Pinnatoxin G is responsible for atypical toxicity in mussels (Mytilus galloprovincialis) and clams (Venerupis decussata) from Ingril, a French Mediterranean lagoon

Type Article
Date 2013-12
Language English
Author(s) Hess PhilippORCID1, Abadie EricORCID2, Herve FabienneORCID1, Berteaux Tom2, Sechet VeroniqueORCID1, Araoz Romulo3, Molgo Jordi3, Zakarian Armen4, Sibat ManoellaORCID1, Rundberget Thomas5, Miles Christopher O.5, Amzil Zouher1
Affiliation(s) 1 : IFREMER, Lab Phycotoxines, Ctr Atlantique, F-44311 Nantes, France.
2 : IFREMER, Lab Environm Resources Languedoc Roussillon, F-34203 Sete, France.
3 : CNRS, Lab Neurobiol & Dev, UPR 3294, F-91198 Gif Sur Yvette, France.
4 : Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA.
5 : Norwegian Vet Inst, N-0106 Oslo, Norway.
Source Toxicon (0041-0101) (Pergamon-elsevier Science Ltd), 2013-12 , Vol. 75 , P. 16-26
DOI 10.1016/j.toxicon.2013.05.001
WOS© Times Cited 51
Note Special Issue: Toxins: from Threats to Benefits 20th Meeting of the French Society of Toxinology (SFET)
Keyword(s) Cyclic imines, Shellfish toxin, Accumulation, Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), Unexplained mouse toxicity
Abstract Following a review of official control data on shellfish in France, Ingril Lagoon had been identified as a site where positive mouse bioassays for lipophilic toxins had been repeatedly observed. These unexplained mouse bioassays, also called atypical toxicity, coincided with an absence of regulated toxins and rapid death times in mice observed in the assay.

The present study describes pinnatoxin G as the main compound responsible for the toxicity observed using the mouse bioassay for lipophilic toxins. Using a well-characterised standard for pinnatoxin G, LC-MS/MS analysis of mussel samples collected from 2009 to 2012 revealed regular occurrences of pinnatoxin G at levels sufficient to account for the toxicity in the mouse bioassays. Baseline levels of pinnatoxin G from May to October usually exceeded 40 μg kg−1 in whole flesh, with a maximum in September 2010 of around 1200 μg kg−1. These concentrations were much greater than those at the other 10 sites selected for vigilance testing, where concentrations did not exceed 10 μg kg−1 in a 3-month survey from April to July 2010, and where rapid mouse deaths were not typically observed. Mussels were always more contaminated than clams, confirming that mussel is a good sentinel species for pinnatoxins. Profiles in mussels and clams were similar, with the concentration of pinnatoxin A less than 2% that of pinnatoxin G, and pteriatoxins were only present in non-quantifiable traces. Esters of pinnatoxin G could not be detected by analysis of extracts before and after alkaline hydrolysis. Analysis with a receptor-binding assay showed that natural pinnatoxin G was similarly active on the nicotinic acetylcholine receptor as chemically synthesized pinnatoxin G. Culture of Vulcanodinium rugosum, previously isolated from Ingril lagoon, confirmed that this alga is a pinnatoxin G producer (4.7 pg cell−1). Absence of this organism from the water column during prolonged periods of shellfish contamination and the dominance of non-motile life stages of V. rugosum both suggest that further studies will be required to fully describe the ecology of this organism and the accumulation of pinnatoxins in shellfish
Full Text
File Pages Size Access
11 772 KB Access on demand
Author's final draft 21 712 KB Open access
Top of the page

How to cite 

Hess Philipp, Abadie Eric, Herve Fabienne, Berteaux Tom, Sechet Veronique, Araoz Romulo, Molgo Jordi, Zakarian Armen, Sibat Manoella, Rundberget Thomas, Miles Christopher O., Amzil Zouher (2013). Pinnatoxin G is responsible for atypical toxicity in mussels (Mytilus galloprovincialis) and clams (Venerupis decussata) from Ingril, a French Mediterranean lagoon. Toxicon, 75, 16-26. Publisher's official version : , Open Access version :