Land-ocean changes on orbital and millennial time scales and the penultimate glaciation

Vasiliki Margari¹, Luke C. Skinner², David A. Hodell², Belen Martrat³, Samuel Toucanne⁴, Joan O. Grimalt³, Philip L. Gibbard⁵, J.P. Lunkka⁶ and P.C. Tzedakis¹

¹ Environmental Change Research Centre, Department of Geography, University College London, London WC1E 6BT, UK

² Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK

³ Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain

⁴ IFREMER, Laboratoire Environnements Sédimentaires, F-29280 Plouzané, France

⁵ Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK

⁶ Institute of Geosciences, University of Oulu, Oulu, FIN-90014, Finland

Abstract:

Past glacials can be thought of as natural experiments in which variations in boundary conditions influenced the character of climate change. However, beyond the last glacial, an integrated view of orbital- and millennial-scale changes and their relation to the record of glaciation has been lacking. Here, we present a detailed record of variations in the land-ocean system from the Portuguese margin during the penultimate glacial and place it within the framework of ice-volume changes, with particular reference to European ice-sheet dynamics. The interaction of orbital- and millennial-scale variability divides the glacial into an early part with warmer and wetter overall conditions and prominent climate oscillations, a transitional mid-part, and a late part with more subdued changes as the system entered a maximum glacial state. The most extreme event occurred in the mid-part and was associated with melting of the extensive European ice sheet and maximum discharge from the Fleuve Manche river. This led to disruption of the meridional overturning circulation, but not a major activation of the bipolar seesaw. In addition to stadial duration, magnitude of freshwater forcing, and background climate, the evidence also points to the influence of the location of freshwater discharges on the extent of interhemispheric heat transport.

1. Introduction

The penultimate glacial (~135–185 ka) corresponds to Marine Isotope Stage (MIS) 6, the Illinoian glaciation in North America and the late Saalian glaciation in Europe. The latter was characterized by two major ice advances, the more extensive Drenthe followed by the Warthe (Ehlers et al., 2011). During Marine Isotope Substage 6e (*sensu* Margari et al., 2010) ~165–179 ka, boreal summer insolation reached interglacial values and was accompanied by an intensification of monsoonal systems (Wang et al., 2008), deposition of sapropel layer S6 and pluvial conditions in the Mediterranean (Bard et al., 2002), while sea-level was –40 to –60 m relative to present (Thompson and Goldstein, 2006). In terms of millennial-scale changes, low detrital carbonate content at several North Atlantic sites (e.g. McManus et al., 1999; de Abreu et al., 2003; Hemming, 2004; Channell et al., 2012) suggests that iceberg discharges through Hudson Strait were reduced compared to other glacials. Despite the absence of typical Heinrich events, stadial conditions persisted longer during the first part of MIS6 than comparable non- Heinrich stadials in MIS3, reflecting the influence of background climate on MOC strength (Margari et al., 2010). Regarding terrestrial changes, apart from a few exceptions (e.g. Wang et al., 2008; Roucoux et al., 2011), there is a dearth of high-resolution records spanning MIS6. Here

45 we return to the Portuguese margin and examine land-ocean changes during MIS6 and their

46 relation to the record of glaciation.

47 SETTING AND EARLIER WORK

48 Previous work on the Portuguese margin has highlighted its importance for tracing 49 millennial-scale variability and undertaking land-sea comparisons. A key aspect is that the area is 50 located sufficiently near to the continent to derive a regional pollen signal, but deep enough to 51 generate high-quality isotopic records that are pertinent to basin-wide phenomena. During MIS3, the $\delta^{18}O_{planktonic}$ and sea-surface temperature (SST) records closely matched the Greenland $\delta^{18}O_{ice}$ 52 sequence, while the $\delta^{18}O_{\text{benthic}}$ curve resembled the temperature curve from Antarctica, both in its 53 shape and phasing relative to changes in d¹⁸O_{planktonic} (Shackleton et al., 2000; Martrat et al., 54 55 2007; Skinner et al., 2007). Concerning land-sea comparisons, joint pollen and foraminiferal 56 isotope analyses have established the immediate response of vegetation to millennial-scale 57 variability (e.g. Sanchez Goñi et al., 2000; Roucoux et al., 2001) and a close coupling of low-58 and mid-latitude hydrological changes via shifts in the mean latitudinal position of the 59 Intertropical Convergence Zone (ITCZ) (e.g. Tzedakis et al., 2009).

60 MATERIALS AND METHODS

61 Core MD01–2444 (37°33.68'N; 10°08.53'W; 2637m water depth; 27.45m long) was 62 recovered from an elevated spur on the continental rise, using the CALYPSO Giant Piston corer 63 aboard the *Marion Dufresne II*. In the MIS6 section of MD01–2444, sediment accumulation 64 rates are ~10cm/kyr. Pollen and stable isotope analyses were undertaken on the same levels 65 every 3 cm; XRF analyses were obtained every 2 mm (see Margari et al. [2010] and Hodell et al. 66 [2013] for methods).

Publisher: GSA Journal: GEOL: Geology

67	Article ID: G35070 Here, we use the chronology of Barker et al. (2011), based on alignment of SST changes
68	in MD01–2444 to the synthetic Greenland (GL _T .syn) record (Table DR1). GL _T .syn was
69	constructed from the EDC δD record, using the bipolar-seesaw model, and placed on an absolute
70	timeframe by alignment to precisely-dated Chinese speleothems for the interval 0-400 ka
71	(Barker et al., 2011). The placement of the MD01–2444 sequence on the speleothem timescale
72	permits an independent investigation of the phase responses of proxy records relative to orbital
73	forcing.
74	RESULTS AND DISCUSSION
75	Millennial-Scale Changes
76	Millennial-scale variability is pervasive and especially prominent during the first half
77	(160–185 ka) of MIS6 (Fig. 1), with the $\delta^{18}O_{planktonic}$ and $\delta^{18}O_{benthic}$ records showing the same
78	asynchronous phasing as observed during MIS3 by Shackleton et al. (2000), suggesting changes
79	in surface and deep-water hydrography consistent with the operation of the bipolar-seesaw
80	(Margari et al., 2010). The alkenone-based SST reconstructions contain a similar number of
81	oscillations (Martrat et al., 2007), but the overall profile shows relatively small and short-lived
82	SST falls from a baseline of ~15°C, except for a large decrease ~154–157 ka. For most of MIS6
83	(until ~145 ka), variations in temperate tree pollen percentages (Fig. 1) closely mirror the
84	$\delta^{18}O_{planktonic}$ record, suggesting the synchronous response of vegetation to North Atlantic
85	millennial-scale variability (Margari et al., 2010). During interstadials, arboreal populations
86	(composed primarily of deciduous Quercus) expanded, while Mediterranean vegetation
87	communities (mainly evergreen Quercus) were present in smaller abundance. During stadials,
88	steppe communities (Artemisia, Chenopodiaceae and Ephedra) were the dominant vegetation
89	type (Fig. DR1).

90	The structure of millennial-scale oscillations in MD01–2444 during MIS6e is similar to
91	that seen in speleothems from France and China (Wainer et al., 2013; Wang et al., 2008),
92	suggesting coherent hemispheric changes in climate, as already observed in MIS3. Considering
93	the entire MIS6 interval, we note that the temperate tree pollen record matches the Greenland
94	GL _T -syn curve of Barker et al. (2011) more closely than the $\delta^{18}O_{planktonic}$ and the alkenone SST
95	sequences. This may arise from the way the three proxies each record a differently biased or
96	convolved measure of local conditions and how these relate to the bipolar-seesaw, which is the
97	basis of the GL_{T} -syn curve. The fact that vegetation and hydrological changes associated with
98	millennial-scale shifts in the ITCZ (Tzedakis et al., 2009) closely track the GL_{T} -syn record
99	therefore suggests that these processes are more tightly linked to the bipolar-seesaw.

100 Orbital-Scale Changes

101 Hodell et al. (2013) have shown that variations in sediment composition in MD01-2444 102 contain strong precessional power, with the ratio of biogenic (Ca) to detrital (Ti) sediments 103 lagging precession minima by ~7 kyr (Fig. 2). On orbital timescales, Ca/Ti minima in this area 104 reflect dilution of carbonate accumulation by increased clay flux, while on millennial timescales 105 Ca/Ti minima correspond to cold events, reflecting decreases in carbonate productivity (Hodell 106 et al., 2013) and/or increased detrital sedimentation (Lebreiro et al., 2009). In terms of vegetation 107 changes, while variations in temperate tree populations are dominated by millennial-scale 108 variability, other taxon-specific responses show a clear precessional cyclicity superimposed on 109 millennial oscillations. Most striking is the Ericaceae (heathland) curve with three major 110 expansions coinciding with perihelion passage in winter (Fig. 2). The expansion of Ericaceae 111 during intervals of minimum boreal summer insolation and reduced seasonality reflects reduced 112 summer aridity and greater annual moisture availability (Margari et al., 2007; Fletcher and

113	Sánchez Goñi, 2008), associated with the southernmost latitudinal summer position of the ITCZ.	
114	The Ericaceae percentages closely covary with changes in the Ca/Ti record, which may point to a	
115	causal mechanism whereby expanded vegetation cover during times of moisture availability	
116	prevented increased erosion and discharge of detrital material by the Tagus river. Alternatively,	
117	the Ca/Ti and Ericaceae signals may represent independent but synchronous responses to climate	
118	forcing.	
119	Integration with the Record of Glaciation	
120	Global sea-level reconstructions (Thompson and Goldstein, 2006; Elderfield et al., 2012)	
121	indicate a sea-level fall after ~163 ka, likely associated with a rapid advance of the Drenthe ice-	
122	sheet to its maximum extent (Fig. 3). This was followed by ice-sheet melting under increasing	
123	summer insolation and a sea-level rise \sim 157 ka. The most extreme conditions occurred at \sim 157–	
124	154 ka, characterized by coldest SSTs, minimum $\delta^{13}C_{\text{benthic}}$ values and a collapse of moisture-	
125	requiring temperate tree and Ericaceae populations (Fig. 3). This event appears coeval with large	
126	seasonal discharges of the Fleuve Manche river (Channel River), indicated by thick laminated	
127	facies and peaks in freshwater algae in the Bay of Biscay (Eynaud et al., 2007), originating from	

128 the rapid wasting of the Drenthe ice-sheet (Toucanne et al., 2009). The correlation is also

129 supported by maximum values in the relative proportion of tetra-unsaturated alkenones ($C_{37:4}$ %)

130 in MD01–2444, which could reflect the advection of cold surface water to the Portuguese margin

131 (Martrat et al., 2007). However, this mid-MIS6 event (Fig. 1) is only accompanied by subdued

132 asymmetric phasing in planktonic-benthic δ^{18} O and a particularly slow warming in Antarctica,

133 suggesting a weak impact on interhemispheric heat transport, despite its stadial duration (3 kyr)

134 in the North Atlantic (cf. EPICA Community Members, 2006). An analogy has been drawn with

135 another episode of strong Fleuve Manche discharge during Heinrich Stadial (HS) 1 (~17 ka)

136	Article ID: G35070 (Toucanne et al., 2009), but HS1 was characterized by Hudson Strait derived detrital carbonate
137	(e.g. Hemming, 2004) and was coeval with warming in Antarctica. Earlier (but less extreme)
138	Fleuve Manche discharges at ~270 and ~340 ka (Toucanne et al., 2009) were also associated
139	with Hudson Strait discharges (Channell et al., 2012) and warming in Antarctica (Jouzel et al.,
140	2012). By contrast, the absence of detrital carbonate in North Atlantic sediments during the mid-
141	MIS6 event (Channell et al., 2012) points to reduced Hudson Strait discharges. The lack of major
142	bipolar-seesaw activity at that time could therefore be related to the origin of freshwater
143	discharge into the North Atlantic, which may have been predominantly European.
144	No major interstadial warming is indicated by the pollen and planktonic δ^{18} O records of
145	MD01–2444 during the small summer insolation maximum at 151 ka and this is in concert with
146	the lack of organic deposits and absence of paleosols in northern Europe during the interval
147	between the Drenthe and the Warthe Stadials (Ehlers et al., 2011). After ~150 ka, eustatic sea
148	level records and glacial geological evidence suggest that ice-sheets expanded, with global ice-
149	volume reaching its maximum extent towards the end of MIS6, reflecting the growth of the late
150	Illinoian ice-sheet in North America (e.g. Curry et al., 2011; Syverson and Colgan, 2011). In
151	Europe, the Warthe I and II ice advances were less extensive than the Drenthe (Ehlers et al.,
152	2011), but that may have been compensated for by ice expansion in Russia and Siberia (e.g.
153	Astakhov, 2004). Compared to the last glacial maximum, late MIS6 was characterized by overall
154	larger ice-sheets, supporting the view that the strongest glacials occur when the system skips a
155	small insolation maximum, with limited ice loss, and continues its trajectory towards
156	increasingly colder conditions (Raymo, 1997; Paillard, 2001).
157	

157 EMERGING PATTERNS

158	Taken together, the records of changes in the land-ocean system from the Portuguese
159	margin form a coherent framework with the evidence of ice-volume variations during MIS6. On
160	the basis of the amplitude of millennial-scale variability, the penultimate glacial may be divided
161	into three parts: (i) early (185-160 ka) with prominent oscillations in foraminiferal isotope and
162	tree pollen values; (ii) transitional (160–150 ka); and (iii) late (150–135 ka) with subdued benthic
163	δ^{18} O and δ^{13} C, and Antarctic δ D variations (but with excursions in surface ocean conditions,
164	perhaps associated with Warthe ice movements), and minimum temperate tree pollen values.
165	This is consistent with the observation that mean climate state modulates the amplitude of
166	millennial-scale variability (e.g. McManus et al. 1999; Tzedakis, 2005; Barker et al., 2011).
167	More specifically, the overall warmer and wetter conditions of early MIS6 associated with the
168	strong boreal summer insolation maximum at 175 ka, combined with excess ice of -40 to -60 m
169	sea-level equivalent, were marked by accentuated millennial-scale variability and activation of
170	the bipolar-seesaw. By contrast, the character of changes after 150 ka is consistent with a
171	reduction of millennial variability as climate approached a more stable maximum glacial state,
172	which culminated into one of the largest Quaternary glaciations. However, the muted bipolar-
173	seesaw variability during the mid-MIS6 event was not related to an extreme glacial state, as
174	relative sea level (-35 to -65 m) was within the millennial climate instability window. We
175	suggest that in addition to North Atlantic stadial duration (EPICA Community Members, 2006),
176	magnitude of freshwater forcing (Ganopolski and Rahmstorf, 2001) and background climate
177	(Margari et al., 2010), the regional distribution of ice-sheets and location of freshwater discharge
178	may have also influenced interhemispheric heat transport. Such natural experiments under
179	different boundary conditions provide a more nuanced view of freshwater forcing, MOC
180	sensitivity and global climate.

181 ACKNOWLEDGMENTS

- 182 The study was supported by NERC (NE/C514758/1), EU (EV K2–CT–2000–00089)
- and the Royal Society. We thank A. Ganopolski for discussions, F. Eynaud for providing the
- 184 MD03–2692 data and the reviewers and editor for their comments.

185 **REFERENCES CITED**

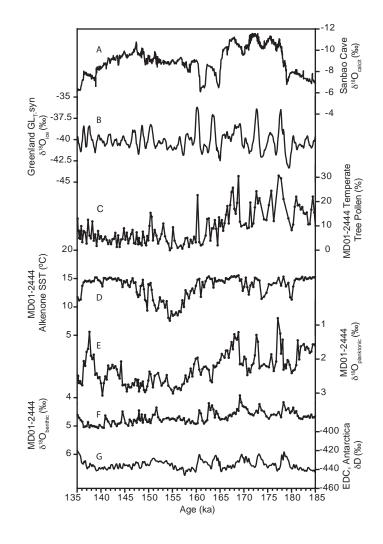
- 186 Astakhov, V.I., 2004, Middle Pleistocene glaciations of the Russian North: Quaternary Science
- 187 Reviews, v. 23, p. 1285–1311, doi:10.1016/j.quascirev.2003.12.011.
- 188 Bard, E., Antonioli, F., and Silenzi, S., 2002, Sea-level during the penultimate interglacial period
- based on a submerged stalagmite from Argentarola Cave (Italy): Earth and Planetary
- 190 Science Letters, v. 196, p. 135–146, doi:10.1016/S0012-821X(01)00600-8.
- 191 Barker, S., Knorr, G., Edwards, L., Parrenin, F., Putnam, A.E., Skinner, L.C., Wolff, E., and
- 192 Ziegler, M., 2011, 800,000 years of abrupt climate variability: Science, v. 334, p. 347–351,
- 193 doi:10.1126/science.1203580.
- 194 Berger, A., 1978, Long-term variations of caloric insolation resulting from the earth's orbital
- 195 elements: Quaternary Research, v. 9, p. 139–167, doi:10.1016/0033-5894(78)90064-9.
- 196 Channell, J.E.T., Hodell, D.A., Romero, O., Hillaire-Marcel, C., deVernal, A., Stoner, J.S.,
- 197 Mazaud, A., and Röhl, U., 2012, A 750-kyr detrital-layer stratigraphy for the North Atlantic
- 198 (IODP Site U1302–U1303, Orphan Knoll, Labrador Sea): Earth and Planetary Science
- 199 Letters, v. 317–318, p. 218–230, doi:10.1016/j.epsl.2011.11.029.
- 200 Curry, B.B., Grimley, D.A., and McKay, E.D., III, 2011, Quaternary glaciations in Illinois, in
- 201 Ehlers, J., Gibbard, P.L., and Hughes, P.D., eds., Quaternary Glaciations Extent and
- 202 Chronology A Closer Look: Developments in Quaternary Science 15, p. 467–487.

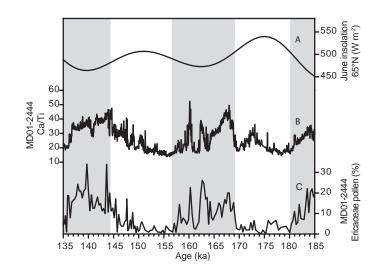
203	de Abreu, L., Shackleton, N.J., Schönfeld, J., Hall, M., and Chapman, M., 2003, Millennial-scale		
204	oceanic climate variability off the Western Iberian margin during the last two glacial		
205	periods: Marine Geology, v. 196, p. 1-20, doi:10.1016/S0025-3227(03)00046-X.		
206	Ehlers, J., Grube, A., Stephan, HJ., and Wansa, S., 2011, Pleistocene glaciations of North		
207	Germany-New results, in Ehlers, J., Gibbard, P.L., and Hughes, P.D., eds., Quaternary		
208	Glaciations - Extent and Chronology - A Closer Look: Developments in Quaternary Science		
209	15, p. 149–162.		
210	Elderfield, H., Ferretti, G., Greaves, M., Crowhurst, S., McCave, I.N., Hodell, D., and		
211	Piotrowski, A.M., 2012, Evolution of ocean temperature and ice-volume through the Mid-		
212	Pleistocene climate transition: Science, v. 337, p. 704–709, doi:10.1126/science.1221294.		
213	EPICA community members, 2006, One-to-one coupling of glacial variability in Greenland and		
214	Antarctica: Nature, v. 444, p. 195–198.		
215	Eynaud, F., Zaragosi, S., Scourse, J.D., Mojtahid, M., Bourillet, J.F., Hall, I.R., Penaud, A.,		
216	Locascio, M., and Reijonen, A., 2007, Deglacial laminated facies on the NW European		
217	continental margin: The hydrographic significance of British-Irish Ice Sheet deglaciation		
218	and Fleuve Manche paleoriver discharges: Geochemistry Geophysics Geosystems, v. 8,		
219	Q06019, doi:10.1029/2006GC001496.		
220	Fletcher, W.J., and Sánchez Goñi, M.F., 2008, Orbital- and sub-orbital-scale climate impacts on		
221	vegetation of the western Mediterranean basin over the last 48,000 yr: Quaternary Research,		
222	v. 70, p. 451–464, doi:10.1016/j.yqres.2008.07.002.		
223	Ganopolski, A., and Rahmstorf, S., 2001, Rapid changes of glacial climate simulated in a		
224	coupled climate model: Nature, v. 409, p. 153–158, doi:10.1038/35051500.		

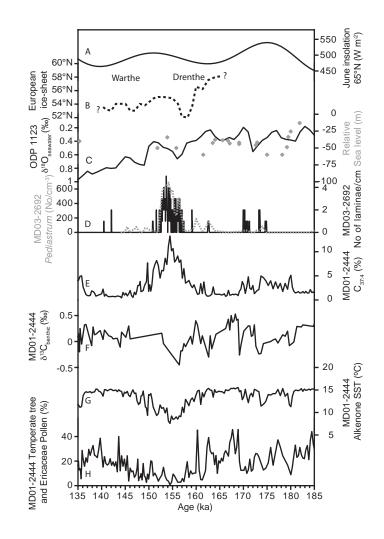
225	Hemming, S.R., 2004, Heinrich events: Massive late Pleistocene detritus layers of the North	
226	Atlantic and their global climate imprint: Reviews of Geophysics, v. 42, RG1005,	
227	doi:10.1029/2003RG000128.	
228	Hodell, D., Crowhurst, S., Skinner, L., Tzedakis, P.C., Margari, V., Maclaghlan, S., and	
229	Rothwell, G., 2013, Response of Iberian Margin sediments to orbital and suborbital forcing	
230	over the past 420 kyr: Paleoceanography, v. 28, p. 1–15, doi:10.1002/palo.20017.	
231	Jouzel, J. and 17 others, 2007, Orbital and millennial Antarctic climate variability over the past	
232	800,000 years: Science, v. 317, p. 793-796, doi: 10.1126/science.1141038.	
233	Lebreiro, S.M., Voelker, A.H.L., Vizcaino, A., Abrantes, F.G., Alt-Epping, U., Jung, S.,	
234	Thouveny, N., and Gracia, E., 2009, Sediment instability on the Portuguese continental	
235	margin under abrupt glacial climate changes (last 60 kyr): Quaternary Science Reviews,	
236	v. 28, p. 3211–3223, doi:10.1016/j.quascirev.2009.08.007.	
237	McManus, J.F., Oppo, D.W., and Cullen, J.L., 1999, A 0.5-million-year record of millennial-	
238	scale climate variability in the North Atlantic: Science, v. 283, p. 971-975,	
239	doi:10.1126/science.283.5404.971.	
240	Margari, V., Tzedakis, P.C., Shackleton, N.J., and Vautravers, M., 2007, Vegetation response in	
241	SW Iberia to abrupt climate change during MIS 6: Direct land-sea comparisons: Quaternary	
242	International, v. 167–168, Supplement 1, p. 267–268.	
243	Margari, V., Skinner, L.C., Tzedakis, P.C., Ganopolski, A., Vautravers, M., and Shackleton,	

- N.J., 2010, The nature of millennial-scale climate variability during the past two glacial
- 245 periods: Nature Geoscience, v. 3, p. 127–131, doi:10.1038/ngeo740.

- 246 Martrat, B., Grimalt, J.O., Shackleton, N.J., de Abreu, L., Hutterli, M.A., and Stocker, T.F.,
- 247 2007, Four climatic cycles of recurring deep and surface water destabilizations on the
- 248 Iberian Margin: Science, v. 317, p. 502–507, doi:10.1126/science.1139994.
- 249 Paillard, D., 2001, Glacial cycles: Towards a new paradigm: Reviews of Geophysics, v. 39,
- 250 p. 325–346, doi:10.1029/2000RG000091.
- Raymo, M.E., 1997, The timing of major climate terminations: Paleoceanography, v. 12, p. 577–
 585, doi:10.1029/97PA01169.
- 253 Roucoux, K.H., Tzedakis, P.C., Lawson, I.T., and Margari, V., 2011, Vegetation history of the
- 254 penultimate glacial period (Marine Isotope Stage 6) at Ioannina, north-west Greece: Journal
- 255 of Quaternary Science, v. 26, p. 616–626, doi:10.1002/jqs.1483.
- 256 Sánchez Goñi, M.F., Turon, J.-L., Eynaud, F., and Gendreau, S., 2000, European climatic
- response to millennial-scale changes in the atmosphere-ocean system during the last glacial
- 258 period: Quaternary Research, v. 54, p. 394–403, doi:10.1006/qres.2000.2176.
- 259 Shackleton, N.J., Hall, M.A., and Vincent, E., 2000, Phase relationships between millennial-
- scale events 64,000–24,000 years ago: Paleoceanography, v. 15, p. 565–569,
- 261 doi:10.1029/2000PA000513.
- 262 Skinner, L.C., Elderfield, H., and Hall, M., 2007, Phasing of millennial events and Northeast
- Atlantic deep-water temperature change since ~ 50 ka BP, *in* Schmittner, A., Chiang, J., and
- 264 Hemming, S.R., eds., Past and Future Changes of the Ocean's Meridional Overturning
- 265 Circulation: Mechanisms and Impacts: American Geophysical Union Geophysical
- 266 Monograph, v. 173, p. 197–208.
- 267 Syverson, K.M., and Colgan, P.M., 2011, The Quaternary of Wisconsin: An updated review of
- stratigraphy, glacial history and landforms, *in* Ehlers, J., Gibbard, P.L., and Hughes, P.D.,


- 269 eds., Quaternary Glaciations Extent and Chronology A Closer Look: Developments in
- 270 Quaternary Science 15, p. 537–552.
- 271 Thompson, W.G., and Goldstein, S.L., 2006, A radiometric calibration of the SPECMAP
- timescale: Quaternary Science Reviews, v. 25, p. 3207–3215,
- doi:10.1016/j.quascirev.2006.02.007.
- 274 Toucanne, S., Zaragosi, S., Bourillet, J.F., Cremer, M., Eynaud, F., Van Vliet-Lanoë, B., Penaud,
- A., Fontanier, C., Turon, J.L., Cortijo, E., and Gibbard, P.L., 2009, Timing of 'Fleuve
- 276 Manche' discharges over the last 350 kyr: insights into the European ice-sheet oscillations
- and the European drainage network from MIS 10 to 2: Quaternary Science Reviews, v. 28,
- 278 p. 1238–1256, doi:10.1016/j.quascirev.2009.01.006.
- 279 Tzedakis, P.C., 2005, Towards an understanding of the response of southern European
- vegetation to orbital and suborbital climate variability: Quaternary Science Reviews, v. 24,
- 281 p. 1585–1599, doi:10.1016/j.quascirev.2004.11.012.
- 282 Tzedakis, P.C., Pälike, H., Roucoux, K.H., and de Abreu, L., 2009, Atmospheric methane,
- southern European vegetation and low-mid latitude links on orbital and millennial
- timescales: Earth and Planetary Science Letters, v. 277, p. 307–317,
- doi:10.1016/j.epsl.2008.10.027.
- 286 Wainer, K., Genty, D., Blamart, D., Bar-Matthews, M., Quinif, Y., and Plagnes, V., 2013,
- 287 Millennial climatic instability during penultimate glacial period recorded on a south-western
- 288 France speleothem: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 376, p. 122–
- 289 131, doi:10.1016/j.palaeo.2013.02.026.
- 290 Wang, Y.J., Cheng, H., Edwards, R.L., Kong, X.G., Shao, X., Chen, S., Wu, J.Y., Jiang, X.Y.,
- 291 Wang, X.F., and An, Z.S., 2008, Millennial- and orbital-scale changes in the East Asian


- 292 monsoon over the past 224,000 years: Nature, v. 451, p. 1090–1093,
- doi:10.1038/nature06692.


294 FIGURE CAPTIONS

- Figure 1. Millennial-scale variations over the interval 135–185 ka. A: δ^{18} O composition of
- speleothem calcite from Sanbao Cave, China (Wang et al., 2008). B: Reconstructed δ^{18} O
- 297 composition of ice in Greenland synthetic (GL_T-syn) record (Barker et al., 2011). C: MD01–2444
- temperate tree pollen (sum of Mediterranean and Eurosiberian taxa, excluding pioneer taxa)
- 299 percentages. D: MD01–2444 alkenone sea surface temperatures (SST). E: MD01–2444 δ^{18} O
- 300 composition of planktonic foraminifera. F: MD01–2444 δ^{18} O composition of benthic
- 301 for a for a minifera. G: Reconstructed δD composition of ice in the EPICA Dome C (EDC) ice core,
- Antarctica (Jouzel et al., 2007) by Barker et al. (2011). All records are on the Barker et al. (2011)
 timescale.
- 304 Figure 2. Orbital-scale variations over the interval 135–185 ka. A: 21 June insolation for 65°N
- 305 (Berger, 1978). B: MD01–2444 Ca/Ti ratio. C: MD01–2444 Ericaceae pollen percentages.
- 306 Shaded intervals denote perihelion passage in winter.
- 307 Figure 3. Figure 3. Land-ocean changes from Portuguese margin within the framework of ice-
- 308 volume variations during the penultimate glacial. A: 21 June insolation for 65°N (Berger, 1978).
- 309 B: Schematic ice extent in northwestern Europe. C: Sea-level determinations from corals
- 310 (Thompson and Goldstein, 2006) (diamonds) and deconvolved δ^{18} O of seawater (Elderfield et
- al., 2012) (continuous curve). D: Concentration of freshwater alga *Pediastrum* and number of
- 312 laminations per cm in core MD03–2692 in the Bay of Biscay (Eynaud et al., 2007; Toucanne et
- 313 al., 2009). E: relative proportion of tetra-unsaturated alkenone ($C_{37:4}$ %). F: MD01–2444 $\delta^{13}C$
- 314 composition of epifaunal benthic foraminifer *Cibicides wuellestorfi*. G: MD01–2444 alkenone

- 315 sea surface temperatures. H: MD01–2444 combined temperate tree and Ericaceae pollen
- 316 percentages. Timescale of MD03–2692 based on alignment of its *N. pachyderma* (s) abundance
- 317 record to the alkenone SST curve of MD01–2444 (Figure DR2).
- ¹GSA Data Repository items 2014xxx, Table DR1 and Figures DR1 and DR2 are available
- online at www.geosociety.org/pubs/ft2014.htm, or on request from editing@geosociety.org or
- 320 Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

Depth (m)	Age (ka)
22.01	135.977
23.15	147.439
23.3	148.249
23.42	149.175
23.63	150.796
23.88	153.807
24.23	157.627
24.48	160.637
24.73	163.415
25.36	169.551
25.72	173.372
26.08	179.508
26.99	189.117
27.28	192.359
27.45	193.864

Table DR1. Control points used in the MD01–2444 age model (after Barker et al., 2011*).

*Barker, S., Knorr, G., Edwards, L., Parrenin, F., Putnam, A.E., Skinner, L.C., Wolff, E., and Ziegler, M., 2011, 800,000 years of abrupt climate variability: Science, v. 334, p. 347–351, doi:10.1126/science.1203580.

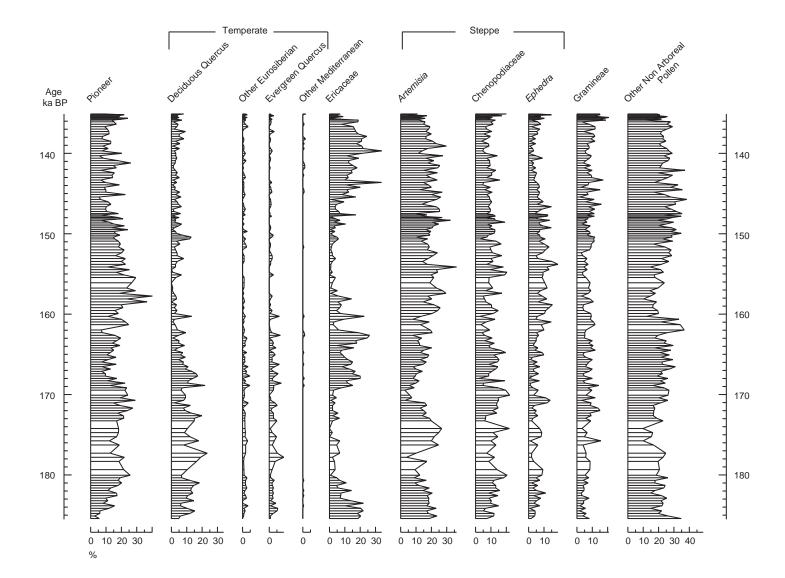


Figure DR1. MD01–2444 selected pollen taxa percentages.

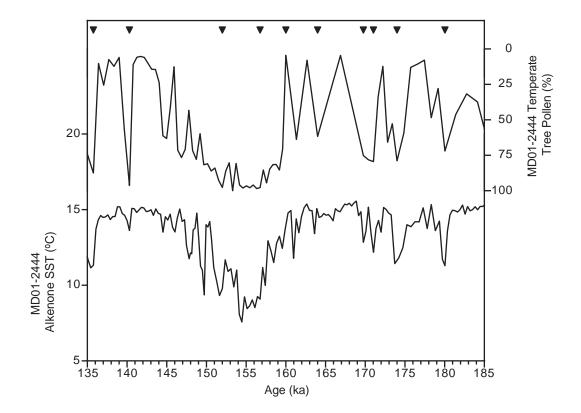


Figure DR2. MD01–2444 selected pollen taxa percentages.