. Only Plio-Quaternary sediments show a significant variation in thickness in the deep basin, toward the margin foot.
the case of a local isostatic compensation of the topography (Airy-type, i.e., elastic thickness $Te = 0$). By subtracting this anomaly from the Bouguer gravity anomaly of the BGI, we obtained an estimate of the way the relief is compensated below the margin on land (Figure 7c). The positive anomaly observed on land suggests that the area is characterized by a mass excess relative to an Airy-type compensation. If we assume that the mass excess is linked to the crust-mantle density contrast, then the Moho is shallower than expected in an Airy-type model, suggesting an undercompensation of the margin on land. This result is thus in good agreement with our finding of a relatively shallow Moho at the coastline (Figure 7b).

[40] This isostatic disequilibrium could be related to a major thermal event linked to a suspected break-off of the Tethyan slab (~16–17 Ma ago [see, e.g., Maury et al., 2000]), which is assumed to have affected the mantle beneath the north Algerian domain. Two main factors may explain this relatively shallow position of the Moho on land between the coast and southward along the profile (Figure 7): (1) A “rollback factor” which might explain the thinned continental crust observed along the southern margins of the Western Mediterranean Sea, where parts of the Internal Zones are accreted to previously active-type margins (West Sardinian margin [Gailler et al., 2009]; West Calabrian margin [Pepe et al., 2010]). Those specific areas are made of crustal material from the Internal Zones and thus have been affected by back-arc extension during the rollback of the Tethyan slab which would have induced crustal thinning at depth. (2) Inheritance from the old African passive margin, which previously represented a thinned domain before collision of the Internal Zones, might also contribute to the shallow position of the Moho on land along our profile [e.g., Roure et al., 2012].

5.1.2. Oceanic Crust in the Deep Basin (Domain 3)

[40] Wide-angle seismic studies reveal variations in thickness of the oceanic crust globally. Generally, proximity of hotspots, abnormally hot asthenosphere conditions, and/or a fast spreading environment might result in unusually thick oceanic crust, whereas abnormally thin oceanic crust is found at slow to ultraslow-spreading centers, in proximity to fracture zones, and/or in the case of cold mantle conditions [e.g., White et al., 1992; Bown and White, 1994]. The thickness of the oceanic crust is thus the result of complex tectonic and magmatic processes operating during accretion.

[51] The oceanic crust (Domain 3) in the Western Mediterranean basin off Africa is thinner (5.5 km [Hinz, 1973; Vidal et al., 1998; Grevevemeyer et al., 2011; this study]) than “classical” slow-spreading Atlantic oceanic crust type (~7 km thick) but appears comparable to those found in back-arc basins (Liguro-Provençal basin [Pascal et al., 1993; Contrucci et al., 2001; Gailler et al., 2009]; Lau basin [Turner et al., 1999; Crawford et al., 2003]; Philippine sea and Parece Vela basin [Louden, 1980; Japan sea [Hirata et al., 1992]), provided that the crustal thickness is taken away from the influence of any spreading center and/or magmatic arc. The seismic structure of the crust and velocities of 7.2–7.3 km/s at the base of layer 3 favor an oceanic crustal nature (Figure 11). Wide-angle seismic studies conducted on the South Balearic margin and crossing the north Algerian basin proposed an oceanic crust characterized by velocities ranging from 6.0 km/s at its top and up to 7.4 km/s at its base [Hinz, 1973], whereas other authors proposed a thin oceanic crust including velocities lower than 7 km/s (up to 6.8 km/s [Grevevemeyer et al., 2011]). These differences may partly result from the different data sets and inversion methods, as well as from geological variations resulting from possible structural segmentation.

[52] Regarding the nature of the crust in the Algerian deep basin off Tipaza, the results of velocity modeling favor an oceanic nature of the basin. The velocity structure together with observed seismic velocities up to 7.2–7.3 km/s were used to exclude a basement of a continental nature in the basin off Tipaza, contrary to the suggestion locally proposed for the Algerian basin by Roure et al. [2012].

5.1.3. Ocean-Continental Transition (Domain 2)

[53] The transition between continental and oceanic crust often appears as progressive through a zone neither strictly continental nor oceanic, called the ocean-continent transition (OCT). North of Domain 1 where the continental crust shows a strong thinning toward the deep Algerian basin, the transition between continental and oceanic crust is extremely narrow (10 km or less, Domain 2) and characterized by velocities that are intermediate between continental and oceanic crust (Figure 11) and slightly higher than normal 7 km/s velocities at its base (Figure 7).

[54] For other margins, two main interpretations are proposed for such slightly high velocities at the continent-ocean boundary: (1) volcanic underplating [Reid and Keen, 1990; Bauer et al., 2000; Funck et al., 2012] or (2) exhumed continental mantle serpentinedized by contact with sea water [Botillot et al., 1989; Whitemarsh et al., 2001; Funck et al., 2004].

[55] Volcanic underplating is typical at volcanic margins where a thick oceanic crust is generally observed [Bauer et al., 2000; Geoffroy, 2005] and associated with hot mantle temperature conditions and/or active mantle upwelling [Hollbrook et al., 2001; Korenaga et al., 2002]. The reduced thickness of the oceanic crust in the Algerian basin as well as velocities less than 7.3 km/s do not support hypothesis 1, i.e., magmatic underplating and a volcanic-type margin. In addition, magmatic underplating is assumed to generate a double reflection at the top and at the base of the underplating body [Klingelhofer et al., 2005], as well as seaward dipping reflectors (SRD) at the margin, neither of which are imaged in our data set.

[56] On the other hand, exhumed and serpentinedized upper mantle material is often found at continental margins formed with limited or no magmatic activity at the time of continental breakup. Upper mantle serpentinedized rock velocities would be compatible with observed velocities higher than 7 km/s found from this study, since seismic velocities are assumed to decrease from normal mantle velocities (≥ 7.9–8.0 km/s) with the increasing degree of serpentization [Horen et al., 1996]. Nevertheless, PmP reflections are not supposed to be generated at the base of the serpentinedized upper mantle, as serpentization is assumed to occur progressively, without jump in composition and thus in velocity. The specific context of the Algerian margin together with the very low amplitude of the PmP reflections in our data can contradict the purely serpentinedized mantle hypothesis 2, even if a serpentization front is assumed to have generated reflectors observed at the Iberian margin [Dean et al., 2000].
Figure 12. Comparison of the deep structure of three Western Mediterranean margins (lines a, b, and c) and three West Atlantic margins (lines d, e, and f). The locations of the five transects are indicated by a red line on the map. (a) the Algerian margin (this study), (b and c) the conjugate Gulf of Lions-West Sardinia margins [Klingelhoefer et al., 2008; Gailler et al., 2009], (d) the oblique-shear margin of French Guiana [Greenroyd et al., 2008], (e) a transform west Moroccan margin [Thiébot, 2005], and (f) the north DAKHLA profile across the west Moroccan margin [Klingelhoefer et al., 2009]. CC: Continental Crust; OC: Oceanic Crust; OCT: Ocean-Continental Transition.

5.2. Comparison With Other Continental Margins

Until now, no unequivocal interpretation of magmatic anomalies, rifting mechanisms (symmetric, asymmetric), direction, or rate of opening has been proposed for the Algerian basin and surrounding margins [Schettino and Turco, 2006; Mauffret et al., 2007, and references therein], leaving open the debate on the type of margin (oblique, transform, or purely divergent) found in this region. Results from this study are compared with the structure and geometry of other passive margins, especially in the Western Mediterranean Sea, to better understand rifting and postrift evolution of the Algerian margin.

The fast lateral change of velocities in our model, from the continental domain toward the oceanic domain and without major difference with the oceanic velocity structure, favors a very narrow (10 km) or even absent OCT at the Algerian margin off Tipaza.

5.2. Comparison With Other Continental Margins

Until now, no unequivocal interpretation of magmatic anomalies, rifting mechanisms (symmetric, asymmetric), direction, or rate of opening has been proposed for the Algerian basin and surrounding margins [Schettino and Turco, 2006; Mauffret et al., 2007, and references therein], leaving open the debate on the type of margin (oblique, transform, or purely divergent) found in this region. Results from this study are compared with the structure and geometry of other passive margins, especially in the Western Mediterranean Sea, to better understand rifting and postrift evolution of the Algerian margin.

The Algerian margin off Tipaza is characterized by a narrow ocean-continent transitional zone compared to other margins of the Western Mediterranean formed in a similar back-arc context. For example, the OCT extends over ~80–90 km in the Gulf of Lions [Gailler et al., 2009] (Figure 12b), ~30–40 km along the North Ligurian and West Sardinian margins [Rollet et al., 2002; Gailler et al., 2009; Dessa et al., 2011] (Figure 12b), and ~20 km at the West Corsican margin [Contrucci et al., 2001; Rollet et al., 2002]. The Gulf of Lions and the West Sardinian Miocene margins represent two conjugate margins, formed during the back-arc opening of the Liguro-Provençal basin in the Western Mediterranean domain (Figure 1). They present a conspicuous asymmetry regarding the dimensions of the
ocean-continent transitional zone (Figure 12), which can be interpreted as the result of a continental breakup closer to the Western Sardinian margin rather than an asymmetry linked to simple shear mechanisms during rifting [Gaillier et al., 2009]. That seems to be in agreement with the observation of Martinez et al. [2007] that in a back-arc setting, continental breakup occurs preferentially closer to the magmatic arc, which can thus induce asymmetry of the OCT between conjugate margins. For margins formed in a back-arc position, the transition zone at the passive margin born on the same side of the subduction zone with respect to the extended area seems thus to be narrower than the transition zones formed on the opposite side, which can partially explain the narrow OCT found in this study at the Algerian margin. However, the location of the conjugate margin is not well established, a fact which precludes any direct comparison.

[60] A narrow transitional zone is a common feature of margins formed by transcurrent mechanisms (Ghana margin [Edwards et al., 1997; Sage et al., 2000]; NW Moroccan margin [Thiébot, 2005]; French Guiana margin [Greenroyd et al., 2008]) (Figures 12d and 12c), which generally depict a direct contact between oceanic and continental crusts for purely transform cases. We thus explore this second hypothesis of transcurrent mechanisms operating during the evolution of Central Algerian margin because of morphological similarities, reminiscent of the geometry observed at Atlantic margins formed in a “shearing” setting [e.g., Keen et al., 1990; Edwards et al., 1997; Mascele and Basile, 1998; Sage et al., 2000; Basile and Allemand, 2002; Greenroyd et al., 2008; Basile et al., 2013], including (1) a narrow or nonexistent OCT, (2) a steep continental slope toward the deep basin, (3) a marginal basement high, and (4) a reduced region of crustal thinning (Figures 7 and 12). Nevertheless, a steep slope of the Moho toward the continent is usually observed at transform margin [e.g., Edwards et al., 1997] (Figure 12e), contrasting with the gentle slope followed by the Moho beneath the KADB (Figure 12a): this geometry would result from a first stage of rifting before a shearing deformation during the Central Algerian margin evolution.

[61] This hypothesis would imply that the transcurrent mechanisms proposed to have generated the westernmost Algerian margin [Govers and Wortel, 2005] could also have affected the margin in the region of Tipaza. Indeed, a recent study has proposed a tectonic reconstruction of the Western Mediterranean at 16 Ma [see Mauffret et al., 2007, Figure 4] that places our study area at the junction between the NW-SE thrust front of the retreating Tethyan slab and the westward migration point of the Alboran block (Figure 1b). North of the Algerian basin, the steep Mazarern escarpment located off Tipaza (Figures 1 and 13c) is often seen as resulting from the westward migration of the Alboran block following the retreating slab [e.g., Acosta et al., 2001; Camerlenghi et al., 2009, and references therein]. Interpreted seismic sections across this escarpment seem to depict structural similarities with a steep slope and perched basin, as imaged by the SPIRAL seismic line across the KADB. These observations may be the expression of transcurrent movements induced by the westward migration of the Gibraltar arc on both sides of the Algerian basin, with a right-lateral motion on the Balearic margin [Camerlenghi et al., 2009] and a left-lateral one on the Algerian margin. Therefore, a possible explanation of the steepness of the margin and the very narrow OCT in our study area could be a multiphased formation of the Algerian margin west of Algiers. This would imply a mixed scenario combining the following:

[62] 1. A roughly N-S rifting at the origin of the remaining thin and tilted continental block (KADB) and opening of the Algerian basin behind the southward rollback of the Tethyan subduction, which explains the nature of the basin and evolution of the Algerian margin farther east [Loneragan and White, 1997; Frizon de Lamotte et al., 2000; Gelabert et al., 2002; Rosenbaum et al., 2002].

[63] 2. A later, E-W episode inducing simple shears of opposite directions on both sides of the Algerian basin as a consequence of the Miocene westward migration of the Gibraltar Arc [Mauffret et al., 2007; Camerlenghi et al., 2009].

[64] The comparison shown in Figure 12 highlights common features between the three Western Mediterranean margin examples. The top of the basement of the Mediterranean margins is located in a shallower position relative to those of the Atlantic ocean (Figure 12). This is due to the major subsidence effecting the older Atlantic margins characterized by a denser oceanic basement and a thicker sedimentary cover. Considering the overall structure of the different margins, it appears that the Western Sardinian margin and the Algerian margin present structural similarities. This might result from similarities in their formation. These two margins were (1) formed in a back-arc context, (2) located in an identical position relative to the Tethyan subduction zone, and (3) linked to the migration of the Internal Zones.

5.3. New Evidence for Tectonic Reactivation?

[65] Postbreakup compressional structures are commonly observed at passive or oblique-type continental margins [Johnson et al., 2008]. They are often expressed as fault-related growth folds which appear to result from various driving mechanisms and to strongly depend on (i) preexisting structures, which control the location and the style of reactivation, and (ii) the rheological properties of the lithosphere, which play a key role in the spatial wavelength of compressional deformation [e.g., Doré et al., 2008; Ritchie et al., 2008; Cloetingh et al., 2008].

[66] Numerous data attest to recent and present-day compression in the Algerian offshore, e.g., recent kinematics [Serpelloni et al., 2007], intense seismicity associated with dominant reverse focal mechanisms [Stich et al., 2006], and south dipping blind thrusting [Déverchère et al., 2005; Domzig et al., 2006; Yelles et al., 2009] (Figures 1 and 3). The deep seismic profile Spi06 off Tipaza does not allow us to image directly a south dipping thrust in this location. This may reflect the early stage of compressional deformation which likely has little impact on the geometry of the system to date, provided the slow convergence rate between African and European plates [e.g., Billi et al., 2011, and references therein].

[67] However, it appears that the progressive deepening over several tens of kilometers toward the margin foot of the Plio-Quaternary layer (Figure 5), together with the tilting of the crust beneath the margin, might result from (1) a compressional reactivation of the margin or, alternatively, (2) a crustal flexure associated with a progressive increase in sediment loading. When comparing the Algerian mar-
gin with other Western Mediterranean margins (Figure 13), i.e., Neogene margins formed in the same general context, a similar sedimentary pattern cannot be observed. Indeed, at long wavelengths, the sedimentary units progressively become shallower from the deep basin toward the continent for the other Mediterranean margins, contrary to what is observed on the Algerian side (Figure 13), even if the sediment load is more or less similar, or even lower in this case. In addition, the shallower position (by at least 1 km) found for the top of a basement and the Moho by Grevemeyer et al., 2011 reveals the deepening of the basement itself from the Balearic Promontory toward the Algerian margin.

Therefore, this peculiar pattern is clearly an additional observation supporting the south dipping underthrusting of the transitional and oceanic crust off north Algeria. This could be the indication of the onset of a subduction process, as previously suggested by Auzende et al. [1972], Domzig et al. [2006], Yelles et al. [2009], Strzerzynski et al. [2010], and Billi et al. [2011]. There is evidence for a similar phenomenon along the North Iberian margin (South of the Bay of Biscay) during Eocene-Miocene times that has been interpreted as being associated with the Eocene convergence between the European and Iberian plates [Sibuet, 1974; Alvarez-Marron et al., 1997; Gallastegui et al., 2002].

6. Conclusions

New wide-angle and reflection seismic data off Tipaza provide a first image of the deep structure of the Algerian margin and the nearby deep basin. Modeling of the wide-angle seismic data reveals an oceanic-type basement of 5–6 km in the deep Algerian basin. The Khayr-al-Din Bank exhibits a continental nature and is likely a tilted block belonging to the Internal Zones, as supported by geometry found in the velocity model. Between continental and oceanic crusts, there is a very narrow or possibly absent transitional zone (10 km or less). Comparison of the margin structure with that observed in other studies suggests some similarities of the Algerian margin off Tipaza with transform-type margins. Diffuse deformation related to the recent compressional reactivation of the margin is expressed by a long-wavelength flexure of the basin basement and by partial uplift and folding at the KADB. The steep slope of the margin, the progressive deepening of the sedimentary units toward the margins foot coeval with the deepening of
the basement top, and the extremely narrow transition zone between continental and oceanic crusts reveal an atypical margin. This can be explained by a multiphased evolution of the margin including the following major steps: (1) rollback of the Tethyan subduction zone, inducing (a) the opening of the Central Algerian basin in a roughly N-S to NW-SE direction and (b) the collision of the European inner zone with the African margin, (2) a transient episode induced by the westward migration of the Alboran block, and (3) a compressional reactivation of the margin. The exact timing and modality of these steps remain open questions.

[70] Acknowledgments. The authors would like to thank the captain and the crew of the TVV Aymara legs for their professional work during the oceanographic expedition. We would also like to thank the technical team of the Ifremer-UBO OBS pool and the Génavir technical team for their professional work during the deployment of ocean bottom instruments and the acquisition of reflection seismic data. The GMT [Wessel and Smith, 1995] and Seismic Inversion Software 2.0 [Stackwell, 1999] were used in the preparation of this paper. The authors would like to thank Christopher Greenroyd and Christine Peirce for the use of their ACE wide-angle seismic model and Carole Petit for her help with the isostatic anomaly modeling. Comments of two reviewers helped greatly increase the quality of the manuscript.

References

Kleinholer, F., J. L. Olivet, D. Aslanian, F. Bache, M. Moulin, L. Matias, A. Afilhado, H. Nouze, M. O. Bellier, and A. Gailler (2008), Preliminary results from the Sardinia deep seismic cruise on the Western Sardinia margin, north Western Mediterranean, EGU meeting april 2008.
Klingelhoefer, F., J. L. Olivet, D. Aslanian, F. Bache, M. Moulin, L. Matias, A. Afilhado, H. Nouze, M. O. Bellier, and A. Gailler (2008), Preliminary results from the Sardinia deep seismic cruise on the Western Sardinia margin, north Western Mediterranean, EGU meeting april 2008.
Klingelhoefer, F., J. L. Olivet, D. Aslanian, F. Bache, M. Moulin, L. Matias, A. Afilhado, H. Nouze, M. O. Bellier, and A. Gailler (2008), Preliminary results from the Sardinia deep seismic cruise on the Western Sardinia margin, north Western Mediterranean, EGU meeting april 2008.
Thiébot, E. (2005), Structure profonde et réactivation de la marge nord-ouest Marocaine, Thèse de doctorat, UMR6538, IUEM, Université de Bretagne Occidentale.
Vidal, N., J. Gallart, and J. J. Danobeitia (1998), A deep seismic crustal transect from the NE Iberian peninsula to the Western Mediterranean, J. Geophys. Res. Solid Earth, 103(B6), 12,381–12,396.