FN Archimer Export Format PT J TI Development of a 3D Coupled Physical-Biogeochemical Model for the Marseille Coastal Area (NW Mediterranean Sea): What Complexity Is Required in the Coastal Zone? BT AF FRAYSSE, Marion PINAZO, Christel FAURE, Vincent Martin FUCHS, Rosalie LAZZARI, Paolo RAIMBAULT, Patrick PAIRAUD, Ivane AS 1:1,2,3;2:2,3;3:2,3;4:2,3;5:4;6:2,3;7:1; FF 1:PDG-ODE-LITTORAL-LERPAC;2:;3:;4:;5:;6:;7:PDG-ODE-LITTORAL-LERPAC; C1 IFREMER, Lab Environm Ressources Provence Azur Corse, La Seyne Sur Mer, France. Aix Marseille Univ, CNRS INSU, IRD, MIO,UM 110, Marseille, France. Univ Toulon & Var, CNRS INSU, IRD, MIO,UM 110, La Grade, France. Ist Nazl Oceanog & Geofis Sperimentale OGS, Dept Oceanog, Trieste, Italy. C2 IFREMER, FRANCE UNIV AIX MARSEILLE, FRANCE UNIV TOULON, FRANCE OGS, ITALY SI TOULON SE PDG-ODE-LITTORAL-LERPAC IN WOS Ifremer jusqu'en 2018 copubli-france copubli-europe copubli-univ-france IF 3.534 TC 18 UR https://archimer.ifremer.fr/doc/00170/28090/26682.pdf LA English DT Article AB Terrestrial inputs (natural and anthropogenic) from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C) and nitrogen (N) cycles and a second model that also considers the phosphorus (P) cycle. Realistic simulations were performed for a period of 5 years (2007-2011). The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model. PY 2013 PD DEC SO Plos One SN 1932-6203 PU Public Library Science VL 8 IS 12 UT 000327949300016 DI 10.1371/journal.pone.0080012 ID 28090 ER EF