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Abstract:  
 
The modelling of diffusive terms in particle methods is a delicate matter and several models have been 
proposed in the literature. The Diffusion Velocity Method (DVM) consists in rewriting these terms in an 
advective way, thus defining a so-called diffusion velocity. In addition to the actual velocity, it is used to 
compute the particles displacement. On the other hand, the well-known and commonly used Particle 
Strength Exchange method (PSE) uses an approximation of the Laplacian operator in order to model 
diffusion. This approximation is based on an exchange of particles strength. 
 
Although DVM is particularly well suited to particle methods since it preserves their Lagrangian aspect, 
its major drawback stems in the fact that it suffers from severe singular behaviours. This paper intends 
to give insights and ideas for coping with these issues, based on an exact decomposition of the 
diffusion coefficient allowing a hybrid DVM–PSE treatment of diffusive terms. 
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1. Introduction

Particle methods, such as vortex methods or Smoothed Particle Hydrodynamics, generally consist of a
Lagrangian transport, thanks to fluid dynamics equations, of quantitative information carried by particles.
The transport equations linked to each particle (position, vortical intensity, concentration, temperature,
etc.) are in fact partial differential equations. Owing to the Lagrangian aspect of the method, it is
particularly well suited to flows where convective effects are dominant. However, transport equations may
involve terms that do not represent advection. This is the case of the Navier-Stokes equations, which
involve, for instance, a diffusion term.

The Diffusion Velocity Method (DVM) is a technique which consists in writing the diffusive term, with
either uniform or variable diffusion coefficient, as a convective term. It was first introduced by Fronteau
& Combis [1] in 1984 and popularized by Degond & Mustieles [2, 3], Ogami & Akamatsu [4] and Kempka
& Strickland [5] in the early 1990s. This method was then largely analysed [6–10], adapted to dispersion
equations [10–12], coupled with turbulence models [13, 14] and extended to the diffusion of a vector field
and to axisymmetric flows [15–17].

DVM is particularly well suited to the resolution of diffusion or dispersion in open media. Indeed, there is
an adaptation of the convected and diffused support, represented by the particles, in an extending domain.
Applications concern for instance, pollutant dispersion in porous media [18], heat-vortex interaction [19],
airfoil wake modelling [20], as well as the modelling of the diffusive term in the Navier-Stokes [15], heat [21]
or Lotka-Volterra [22] equations.

However, DVM suffers from a severe singularity issue as the quantity to diffuse tends to zero. For
instance, this is the case of the diffusion of two-dimensional counter-rotative vortices, for which the
vorticity spatial distribution passes through zero. This problem has already been addressed, and partially
satisfying or case-specific workarounds were proposed [6, 10, 19].

On the other hand, the Particle Strength Exchange (PSE) method [23–25], is based on a discrete
approximation of the Laplacian operator and has a non-singular behaviour. It is today the most commonly
used method for treating diffusion problems in particle methods. The main drawback of this method is
that the domain does not extend since diffusion is simply modelled by exchanging strength on the particles
supports. As a consequence, error might then appear at the domain boundary. A widely spread technique
in particle methods to avoid this boundary error consists in remeshing the particles on a Cartesian
grid [26, 27]. This strategy is not investigated here, so as to study the purely Lagrangian behaviour of the
particles and preserve the orders of approximation ensured by the kernel. However, it should be stated
that remeshing is often unavoidable in more general and realistic configurations, in order to ensure that
the particles always overlap. Alternatively, Schrader et al. [28] recently suggested to build the PSE kernel
so as to correct the quadrature error by introducing the concept of discrete moments. Unfortunately, for
non-uniformly distributed particles, this requires to re-compute the kernel for each particle at each time
step, which is extremely time consuming and thus prohibitive.

This paper deals with the DVM singularity issues. It focuses on a critical test case in which the
quantity to diffuse passes through zero with a steep gradient. Considerations about the elaboration of a
self-regularising method are given, together with numerical computation results. This method consists in
a hybrid DVM-PSE treatment which benefits only from the advantages of both methods.

2. Regularised DVM-PSE (rDVM-PSE)

The transport equation associated to a passive scalar c(x, t) is considered:
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∂c

∂t
+∇ · (u c) = ∇ · (ν∇c). (1)

This transport equation can be written in a purely convective form, which leads to the classical DVM
model [1–10]:

∂c

∂t
+∇ ·

[
(u+ ud)c

]
= 0, with ud(x, t) = −ν

∇c

c
. (2)

The diffusion coefficient ν can be split such that ν = ν∗ + ν∗∗. Thus,
∂c

∂t
+∇ ·

[
(u+ u∗d)c

]
= ∇ · (ν∗∗∇c) (3)

with u∗d = −ν∗∇c/c. A first decomposition of ν is considered by choosing ν∗ as follows:

ν∗ = ν
c2

c2 + c20
, (4)

with c0 some non-zero constant homogeneous to c. By doing so, the regular behaviour of u∗d is ensured. On
the contrary, the DVM modelling of the diffusion induced by ν∗∗ would lead to a singular formulation.
Therefore, the PSE method will be used for the modelling of this part of the diffusion. It should be
noted that, in this formulation, ν∗∗ depends on the position, so the right-hand term does not reduce to
a Laplacian and must be treated with a non-uniform coefficient [23].

The physical domain is discretised into N particles of support Pi whose volume is σi, for i going from
1 to N . For each particle, a position vector Xi(t) and a weight Ci(t) are defined as follows:

Xi(t) =

∫
Pi

x(t) dx∫
Pi
dx

and Ci(t) =

∫
Pi

c(x, t) dx ≈ c(Xi, t)σi. (5)

The discrete version of transport equations (3) then reads:
dXi

dt
= u(Xi, t) + ũ∗d(Xi, t)

dCi

dt
=

N∑
j=1

ν̃∗∗i + ν̃∗∗j
2

(Cjσi − Ciσj) η
lap
ε (Xi −Xj)

(6)

with ũ∗d(Xk, t) = −ν̃∗k
∇̃c

c̃

∣∣∣∣∣
k

, ν̃∗k = ν
c̃2

c̃2 + c20

∣∣∣∣
k

, ν̃∗∗k = ν
c20

c̃2 + c20

∣∣∣∣
k

and where ·̃ denotes the particle

approximation. This formulation will be referred to as the rDVM-PSE model. The particle approximations
of c and of its gradient ∇c are basically given by:

c̃
∣∣
k
=

N∑
i=1

Ci(t)ζε(Xk −Xi), and ∇̃c
∣∣∣
k
=

N∑
i=1

Ci(t)∇ζε(Xk −Xi), (7)

where ζ is an interpolation kernel [29] of any given order of accuracy. In the sequel, the results shown
were obtained using a 6th order Gaussian kernel [25].

In the rDVM-PSE formulation, one can notice that ν∗ tends to zero (and thus ν∗∗ tends to ν) when c
tends to zero. This is promising because it means that the DVM method will not be used when c tends to
zero. Conversely, ν∗ tends to ν when c tends to infinity, and more generally, ν∗/ν is significantly higher
than ν∗∗/ν as soon as c gets significantly higher than c0.

The DVM treated part u∗d corresponds to the regularised version of DVM proposed by Lions & Mas-
Gallic [10]. However, their formulation does not take the ν∗∗ part into account, which introduces an error
in the model depending on the value of c0, which may be seen as a regularising parameter ε and which
should thus be a significantly small value. In addition, this regularisation alone does not prevent the
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particles from crossing zero in the case of steep gradient (see the test case presented in section 4). On the
contrary, in the above presented model (3) with u∗d chosen as in (4), c0 is a transition parameter between
DVM and PSE and thus does not need to tend to zero. It also ensures a regular behaviour as c tends to
zero as in [10].

The singularity issues inherent to DVM are avoided, but accuracy problems may occur with PSE at
the domain boundary, due to the lack of domain expansion.

3. Weighted regularised DVM-PSE (wrDVM-PSE)

The main idea in the previous hybrid formulation resides in the decomposition of ν into two com-
plementary diffusion coefficients ν∗ and ν∗∗. In the previous formulation, the diffusion induced by ν∗

corresponded to the regularised DVM formulation suggested by [10]. However, it is clear that any other
exact decomposition of ν might be appropriate. Equations (6) thus describe the generic numerical scheme
with ν∗ the DVM-treated and ν∗∗ the PSE-treated diffusion coefficients provided that ν = ν∗ + ν∗∗.

From this statement, relevant decompositions should be obtained by ensuring that the diffusion coeffi-
cient part that induces the DVM-treated diffusion tends to zero in and only in singular zones. Equation (8)
may correspond to such a decomposition:

ν∗ = ν
(c/w)

2

(c/w)
2
+ c20

, (8)

with

w(x) =
∑

j;c(x)c(Xj)≤0

1

λ
W

(
x−Xj

λ

)
σj , (9)

where W is a non-negative interpolation function in one dimension. For instance, W can be a kernel with
non-compact support such as Gaussian kernels, or a kernel with compact support such as M3, M4 or
truncated Gaussian kernels [27]. Since w is dimension-free, c/w and c0 are homogeneous to c.

This formulation is close to formulation (6), with the difference that quantity c is now “weighted” by
w. The purpose of w is to assess the closeness to any area where concentration c passes through zero. As
a matter of fact, from equation (9), one can see that the value of w gets higher as the location where it
is evaluated gets closer to a zero-crossing area. This formulation can be rewritten as follows:

ν∗ = ν
c2

c2 + c2w(x)
, (10)

with cw(x) = c0w(x). One can then see the weighting process differently: the weight applies to the
transition parameter and eventually leads to a real adaptive concentration parameter cw(x). This means
that the closer to zero crossing zones, the higher the transition parameter and thus the less the DVM
method tends to be used.

It is important to notice that this formulation has the advantage of being rather general: as a matter
of fact, depending on the problem, one may chose any appropriate weighting function w.

The one-dimensional smoothing kernel W used in the following results is a 2nd order Gaussian kernel,
defined by W (r) = e−r

2

/
√
π.
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4. The double Gaussian test case

A one-dimensional double Gaussian test case is presented, in which the analytic solution c(x, t) passes
through zero at x = 0 for any t > 0:

c(x, t) =
1√
4πνt

[
exp

(
− (x− 1)2

4νt

)
− exp

(
− (x+ 1)2

4νt

)]
(11)

This corresponds to the solution of the pure diffusion equation ∂c/∂t = ν∂2c/∂x2 with the following
initial condition, for all x ∈ R:

c(x, 0) = δ(x− 1)− δ(x+ 1) (12)

where δ denotes the Dirac measure.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-40 -30 -20 -10 0 10 20 30 40

c(
x
,t
)

x

t∗ = 0 – numerical
t∗ = 0 – analytic
t∗ = 15 – numerical
t∗ = 15 – analytic
t∗ = 30 – numerical
t∗ = 30 – analytic
t∗ = 60 – numerical
t∗ = 60 – analytic

(a) (c0 = 3.0, λ = 1.5)

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 5 10 15 20 25 30 35 40 45

c(
x
,t
)

x

(b) (c0 = 3.0, λ = 1.5), log. scale

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-40 -30 -20 -10 0 10 20 30 40

c(
x
,t
)

x

t∗ = 0 – numerical
t∗ = 0 – analytic
t∗ = 15 – numerical
t∗ = 15 – analytic
t∗ = 30 – numerical
t∗ = 30 – analytic
t∗ = 60 – numerical
t∗ = 60 – analytic

(c) (c0 = 1.0, λ = 3.5)

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 5 10 15 20 25

c(
x
,t
)

x

(d) (c0 = 1.0, λ = 3.5), log. scale

Figure 1. Concentration and particles position evolution over different instants t∗ = t − t0 with 6th order wrDVM-PSE,
N = 200 particles and 10−3 as the numerical time step. Two different pairs of parameters (c0, λ) are chosen: (3.0, 1.5) (top)
and (1.0, 3.5) (bottom).

Computations were run with different sets of parameters (c0, λ). Amongst them, two chosen pairs of
parameters are shown in the sequel: (3.0, 1.5) and (1.0, 3.5). Figure 1 shows the concentration distribution
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and the particles’ position at different instants obtained using a 6th order wrDVM-PSE model (i.e. with
ζ being a 6th order kernel) with those pairs of parameters. The initial time t0 and the diffusion coefficient
ν are chosen such that 4νt0 = 2.5 and the initial domain length is L = 20 discretised with 200 particles.
The numerical time-step is 10−3.

Both computations give good results, even after t∗ = t− t0 = 60. The difference between the two com-
putations resides in the amount of diffusion velocity, in other words in how much DVM is counterbalanced
with PSE, especially at the boundaries. As a matter of fact, as show Figures 1a and 1c, the domain does
not extend as far with the second pair of parameters (1.0, 3.5) as it does with the first one (3.0, 1.5). This
can be explained by the distribution of the DVM proportion ν∗/ν, depending on the parameters c0 and
λ.
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Figure 2. Concentration L2 error as a function of time for the double Gaussian case. Comparison between PSE (red
dashed-double-dotted line), rDVM-PSE with c0 = 0.3 (blue dashed line), wrDVM-PSE with c0 = 3.0 and λ = 1.5 (green
dotted line) and wrDVM-PSE with c0 = 1.0 and λ = 3.5 (orange dashed-dotted line). Computations were run using a 6th

order approximation and N = 200 particles.

The fact that the second pair of parameters (1.0, 3.5) gives better results in terms of concentration error
is highlighted by Figure 2 which presents the evolution of the concentration L2 error as a function of time
for different models able to treat the double Gaussian case. The first observation is that rDVM-PSE
gets finally equivalent to PSE in terms of L2 error, since the increasing error at the boundaries rapidly
accounts for the major part of the overall error. Second, wrDVM-PSE with the first pair of parameters
(3.0, 1.5) gives more satisfying results but the overall error still follows a PSE-like evolution (not for the
same reasons, though). Eventually, wrDVM-PSE with the second pair of parameters (1.0, 3.5) gives the
best results in terms of concentration L2 error, which remains rather low and constant over time.

5. Conclusion

This paper intended to suggest some ideas for the regularisation of the original DVM formulation. The
proposed method, namely wrDVM-PSE, shows satisfying results. Unfortunately, it remains very sensitive
to the choice of c0 and λ, which is a limit to any generic use of this model. The exact decomposition
of the diffusion coefficient is nevertheless a promising idea in the prospect of coping with zero-crossing
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singularities. Future work should lead to more general models based on this decomposition, which could
then become less case-specific. Additional studies should now be carried out to improve and stabilize this
method.
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