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Abstract:  
 
The aim of the paper is to propose an alternative method to external preference mapping for the case 
of complex data where explanatory variables are organized in meaningful blocks. We propose an 
innovative method in the multiblock modeling framework, called multiblock Redundancy Analysis. The 
interest and relevance of this method is illustrated on the basis of a European consumer preference 
study for cold-smoked salmon. The study aims at explaining six homogeneous clusters of preference 
with explanatory parameters organized in five thematic blocks related to physico-chemical 
measurements, microbiological characterization, appearance attributes, odor/flavor characterization 
and texture descriptors. Overall indexes and graphical displays associated with different interpretation 
levels are proposed to sort the key drivers of preference by order of priority at the variables and at the 
block level. On the basis of these data, multiblock Redundancy Analysis is also compared to standard 
preference mapping in terms of model quality; the best model is here associated with the multiblock 
method. 
 
 
Highlights 
 
► We propose to apply an orginal multiblock method to external preference mapping. ► We propose 
original interpretation tools at the block level. ► We compare the performance of multiblock method in 
regards with standard external preference mapping. ► We apply this multiblock method to European 
preferences for smoked salmon. 
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1. Context 

 
Product development is often based on external preference mapping (prefmap) where sensory profiles 
are used to model consumer likings, all the variables being measured on the same products. This 
approach gives a reliable basis for creating products which correspond to consumer expectations. In 
this framework, we mainly focus on identifying the key drivers which impact the consumer preferences. 
External preference mapping assumes that consumers have a common perceptual space and that it 
can be modeled with sensory data (Jaeger, Wakeling, & Macfie, 2000). It is worth noting that other 
parameters are usually measured on products such as physical and chemical measurements, price 
and packaging descriptions. In order to improve the preference modeling and then get an overall 
vision of the preferred products or of the products to be developed, it is of paramount importance to 
explain consumer preferences not only with sensory attributes but also with these additional 
parameters. This could improve one of the main criticisms of prefmap, namely the poor model quality 
due to a product attribute space inadequate to the preference one. As a way to enhance modeling 
quality, we focus on external preference mapping applied not only to sensory but also to external 
attributes. This problematic is related to the explanation of a composite dataset, i.e., the consumer 
preferences (Y) with explanatory variables organized in several meaningful blocks, e.g., sensory 
attributes (X1), physico-chemical parameters (X2) and packaging description (X3). All these variables 
are measured on the same observations, i.e., the products under study, as illustrated in Fig. 1. 
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Fig.1. Example of multiblock explanatory data which aims at explaining consumer preferences. 

For the time being, three data processing solutions remain for the user to take account of the 
explanatory block structure. (i) The widely used solution consists in linking at first sensory attributes 
to preferences with a two-block method such as Partial Least Squares (PLS). In a further stage, other 
measurements are linked to preferences to get a more accurate characterization (Semenou, 
Courcoux, Cardinal, Nicod, & Ouisse, 2007). But this leads to a sequential resolution where 
preferences are actually only explained with sensory attributes. (ii) The second kinds of methods 
pertain to the field of Structural Equation Modeling—PLS Path Modeling (PLS-PM) being the well-
known in sensometrics—initially developed for more complex data (Pagès & Tenenhaus, 2001). This 
method brings information on links between blocks achieved with the inner model but these 
coefficients can only be given separately for each dimension under study. Nevertheless, models are 
usually multidimensional, especially in biological fields. In addition, PLS-PM is based on a complicated 
iterative algorithm with any formal convergence proofs (Henseler, 2010). (iii) Finally, some multiblock 
methods, such as Parallel Orthogonalized PLS (Måge, Menichelli, & Naes, 2012) are proposed. The 
PO-PLS method is especially developed for external preference mapping and focuses on common and 
unique information in each block. But the iterative algorithm and its complexity restrict the use of 
this method for more than two blocks (Måge et al., 2012). In this paper, we will stand in this 
interesting latter framework of multiblock methods while proposing an alternative approach with a 
direct eigensolution. 

Among methods pertaining to the multiblock (K+1) setting, we single out those which are 
based on an optimization criterion that reflects the objectives to be addressed and leads to a direct 
eigensolution. Three methods which meet these constraints are available: Generalized Canonical 
Analysis with a Reference Table, GCA-RT (Kissita, 2003), multiblock Redundancy Analysis, mbRA 
(Bougeard, Qannari, & Rose, 2011) and multiblock Partial Least Squares, mbPLS (Wold, 1984). The 
method GCA-RT, is interesting from a theoretical point of view but may lead in practice to unstable 
model in case of quasi-collinear variables. The method mbPLS is a helpful and popular method in 
regards with its stability in case of multicollinearity but leads to solutions often not much linked to 
the dependent dataset. In addition, for our particular case of a single dataset to be explained, mbPLS 
leads to a simple PLS of Y and the merged dataset X (Westerhuis, Kourti, & MacGregor, 1998). We 
focus afterward on multiblock Redundancy Analysis which appears to take account of the multiblock 
structure of data and to lead to a model with a good fitting ability in spite of its lack of stability in 
case of high quasi-collinear variables (Bougeard & Qannari, 2011). Our purpose is to apply this 
original multiblock method to external preference mapping. This can be viewed as an extension of 
external preference mapping to the multiblock framework. Several interpretation tools pertaining to 
the field of factorial analysis and modeling are provided to further investigate the relationships 
among variables and datasets (Bougeard et al., 2011). All these methodological contributions are 
presented in Section 2. The interest of multiblock modeling analysis is illustrated on the basis of a 
European preference study of smoked salmons in Section 3. A discussion both on method and 
application is proposed in Section 4. 



3 
 

 

 

2. Material and method 

2.1. Multiblock data and aims: European preferences for smoked salmon 

The interest of multiblock modeling is illustrated on data from a European project (Adriant, 
Ifremer, IMR, & Matra, 2004). A preference study is conducted on thirty smoked salmon, 
representatives of the market range (Cardinal et al., 2004) tested by 1063 consumers. As the 
individual preferences of the 1063 consumers are not uniform, homogeneous clusters of hedonic 
assessments are provided through a latent class vector model (Semenou et al., 2007). Six clusters, 
respectively containing 121, 74, 349, 78, 404 and 37 consumers, are highlighted. For simplicity sake 
and as often in external preference mapping, we take account of homogeneous clusters instead of 
individual likings. It follows that the quantitative dependent dataset Y involves thirty observations 
(salmons) described by six variables (clusters of preferences), each salmon being described by the 
associated cluster preference average. Physical, chemical, microbiological and sensorial 
measurements are carried out on the same salmons. We choose to organize these forty-four 
explanatory parameters in five thematic blocks related to the physico-chemical measurements (X1 
dataset, 13 variables), the microbiological characterization (X2, 6 variables), the appearance 
attributes (X3, 6 variables), the odor and flavor characterization (X4, 14 variables) and the texture 
attributes (X5, 5 variables) (see description in appendix). As all variables are expressed in non-
comparable range of measurements, they are column centered and scaled to unit variance. However, 
it is worth noting that as the variables have been standardized, the total variance in each block is 
equal to the number of variables in this block. This motivates the block weighting to put the blocks to 
the same footing (Westerhuis & Coenegracht, 1997). Each of the (K=5) explanatory block is 
accommodated with an isotropic scaling factor to set them to the same total variance, chosen equal 
to 1/K. Therefore the merged explanatory dataset X (resp. Y) has a total variance equal to one. 

These data have already been processed from many different ways (Cardinal et al., 2004; 
Courcoux, Qannari, & Schlich, 2006; Semenou et al., 2007). The latter authors propose internal and 
external preference mapping, the physico-chemical variables being related to preferences in a 
second step. We propose to consider the whole data, namely preferences, sensory analysis, physico-
chemical and microbiological measurements in a single analysis. The first aim is descriptive and 
consists in explaining the consumer preferences in relation to all the explanatory variables organized 
in thematic blocks. This leads to two main questions: 

Q1. Are there any relationships between the smoked salmon clusters of preferences Y=(y1...y6) 
and the external salmon attributes X=(x1...x44)? 

Q2. Do the thirty smoked salmons have the same features in terms of their external description 
(X) in relation to preferences (Y)? 

The second and pivotal aim is devoted to assess the key drivers of the salmon preferences from the 
forty-four external attributes. Three questions pertaining to the modeling framework can be asked: 

Q3. Are there significant links between all the variables describing the external attributes 
X=(x1...x44) and each clusters of preferences Y=(y1...y6)? 

Q4. Is it possible to sort by order of priority all the external variables describing the smoked 
salmons X=(x1...x44) in relation to the overall preferences (Y)? 

Q5. Is it possible to sort by order of priority the various external blocks (X1...X5) in relation to the 
overall preferences (Y)? 

Multiblock Redundancy Analysis aims at answering these five questions. The first four questions can 
be answered with standard methods although the multiblock data structure is not taken into account 
for the calculations. But the latter one, as it gives information at the block level, is specific to 
multiblock analysis. 
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2.2. External preference mapping with multiblock modeling 

Consider the multiblock setting where we have (K+1) datasets, i.e., a dataset Y to be predicted 
from K other ones (X1...XK). The Y dataset (preferences) contains Q variables and each table Xk 
(sensory, physico-chemical, etc.) contains Pk variables. The merged dataset X related to all the 
explanatory variables contains P=∑kPk variables. All these quantitative variables are measured on the 

same N observations—the products under study—and are supposed to be column centered. 
Multiblock Redundancy Analysis is a latent variable based technique where the key idea is that each 
of the (K+1) datasets, i.e., Y and (X1...XK), is summed up with a latent variable, respectively called u or 
(t1...tK), linear combination of the associated variables. Using latent variables instead of datasets 
allows handling more explanatory variables than in standard two-block analysis and restricting the 
problem of quasi-colinearity within explanatory datasets. The method derives a global latent variable 
t related to all the explanatory variables which is as close as possible to a latent variable u, linear 
combination of the variables to be explained. In addition, the global latent variable t sums up the 
partial ones (t1...tK) respectively associated with the partial datasets (X1...XK) as illustrated in Fig. 2. 

 

 
 
Fig.2. Graphical display of the relationships between datasets through their associated latent variables (first order 
dimension). Illustration on the smoked salmon data. 

All these constraints can be summed up in a single criterion to be maximized based on the 
squared covariance between the latent variables u(1)=Yv(1) and t(1)=Xw(1) where t(1) is defined as a 
synthesis of the partial datasets, namely t(1)=∑kak

(1)tk
(1). Non symmetrical norm constraints, namely 

||tk
(1)||=||v(1)||=1, are chosen to improve the prediction ability of the associated model. We prove 

that the first order solution is given by the weight vector v(1), as the first eigenvector of ∑kY’Xk(Xk’Xk)
-

1Xk’Y which allows taking the multiblock structure into account. Thereafter, the partial components 
(t1

(1)... tK
(1)) are given by the normalized projection of u(1)=Yv(1) on each subspace spanned by variables 

in blocks (X1...XK). Finally, the global latent variable t(1) is a weighted sum of the partial latent 
variables tk

(1). It appears that the more the components u(1) (preferences) and tk
(1) (external 
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attributes) are linked, the more they build the global component t(1). In order to extract more 
information from the explanatory variables and improve the preference prediction, higher order 
solutions are sought. It follows that the same criterion is maximized by replacing the datasets (X1...XK) 
with their residuals of regression onto the subspace spanned by t(1). Subsequent latent variables 
(t(2)...t(H)), H being the X rank, are sought by reiterating this process. An account of the method is 
detailed in (Bougeard et al., 2011). 

To answer to the descriptive aim, the global latent variables t are used to highlight the 
common structure between the variables from at once explanatory and dependent blocks. If needed, 
the partial structures of each explanatory blocks may also be explored thanks to the partial 
components tk. To better understand the links between blocks, correlations between global and 
partial components can be given. Global, but also partial, score and weight plots are interpreted in 
the same way as for standard two-block factorial analysis such as PLS. 

To answer to the predictive aim of external preference mapping and achieve the key drivers of 
preference, a model between explanatory and dependent variable is provided. To avoid integrating 
too many variables and manage with multicollinearity, global latent variables (t(1)...t(H)) are used 
instead of original numerous explanatory X data. They are sought to be orthogonal by construction 
and ranked by order of importance in the explanation of the preferences Y. The optimal number of 
latent variables h.opt is selected thanks to a two-fold cross-validation procedure (Stone, 1974). It 
leads to ).(.

1

)'()( opthopth

l

ll YctY  
, the vector of loadings c being the regression coefficients of Y onto 

the latent variables (t(1)...t(h.opt)) and Y(h.opt) the residual matrix. Afterward, the original explanatory 
variables are found to provide a stable model liking preferences (Y) with external attributes (X) while 
using the property that components are linear combinations of X, i.e., t(h)= Xw*(h) (Wold, Martens, & 

Wold, 1983). It leads to the prefmap model: ).().().*()1()1*( ]'...'[ opthopthopth YcwcwXY  . This model 

can directly be compared with the vector model originally proposed by (Carroll, 1972) with the 
further advantages that latent variables are on the one hand linked not only with external attributes 
but also with preferences, and on the other hand take account of the underlying multiblock structure 
of external attributes. 

 

2.3. Multiblock interpretation tools 

Besides the standard regression coefficients between explanatory and dependent variables 
previously given, the sensometrician needs to sort explanatory variables by order of priority when 
the number of variables in Y is large, e.g., several preference classes to be explained. An extension of 
the Variable Importance in the Prediction index (VIP), developed for PLS (Chong & Jun, 2005; Wold, 
1994), to the multiblock framework is proposed. It sums up the overall contribution of each 
explanatory variable to the explanation of the whole preference. This new index, called VarImp, is 
based on the weighted squared weights w*2 for a model based on h.opt latent variables. Unlike the 
standard VIP, the VarImp index is clearly related to the multiblock framework both from the 
processing of w* and from the weighting by the block importance ak. For simplicity sake, this index is 
expressed as percentage. Associated tolerance intervals are computed using bootstrapped 
simulations performed as for regression purpose (Freedman, 1981; Gosselin, Rodrigue, & Duchesne, 
2010). As the indices verify the property ∑pVarImp%=100%, the threshold of 1/P is adopted, P being 
the number of explanatory variables. Then, each explanatory variable is considered to be a significant 
key driver if its 95% tolerance interval does not contain the threshold value of 100*1/P. 

Finally, the sensometrician is also interested in assessing the contributions of the explanatory 
blocks in the overall preference explanation. We propose a specific multiblock index called the Block 
Importance index (short name: BlockImp) derived from the BIP index proposed by (Vivien, Verron, & 
Sabatier, 2005). It is based on the weighted ak

2 coefficients, which reflect the link between each 
dataset Xk and the preferences Y, for a model based on h.opt latent variables. It can also be 
expressed as percentages. As previously, associated tolerance intervals are also computed thanks to 
bootstrapped simulations. As the indices verify the property ∑kBlockImp%=100%, the threshold of 1/K 
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is adopted, K being the number of explanatory datasets. Each explanatory block is considered to be a 
significant key block driver of preference if its 95% tolerance interval does not contain the threshold 
value of 100*1/K. 

A detailed account of these tools is given in (Bougeard et al., 2011). 

 

2.4. Comparison of multiblock modeling versus standard prefmap 

It can be interesting to compare the model performance of multiblock modeling with the one 
of standard external preference mapping. We choose to focus on two features. (i) The first one aims 
at highlighting the influence of taking into account the multiblock structure. This requires the 
comparison of multiblock Redundancy Analysis applied to 25 explanatory variables organized in three 
sensory blocks (mbRA_ksenso), i.e., appearance, odor-flavor and texture, and the standard two-block 
Redundancy Analysis on 25 explanatory sensory variables (RA_senso). (ii) The second feature is to 
pinpoint the effects of the introduction of external variables in addition to sensory ones. This 
requires a comparison of multiblock Redundancy Analysis on 44 explanatory variables organized in 
five blocks (mbRA_ktab), i.e., physico-chemical, microbiological, appearance, odor-flavor, texture, 
and of multiblock Redundancy Analysis applied to 25 explanatory variables organized in the three 
sensory latter ones (mbRA_ksenso). The method (RA_senso) is here viewed as the standard external 
preference mapping with a vector model based on Redundancy Analysis components, chosen instead 
of PCA or PLS components to get comparable results with multiblock methods. All these three 
models are compared on the basis of their average fitting ability (RMSEc comparable with RSS) and 
predictive ability (RMSEv comparable with PRESS) as functions of the number of components 
introduced in the model. The two-fold cross-validation procedure is repeated 500 times by setting 
one third of the observations out. 
 

3. Results 

3.1. Comparison of multiblock modeling versus standard prefmap 

The results of the cross-validation procedure are displayed in Fig.3. The best model is the one 
which minimize the errors RMSEc and/or RMSEv. For the salmon data, it turns out that the standard 
prefmap method (RA_senso) has the best fitting ability but also the worst predictive one. In 
comparison, the proposed method mbRA_ktab has a correct fitting ability and the best prediction 
ability. In the following, this latter method will be interpreted with a model involving three 
components to get at once good fitting and prediction abilities. 
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Fig.3. Fitting and prediction abilities of models as functions of the number of components introduced in the model (the best 
ability corresponds to the lower error value). Comparison of external preference mapping based on [square] multiblock 
Redundancy Analysis on 44 physico-chemical, microbiological and sensory data organized in 5 blocks (mbRA_ktab), [dot] 
multiblock Redundancy Analysis on 25 sensory data organized in 3 blocks (mbRA_ksenso) [triangle] and Redundancy 
Analysis on 25 sensory data organized in a single block (RA_senso). Illustration on the smoked salmon data for the first ten 
dimensions. 

 
3.2. Descriptive interpretation 

 To explore the common structure of the data and the links between all the variables from (X1, 
.., X5) and Y, scores t and weights w* associated with the global latent variables orthogonal by 
construction are depicted. To get partial view of the links between Xk and Y, scores tk and weights wk 
associated with the partial latent variables can also be plotted (not presented here). As for two-block 
methods such as Redundancy Analysis or PLS, the global components t allow to describe the 
relationships between the explanatory variables (X) oriented towards the explanation of the 
dependent ones (Y). 

 The relationships between the 44 external attributes (X) and the 6 preference clusters (Y) are 
investigated from a descriptive point of view (question Q1 from section 2.1). In addition, the 
associated features of the thirty smoked salmons both on terms of external description and 
preferences are also given (question Q2). The optimal space to be interpreted is made of three 
dimensions which sum up 73.1% of the total inertia (respectively 34.1%, 20.2% and 18.8%). For 
simplicity sake, the third dimension is not interpreted in this section. The two graphical displays, i.e., 
variable weights and individual scores, are given in Fig.4 for the first two global components. 
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Fig.4. Graphical display of the variable weights (left) and individual scores (right) for the first two dimensions. Multiblock 
Redundancy Analysis of 6 clusters of preference (Y) explained with 44 variables organized in 5 blocks: physico-chemical (X1), 
microbiological (X2), appearance (X3), odor-flavor (X4) and texture (X5). Illustration on the smoked salmon data. 

As for standard factorial analysis, inertia and explained variance of each dataset, i.e., Y, X and 
(X1, ..., XK), with the global components, and eventually with the partial ones, can be processed 
(Bougeard et al., 2011). For the salmon data, the first two dimensions explain 54.3% of the overall 
inertia, 49.5% of the Y variance and 37.5% of the X variance. Thanks to the global latent variables, 
descriptive results allow describing the relationships between (i) the preference clusters (Y variables), 
(ii) the explanatory variables from all blocks (X variables) and above all (iii) between the preference 
clusters (Y) and the potential preference drivers (X). It turns out that three main directions of 
preference are highlighted: the preference clusters 1 (N1=121), 3 (N3=349) and 4 (N4=78) can be 
compared in terms of preference, as well as the clusters 5 (N5=404) and 6 (N6=37), these latter 
clusters being on the opposite side from the cluster 2 (N2=74). As a remark, the cluster 1 appears to 
be grouped together with the cluster 2 for the third dimension. It seems that each of these clusters is 
associated with specific preferred and disliked salmons and with specific preference drivers. The 
preferred salmons of clusters 1, 3 and 4 (average preference higher than 6) are Sal.38, Sal.28 and 
Sal.9 and the disliked ones (average preference lower than 4) are Sal.34, Sal.30 and Sal.31. These 
three clusters mainly like salty salmons (physico-chemical block, X1) with a high wood smoke flavor 
(odor-flavor block, X4) and mainly dislike salmons with a high level of lactic flora (microbiological 
block, X2) and a crunchy texture (texture block, X5). Then, the preferred salmons of clusters 5 and 6 
are Sal.15, Sal.54 and Sal.27 and the disliked one is Sal.39. These two clusters mainly like rather red 
salmons with high phenol content (physico-chemical block, X1) and intense wood smoke odor (odor-
flavor block, X4) and dislike salty, intense global flavor (odor-flavor block, X4) and high water content 
(physico-chemical block, X1) salmons. Finally, the preferred salmons of clusters 2 are Sal.28, Sal.25, 
Sal.8, Sal.2 and Sal.16 and the disliked one is Sal.27. This latter cluster mainly likes salmons where a 
high count of Lactobacilli is measured (microbiological block, X2), an intense fish flavor (odor-flavor 
block, X4) and a rather yellow color (physico-chemical block, X1). This cluster also dislikes salmons 
with a crunchy texture (texture block, X5) as the clusters 1, 3 and 4. 

 

3.3. Predictive interpretation: key drivers of preference at the variable level 

Thereafter, it is of paramount importance to assess the key drivers of the smoked salmon 
preferences from the forty-four external attributes organized in five meaningful blocks. The optimal 
model involves three latent variables and explains 68.8% of the variation in the preference dataset. 
The regression coefficients of the model allow finding out the significant links between all the 44 
external attributes and each of the six clusters of preferences (question Q3 from section 2.1; detailed 
results not presented here). It follows that each cluster is related with specific key preference drivers 
but this information are too scattered. The variable importance index allows sorting by order of 
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priority the 44 explanatory variables describing the smoked salmons in relation to the overall 
preferences (question Q4 from section 2.1). Fig.5 gives the Variable Importance index of the 14 most 
significant explanatory variables on the whole preferences (VarImp>1/44%=2.3%). Associated 
tolerance intervals are computed using results from 500 bootstrapped samples. For each of these 14 
variables, is additionally given the importance of each preference cluster obtained from the absolute 
value of the six associated regression coefficients. Although these results are akin to those obtained 
from the standard VIP, the processing of the VarImp index is specific to the multiblock framework. 

 

 
 

Fig.5. Graphical display of the VarImp index of the most important explanatory variables associated with their 95% 
tolerance interval for a model involving three latent variables. The threshold value is represented at 1/44%=2.27%. 
Multiblock Redundancy Analysis of 6 clusters of preference (Y) explained with 44 variables organized in 5 blocks: physico-
chemical (X1), microbiological (X2), appearance (X3), odor-flavor (X4), texture (X5). Illustration on the smoked salmon data. 

 It follows that only 14 external variables, among 44, explain 73.8% of the preference variation. 
Among these 14 explanatory variables, three have a significant impact on the whole preference: the 
salt content (VarImpSsalt=10.5% [6.2;15.0]95%, X1), the a measurement which represent the red 
dimension of color (VarImpa=8.4% [3.0;13.8]95%, X1) and the wood smoke flavor (VarImpFwoodsm=8.1% 
[3.0;13.2]95%, X4). These three drivers of preference explain 27.1% of the overall salmon preference 
and it is important to notice that three out of these four variables are easy-to-get physico-chemical 
parameters Furthermore, interpretation of the variable importance can also be related with 
preference. For example, the a measurement is more important for the clusters 4, 5 and 6 
(BetaPref4=1.03; BetaPref5=-1.60; BetaPref6=1.58) which like red salmons, rather than for the clusters 1, 
2, and 3 (BetaPref1=0.15; BetaPref2=-0.21; BetaPref3=0.45), where beta stands for the regression 
coefficients. 
 

3.4. Predictive interpretation: key drivers of preference at the block level 

In the same vein, the key drivers of preference can be viewed at the block level with the block 
importance index. It reflects the contribution of the five external attribute blocks to the explanation 
of the whole preferences (question Q5 from section 2.1). It allows sorting external blocks by order of 
priority. Fig.6 gives the relative importance of each explanatory block Xk in the explanation of Y. The 
threshold value for the block significance is set to 1/K=20%. It follows that the overall preferences are 
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mainly explained by the odor and flavor attributes (BlockImpX4=31.6% [28.4;34.9]95%), and by the 
physico-chemical measurements (BlockImpX1=27.4% [24.4;30.4]95%). 

 

 
Fig.6. Graphical display of the BlockImp index of the explanatory blocks associated with their 95% tolerance interval for a 
model involving three latent variables. Multiblock Redundancy Analysis of 6 clusters of preference (Y) explained with 44 
variables organized in 5 blocks: physico-chemical (X1), microbiological (X2), appearance (X3), odor-flavor (X4) and texture 
(X5). Illustration on the smoked salmon data. 

 

4. Discussion 

4.1. Discussion on method 

The main point to discuss is the contribution of multiblock modeling to the framework of 
external preference mapping while taking account both the block structure and possibly new 
external variables in addition to sensory ones. 

The first point to consider is the interest of blocking explanatory variables in a preference 
mapping. The first way may consist in splitting up sensory variables into several blocks, such as 
appearance, smelling, texture and flavors, and assessing the block weights in the preference 
explanation. In terms of broad results (only), this can be compared to conjoint analysis for trade-off 
in choice, as blocks can be compared with each other in regard with preference (Hair, Anderson, 
Tatham, & Black, 1998). The second way of blocking explanatory variables is to add external ones, 
such as instrumental, price or packaging properties, to sensory ones. Indeed, the presence of 
external data may contribute to improve the preference modeling as these variables either 
emphasize (if they are linked to sensory ones) or enhance (if they are not linked) the model. This can 
solve the problem of the possible shortcomings of the attribute list and the inadequacy of product 
attribute and preference spaces, and then expect to improve the model quality. To avoid 
overestimating the model, a cross-validation procedure such as the two-fold one presented in 
section 3.1 is highly recommended with special attention to the prediction ability. As all the tools, 
including cross-validation, are available in a free R package soon included within the ade4 software 
(Dray & Dufour, 2007), the same kind of study can be assessed on every data to decide the interest of 
adding external variables and arranging them into blocks. 



11 
 

It is worth noting that including external variables in a preference mapping can be solved in 
some other (simpler) ways. The first approach is to assess a standard prefmap where external and 
sensory variables are mixed in a single explanatory block. The first criticism is that too many variables 
in an only block may lead to an unstable model as they are often plagued by colinearity. In addition, 
block scaling is here not possible and a high variable number in a block, e.g., near-infrared spectral 
data in comparison to sensory data, may influence the selection of key preference drivers (Derksen & 
Keselman, 1992). The second (most used) method is to linked external variables with sensory and 
preference attributes in an additional step (e.g., (Semenou et al., 2007)). Conversely, multiblock 
analysis allows exploring relationships between instrumental, sensory and preference variables at 
the same time in a single analysis, in the common space of the global latent variables in regard with 
the products under study. A third existing approach consists in using a standard two-block method 
where block information are added afterwards. This solution could be the one of multiblock PLS 
which leads to a standard PLS for the case of a single dependent dataset. In this case, the latent 
variables associated with X and Y, resp. t and u, are the same as in standard PLS, but partial latent 
variables tk and multiblock interpretation tools can also be computed. This solution leads to the same 
criticism as for the first reported approach. 

In the framework of external preference mapping, multiblock Redundancy Analysis provides 
some specific benefits for users. First of all, depending on the data processing aim, the user may 
decide to scale all blocks to the same footing or not. Then, this method is based on latent variables 
instead of manifest ones; this leads to more stable results especially when variables are numerous as 
it restricts the problem of quasi-colinearity. In addition, the multiblock structure of explanatory 
variables is taken into account: each dataset Xk is summed up with a partial latent variable tk, these 
partial latent variables being linked with the dependent one in an overall criterion to maximize; the 
direct eigensolution involves the Xk and Y datasets. Thereafter, common or partial latent variables 
can be used either through factorial graphical displays or models; to get an overall interpretation of 
preference key drivers, we choose here to only present results from the common structure. Finally in 
terms of interpretation, in comparison with the results obtained from a standard external preference 
mapping, i.e., factorial graphical displays of variables and products, regression coefficients between 
preferences and external attributes, multiblock Redundancy Analysis brings both the same kinds of 
results and supplementary ones at the block level. This facilitates the interpretation of the added 
information. 

Standing in the field of multiblock analysis with a prediction purpose, other related aims can 
be attempted. While using the PO-PLS method proposed in the same field, one can go further within 
the descriptive purpose and split up common and specific information in blocks (Måge et al., 2012). 
While using the PLS-PM methodology proposed in a comparable field (Pagès & Tenenhaus, 2001), 
one can additionally explore relationships between explanatory blocks with the limit of taking 
account a single dimension within each block for the prediction purpose. Closest to multiblock 
Redundancy Analysis in terms of aims and interpretation, multiblock PLS is a better tool in case of 
strong multicollinearity within explanatory blocks (e.g., spectroscopic data) with the limit that for the 
case of a single dataset to explain, the method amounts to a standard PLS. 

 

4.2. Discussion on application conditions 

 The manifest variables being summed up with latent variables, they can be numerous in a 
block. The dependent variables can be either the whole preference dataset (variables are consumers) 
or the preference clusters. For reasons of clarity in interpretation, clusters are more often chosen. In 
terms of variable number, two limits must be highlighted. The first one concerns the ratio of the 
number of products to the number of explanatory variables, as it is well-known that the result 
stability is impaired when the ratio value really decreases. The prediction ability of the cross-
validation procedure is a helpful and available tool to avoid over fitting model. The second one is 
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about strong multicollinearity within explanatory blocks; in such a case, we recommend to use 
multiblock PLS (Bougeard & Qannari, 2011). In regard with its eigensolution, multiblock Redundancy 
Analysis is sensitive to multicollinearity within but not between blocks. 

 Multiblock Redundancy Analysis, as well as multiblock PLS and generally as factorial analysis, is 
not invariant with respect to both variable and block scale. This brings users to answer to the 
question on the relative importance of variables and blocks in the analysis beforehand. One main 
advantage of the block scaling is to allow unbalanced number of variables in each block without any 
trouble of down or under weight. An important assertion for users is that multiblock Redundancy 
Analysis, as well as multiblock PLS, has no limit in terms of block number. 

 

4.3. Discussion on the smoked salmon case study 

Following the block importance interpretation (section 3.3), the overall preferences for cold 
smoked salmon could be efficiently improved while focusing on odor and flavor attributes (32% of 
the preference variation) and on physico-chemical measurements (27% of the preference variation) 
relatively easy to get. It follows that a sensory panel specialized in assessing salmon odors and flavors 
could be an efficient tool to understand preferences. The microbiological characterization is not 
useful to understand consumer preference but necessary in a hygienic quality perspective. 

To be more accurate, multiblock Redundancy Analysis leads to consider only 14, among 44, 
important drivers of preference to explain 73.8% of the preference variation (section 3.3). We can 
notice that only three of them are significant. These drivers mainly pertain to the physico-chemical 
block, namely the salt content, the a dimension of color and in a lesser extent the total phenol, the 
total volatile basic nitrogen content, the expressible moisture and the water contents. These drivers 
also pertain to the odor and flavor block, namely the wood smoke flavor, the raw salmon odor and 
flavor and the salty taste. To go further in the external attribute selection, it is important to notice 
that the wood smoke flavor is linked with the total phenol content and that the salty taste can be 
explained with the water content and the salt content (Cardinal et al., 2004). From all these results, 
R&D and marketing teams can directly focus on about ten relevant preference drivers to adapt the 
salmon product to the consumer requests. Sensometricians may also focus on some restricted 
sensory attributes to specialize the trained judges for further studies. 

Multiblock Redundancy Analysis also brings specific key preference drivers for each 
homogeneous cluster of smoked salmon preference (section 3.2). It follows that three main 
directions of preference can be highlighted following clusters 1, 3 and 4, clusters 5 and 6, and finally 
cluster 2. Each of these directions can be associated with specific preferred and disliked salmons and 
with specific preference drivers. It is important to notice that this interpretation is coherent with the 
ones from (Cardinal et al., 2004; Semenou et al., 2007). After dealing with this overall preference 
study, it could be of paramount importance to focus on each preference cluster request. This further 
step could be carried out while processing six multiblock analyses applied to each variable in Y, i.e., 
the preferences for each cluster. It leads to more accurate responses at the cluster level. 

 

5. Conclusion and perspectives 

In this paper, we propose to apply an innovative method, called multiblock Redundancy 
Analysis, to the framework of external preference mapping. The proposed method models the 
preference space with the product attribute space organized in thematic blocks. It increases the 
amount of extracted knowledge from the data in comparison with standard prefmap. Although 
standard preference mapping gives complete, accurate, sensible, but usually too scattered results, 
the sensometrician needs to get overall results to pass them on to R&D and marketing teams. 
Multiblock Redundancy Analysis makes possible to shed light on significant external variables 
affecting a composite dependent one, i.e., the preferences, and to pinpoint key preference drivers 
within the various blocks. It is well-adapted to complex issues and may be a relevant decision-
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support aid in preference management. This meets the specific expectations of the various actors in 
the food development of products confronted with preference complexity. Furthermore, the method 
allows many possibilities of graphical displays and combines tools from factor analysis with tools 
pertaining to regression. Multiblock Redundancy Analysis, together with multiblock PLS and all the 
associated interpretation tools, are freely available for users thanks to an R package soon included 
within the ade4 software (Dray & Dufour, 2007). 

Still in the field of external preference mapping, multiblock methods may also be applied to 
sensory external data only, while taking account the underlying structure of the sensory profiles, 
namely appearance (X1), smelling (X2), tastes (X3), flavors (X4) and texture (X5). It leads to assess and 
compare the weights of all these blocks in the preference explanation. To go further in the product 
development field, multiblock methods can also be implemented to study product quality, where the 
quality (Y dataset, described with several variables) could be explained with consumer preferences 
(X1), sensory attributes (X2) and spectrometric measurements (X3) among others. In the more specific 
framework of control quality, the final product quality (Y) could also be explained with instrumental 
measurements carried out at K different steps of the process (X1...XK). Multiblock methods appear to 
be useful for various sectors in the food industry. 

However, the multiblock approach presents some limitations and further investigations will be 
undertaken to handle more data specificities. For instance, the drawback of the vector model used at 
present in multiblock methods neglects that for some external attributes, preference can increase 
until an optimal value and then decrease. As for standard external preference mapping, the vector 
model could be improved while using a quadratic one. Following the ideas of (Verdun, Hanafi, Cariou, 
& Qannari, 2012) for PLS, both linear and quadratic terms could be involved in the maximization 
problem. This will allow providing ideal-point models in multiblock external preference mapping. In 
addition, multiblock modeling does not efficiently handle the information from hierarchical-
structured data, e.g., a design matrix applied to products frequently met in food industry. Following 
the ideas of (Eslami, Qannari, Kohler, & Bougeard, In Press) for PLS, taking account for multi-group 
structure of products will be soon developed for multiblock methods.  
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Appendix 

Block Variable code Variable description 

Y (Preferences) 

Pref1 Preferences of cluster 1 

Pref2 Preferences of cluster 2 

Pref3 Preferences of cluster 3 

Pref4 Preferences of cluster 4 

Pref5 Preferences of cluster 5 

Pref6 Preferences of cluster 6 

X1 (Physico-chemical 
measurements) 

TVBN Total Volatile Basic Nitrogen  

TMA Trimethylamine content 

Lipid Total fat content 

Salt  Salt level 

Phenol Total phenol level 

Water Water content 
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pH pH 

L Lightness  

a Hue parameter (red) 

b Hue parameter (yellow) 

TotalExpLiq Expressible liquid 

ExprMoist Expressible moisture  

ExprFat Expressible fat 

X2 (Microbiologial 
characterization) 

TotalViable Total psychrotrophic count 

LacticFlora Lactic flora 

Lactobacilli Lactobacillus bacteria 

Brochothrix Brochothrix bacteria 

Yeast Yeast 

Enterobact Enterobacter bacteria 

X3 (Appearance 
attributes) 

Apink Pink color 

Aoran Orange color 

Ahomog Color homogeneity 

Anotear Degree of slice tearing 

Atransl Translucent appearance 

Afatty Fatty aspect 

X4 (Odor and 
flavor descriptors) 

Oglob Global odour intensity 

Owoodsm Wood smoke odor 

Ocoldash Cold ash odor 

Ofish Raw salmon odor 

Oamine Amine odor 

Orubb Rubber odor 

Fglo Global flavour intensity 

Fwoodsm Wood smoke flavour 

Fcolsash Cold ash flavour 

Ffish Raw salmon flavour 

Fsalty Salty taste 

Fsour Sour taste 

Famine Amine flavour 

Frubb Rubber flavour 

X5 (Texture 
attributes) 

Tfirm Firm texture 

Tcrunch Crunchy texture 

Tmelt Melting texture 

Tfatty Fatty texture 

Tpasty Pasty texture 

 

http://en.wikipedia.org/wiki/Lightness_(color)
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