Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin

Type Article
Date 2013-08
Language English
Author(s) Callac Nolwenn1, 2, 3, 4, Rommevaux-Jestin Celine5, Rouxel OlivierORCID4, 6, Lesongeur Francoise1, 2, 3, Liorzou Celine4, Bollinger Claire7, Ferrant Anthony8, Godfroy AnneORCID1, 2, 3
Affiliation(s) 1 : Univ Bretagne Occidentale, UEB, IUEM, Lab Microbiol Environm Extremes UMR 6197, F-29280 Plouzane, France.
2 : IFREMER, Lab Microbiol Environm Extremes UMR 6197, F-29280 Plouzane, France.
3 : CNRS, Lab Microbiol Environm Extremes UMR 6197, Plouzane, France.
4 : Univ Bretagne Occidentale, IUEM, Domaines Ocean UMR6538, Plouzane, France.
5 : Univ Paris Diderot, UMR 7154, Sorbonne Paris Cite, Lab Geobiosphere Actuelle & Primit,CNRS,IPGP, Paris, France.
6 : IFREMER, Lab Geochim & Metallogenie, F-29280 Plouzane, France.
7 : Univ Bretagne Occidentale, UMS 3113, IUEM, Plouzane, France.
8 : IFREMER, Unit Rech & Dev Technol, F-29280 Plouzane, France.
Source Frontiers In Microbiology (1664-302X) (Frontiers Research Foundation), 2013-08 , Vol. 4 , P. -
DOI 10.3389/fmicb.2013.00250
WOS© Times Cited 18
Keyword(s) colonization module, basalt alteration, Guaymas basin, organic-rich sediment, hydrothermal systems
Abstract Oceanic basalts host diverse microbial communities with various metabolisms involved in C, N, S, and Fe biogeochemical cycles which may contribute to mineral and glass alteration processes at, and below the seafloor. In order to study the microbial colonization on basaltic glasses and their potential biotic/abiotic weathering products, two colonization modules called AISICS ("Autonomous in situ Instrumented Colonization System") were deployed in hydrothermal deep-sea sediments at the Guaymas Basin for 8 days and 22 days. Each AISICS module contained 18 colonizers (including sterile controls) filled with basaltic glasses of contrasting composition. Chemical analyses of ambient fluids sampled through the colonizers showed a greater contribution of hydrothermal fluids (maximum temperature 57.6 degrees C) for the module deployed during the longer time period. For each colonizer, the phylogenetic diversity and metabolic function of bacterial and archaeal communities were explored using a molecular approach by cloning and sequencing. Results showed large microbial diversity in all colonizers. The bacterial distribution was primarily linked to the deployment duration, as well as the depth for the short deployment time module. Some 16s rRNA sequences formed a new cluster of Epsilonproteobacteria. Within the Archaea the retrieved diversity could not be linked to either duration, depth or substrata. However, mcrA gene sequences belonging to the ANME-1 mcrA-guaymas cluster were found sometimes associated with their putative sulfate-reducers syntrophs depending on the colonizers. Although no specific glass alteration texture was identified, nano-crystals of barite and pyrite were observed in close association with organic matter, suggesting a possible biological mediation. This study gives new insights into the colonization steps of volcanic rock substrates and the capability of microbial communities to exploit new environmental conditions.
Full Text
File Pages Size Access
Publisher's official version 20 3 MB Open access
Top of the page

How to cite 

Callac Nolwenn, Rommevaux-Jestin Celine, Rouxel Olivier, Lesongeur Francoise, Liorzou Celine, Bollinger Claire, Ferrant Anthony, Godfroy Anne (2013). Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin. Frontiers In Microbiology, 4, -. Publisher's official version : https://doi.org/10.3389/fmicb.2013.00250 , Open Access version : https://archimer.ifremer.fr/doc/00181/29261/