
         

Argo data management 
DOI: http://dx.doi.org/10.13155/29824 

 

 

 

 

 

 

 

 

 

Argo DAC Trajectory 
Cookbook 

   Version 6.1 
   November 2022  

 

 

 

 

 
 

 

 

 

 

 

 

 

http://dx.doi.org/10.13155/29824


 

 

Argo data management 

Argo DAC trajectory cookbook 

Authors: Megan Scanderbeg / Scripps Institution of Oceanography, Jean-Philippe Rannou / ALTRAN, 

Justin Buck / BODC, Claudia Schmid / AOML, John Gilson / Scripps Institution of Oceanography, 

Dana Swift / University of Washington, Kanako Sato/ JAMSTEC, Tanya Maurer / MBARI 

 

How to cite this document 

Megan Scanderbeg / Scripps Institution of Oceanography, Jean-Philippe Rannou / ALTRAN, Justin 

Buck / BODC, Claudia Schmid / AOML, John Gilson / Scripps Institution of Oceanography. , Dana 

Swift / University of Washington, Argo DAC trajectory cookbook. http://dx.doi.org/10.13155/29824  

 

http://dx.doi.org/10.13155/29824


3 

Argo data management                                      Argo DAC trajectory cookbook 

Table of contents 

TABLE OF CONTENTS ...................................................................................................................... 3 

HISTORY OF THE DOCUMENT ...................................................................................................... 7 

1 INTRODUCTION ........................................................................................................................... 8 

1.1 COOK BOOK USAGE AND UPDATE ................................................................................................. 9 

1.2 REAL TIME TRAJ FILE EXPECTED CONTENTS ............................................................................ 9 

1.2.1 DUPLICATED TIMES ................................................................................................................... 10 

1.2.2 DATA RESOLUTION .................................................................................................................... 10 

1.2.3 N_CYCLE ARRAY .................................................................................................................... 10 

1.2.4 CYCLE NUMBER MANAGEMENT IN RT TRAJ ............................................................................ 10 

1.2.5 CLOCK OFFSET ........................................................................................................................... 12 

2 TRAJECTORY FILES ................................................................................................................. 13 

2.1 SURFACE FIXES ............................................................................................................................ 13 

2.1.1 LAUNCH POSITION AND TIME..................................................................................................... 13 

2.1.2 FOR ARGOS APEX FLOATS ....................................................................................................... 14 

2.1.3 OTHER SURFACE LOCATION FIXES ............................................................................................. 14 

2.2 HOW TO CALCULATE CYCLE TIMING VARIABLES ..................................................................... 16 

2.2.1 POSITIONING SYSTEM AND TRANSMISSION SYSTEM TIMES ....................................................... 20 

2.2.2 TIMES OF FLOAT EVENTS ........................................................................................................... 23 

2.2.3 APEX FLOATS ........................................................................................................................... 23 

2.2.4 APEX FLOATS WITH THE APF8 CONTROLLER BOARD .............................................................. 23 

2.2.5 APEX FLOATS WITH THE APF9A OR APF9T CONTROLLER ....................................................... 31 

2.2.6 APEX FLOATS WITH THE APF9I CONTROLLER AND SEABIRD NAVIS FLOATS ........................ 35 

2.2.7 APEX APF11 ARGOS FLOATS WITH FIRMWARE VERSION 2.8.0 OR 2.10.4 ................................. 48 

2.2.8 APEX APF11 FLOATS WITH IRIDIUM ......................................................................................... 50 

2.2.9 HM2000 FLOATS ....................................................................................................................... 60 



4 

Argo data management                                      Argo DAC trajectory cookbook 

2.2.10 NEMO FLOATS ........................................................................................................................ 63 

2.2.11 NINJA FLOATS ........................................................................................................................ 67 

2.2.12 DEEP NINJA FLOATS ............................................................................................................... 72 

2.2.13 NOVA FLOATS ........................................................................................................................ 73 

2.2.14 PROVOR  FLOATS ................................................................................................................... 79 

2.2.15 PROVORCTS3 & ARVOR IRIDIUM ......................................................................................... 98 

2.2.16 ARVOR ARGOS ....................................................................................................................... 102 

2.2.17 SOLO FLOATS ....................................................................................................................... 105 

2.2.18 SOLO-II FLOATS ................................................................................................................... 105 

2.3 GUIDELINES FOR ARGOS MESSAGE SELECTION ...................................................................... 109 

2.3.1 ARGOS FLOAT MESSAGE SELECTION ....................................................................................... 109 

2.4 SENSOR MEASUREMENTS .......................................................................................................... 110 

2.4.1 SENSOR MEASUREMENTS SAMPLED DURING THE DRIFT PHASE AT PARKING DEPTH ............... 110 

2.4.2 REPRESENTATIVE_PARK_PRESSURE ............................................................................ 116 

2.4.3 ASCENDING AND DESCENDING MEASUREMENTS ..................................................................... 118 

2.4.4 SURFACE SERIES MEASUREMENTS ........................................................................................... 121 

2.5 GROUNDED FLAGS ................................................................................................................ 128 

ANNEX A: SOME DEFINITIONS ................................................................................................. 130 

2.6 DEFINITIONS OF ARGOS RAW DATA CONTENTS ...................................................................... 130 

2.7 CYCLIC REDUNDANCY CHECK ................................................................................................ 131 

2.8 FLOAT CLOCK DRIFT AND CLOCK OFFSET .............................................................................. 131 

2.9 APEX ARGOS TEST/DATA MESSAGES ...................................................................................... 131 

2.10 APEX DEEP PROFILE FIRST FLOATS ..................................................................................... 132 

2.11 APEX TIME OF DAY FEATURE .............................................................................................. 132 

2.12 APEX AUXILIARY ENGINEERING DATA ............................................................................... 132 

3 ANNEX B: TRANSMISSION END TIME ESTIMATION FOR AN APEX ARGOS FLOAT

 133 

3.1 APEX FLOAT THEORETICAL FUNCTIONING ............................................................................. 133 



5 

Argo data management                                      Argo DAC trajectory cookbook 

3.2 THE PARK ET AL. METHOD ....................................................................................................... 134 

3.3 THE PROPOSED METHOD .......................................................................................................... 136 

3.3.1 FIRST ALGORITHM: TRANSMISSION END TIMES ESTIMATED FROM THE MAXIMUM ENVELOPE OF 

THE LAST MESSAGE TIMES ................................................................................................................. 137 

3.3.2 SECOND ALGORITHM: TRANSMISSION END TIMES ESTIMATED BY A METHOD THAT TAKES THE 

FLOAT CLOCK OFFSET INTO ACCOUNT ................................................................................................. 140 

3.3.3 FINAL IMPROVEMENT: TAKING THE CYCLE DURATION ANOMALIES INTO ACCOUNT .............. 153 

3.3.4 RESULTS OBTAINED IN THE ANDRO DATA SET ...................................................................... 154 

3.3.5 RECOMMENDED METHOD FOR REAL TIME PROCESSING .......................................................... 155 

4 ANNEX C: COMPUTING TRANSMISSION START TIME FOR AND APEX ARGOS 

FLOAT ............................................................................................................................................... 156 

4.1 TELEDYNE WEBB RESEARCH PROPOSED METHOD ................................................................ 156 

4.2 AN IMPROVED PROPOSED METHOD ......................................................................................... 157 

5 ANNEX D: APEX FLOAT VERTICAL VELOCITIES ......................................................... 159 

5.1 APEX FLOAT DESCENDING VELOCITY .................................................................................... 159 

5.2 APEX FLOAT ASCENDING VELOCITY ...................................................................................... 160 

6 ANNEX E: INPUT PARAMETERS ......................................................................................... 163 

7 ANNEX F: MEASUREMENT CODE TABLE ........................................................................ 164 

7.1 GENERAL MEASUREMENT CODE TABLE KEY ........................................................................ 164 

7.2 RELATIVE GENERIC CODE TABLE KEY (FROM MC MINUS 24 TO MC MINUS 1) ................. 164 

7.3 MEASUREMENT CODE TABLE .................................................................................................. 165 

8 ANNEX G: IMPLEMENTATION OF THE JAMSTEC TRAJECTORY QUALITY 

CONTROL METHOD ...................................................................................................................... 168 

8.1 INPUTS ........................................................................................................................................ 168 

8.2 ALGORITHM .............................................................................................................................. 168 

8.2.1 STEP 1 ...................................................................................................................................... 169 

8.2.2 STEP 2 ...................................................................................................................................... 169 

8.2.3 STEP 3 ...................................................................................................................................... 169 



6 

Argo data management                                      Argo DAC trajectory cookbook 

8.2.4 STEP 4 ...................................................................................................................................... 169 

8.3 SPEED TEST ................................................................................................................................ 169 

8.3.1 CASE OF DIFFERENT ARGOS CLASSES ...................................................................................... 170 

8.3.2 CASE OF IDENTICAL ARGOS CLASSES ...................................................................................... 170 

8.4 DISTANCE TEST ......................................................................................................................... 171 

8.5 DISTANCE COMPUTATION ........................................................................................................ 171 

8.5.1 MATLAB IMPLEMENTATION OF THE LPO DISTANCE ALGORITHM ........................................... 171 

8.5.2 TEST POINTS ............................................................................................................................ 173 

9 ANNEX H: COOKBOOK ENTRY POINT .............................................................................. 174 

9.1 PROVOR FLOATS ..................................................................................................................... 175 

9.2 PROVOR-MT FLOATS ............................................................................................................. 177 

9.3 ARVOR FLOATS ....................................................................................................................... 178 

9.4 NINJA FLOATS .......................................................................................................................... 178 

10 ANNEX I: APEX APF8 ESTIMATION METHODS FOR PST, PET, AST ....................... 180 

10.1 PARK START TIME (PST) ....................................................................................................... 180 

10.2 PARK END TIME (PET) ........................................................................................................... 180 

10.3 ASCENT START TIME (AST) ................................................................................................... 181 

 

 

 



7 

Argo data management                                      Argo DAC trajectory cookbook 

History of the document 

Version Date Comment 
1.0 June 2012 Original version sent around for comment 

1.1 August 2012 Comments from John Gilson, Jean-Philippe Rannou, Justin Buck, Kanako Sato, Mizuho 
Hoshimoto, Bernie Petolas 

1.2 November 2012 Updated measurement code table to three places to allow for many more codes. Added 
satellite name, error ellipse variables, condensed final questions in preparation for ADMT 
meeting 

1.3 February 2013 Updated with feedback from ADMT-13 meeting 

1.4 April 2013 Updated format in anticipation of publication 

1.5 April , 2014 Updated code for TET estimation for APEX floats with Argos transmission, condensed float 
tables in Annex I. 
Updated cycle definition, added new paragraph describing core-Argo and B-Argo trajectory 
files. 
Updated MC codes for TST and AST for APEX floats. 

2.0 June 2014 Officially given a DOI and named as Trajectory Cookbook 

3.0 September 2014 Large changes to APEX float section after numerous discussions with Dana Swift, author of 
most of the APEX float software 

3.2 February 2015 Move estimation procedures for APEX floats to Annex J.  Removed all Annex I tables except 
PROVOR, ARVOR, NINA 

3.3 May 2015 Added instructions on PUMPED and UNPUMPED CTD data for NKE floats 
Updated SOLO-II tables 
Updated NOVA tables 
Updated NINJA tables 
Added Deep NINJA tables 

4.0 June 2015 Removed all sections related to profile files for the new DAC Profile cookbook 

4.1 November 2015 Standard Reference ID now optional 

5 August 2016 Updated instructions on CONFIG_MISSION_NUMBER for launch and cycle 0 

6 August 2019 Updated color scheme on how to assign measurement codes 
Removed 702,704 for Iridium RUDICs floats 
Updated definition of 600/ ascent end time 
Combined APEX APF9i and NAVIS tables 
Added PROVORCTS3 and Arvor Iridium tables 
Added Arvor table 
Added estimated, Iridium and RAFOS positions 
Added relative measurement codes for surface measurement sequences 

6.1 November 2022 Updated Cookbook with instructions on how to include BGC and other measurements stored 
in the combined v3.2 trajectory files. 
Generalized sections to surface times and locations, timing measurements, and sensor 
measurements. 
Updated introcution and reiterated that Standard Format ID is no longer maintained. 
Updated Grounded flags section  

 



8 

Argo data management                                      Argo DAC trajectory cookbook 

Preface 

This document is still in progress. As such, there are highlighted sections of text throughout that need 

to be addressed. Yellow highlighting means this is a topic open to discussion - some things are known 

about this topic, but agreement needs to be reached. Green highlighting signifies a question that needs 

to be answered by a float expert or float manufacturer. Red highlighting means the issue needs a 

solution and nothing has been suggested yet. 

One proposed entry point into this cookbook is through through the Argo Trajectory Measurement 

Code tables which are a companion to the DAC Trajectory Cookbook and are available via the same 

DOI:  10.13155/29824 (doi.org).These  tables are organized by  float type and model and each row 

describes how a different measurement code should be filled for that specific float model. This allows 

DACs to look up their float model and read across that row to find out how to fill each variable. For 

further explanation,  a DAC could go to the section of this cookbook corresponding to the float type of 

interest and find the same tables, but with more information to help understand how to find and 

process the data needed for each measurement code. 

1 Introduction 

This DAC Trajectory Cookbook includes instructions for DACs on how to calculate different variables 

for the Argo trajectory files. .  These files are primarily intended to store information and data related 

to the timing and positioning of the float at various stages.  It is separate from other data manuals 

because users interested in profile data do not need to understand all these details, but it is important 

that all DACs calculate the variables in the same manner. For readers who have no familiarity with 

trajectory files and their associated variables, it is essential to first read section 2.3 of the Argo User 

Manual ( http://dx.doi.org/10.13155/29825) prior to proceeding with this document.  Additionally, 

note that during the ADMT-21 meeting held at LOV in Villefranceh in October, 2019, the proposal to 

combine the previously separate core-Argo and B-Argo trajectory files was accepted by the 

community.  The processing instructions outlined herein support the new format type v3.2 which 

accommodates trajectory information related to both core and BGC sensor operations. 

Concerning Argo trajectory data specifically, correct data processing requires a good knowledge of the 

float platform capabilities. Each float type has its own behavior and within a given type, each float 

version provides specific data useful to trajectory determination. A large part of the document is based 

on the work done since 2007 on Argo trajectory data in the framework of the ANDRO project by Jean-

Philippe Rannou and Michel Ollitrault. Dana Swift has also provided input on APEX float timing.  He 

has written much of the firmware on APEX floats and was able to provide detailed information on 

APEX floats.   

The algorithms proposed by Jean-Philippe Rannou and Michel Ollitrault are  included in the 

cookbook, but are not mandatory.  While they have been designed to be efficient and robust enough to 

be deployed in a real time data flow without a visual check, the timing information they provide is an 

estimate.   

If DACs are interested in PROVOR and ARVOR floats manufactured through 2014, the best entry 

point is through ANNEX H: Cookbook entry point. In the ANNEX, the presented tables, one can find, 

for a given float version, all useful information that can be decoded, computed or estimated from 

transmitted float data and a link to the concerned paragraph(s) in the document.  

For all PROVOR and ARVOR floats manufactured after 2014 and all other float types, it is suggested 

to look for the appropriate float type in each category of Section 2 (2.1: surface fixes, 2.2: cycle 

timing, 2.4: sensor measurements).  Each float type has a section, often with tables to explain how to 

fill the which measurement codes for each float type and version. .  A companion to this is the Argo 

Trajectory Measurement Code Tables (accessible via the same DOI as the DAC Trajectory Cookbook) 

https://doi.org/10.13155/29824
http://dx.doi.org/10.13155/29825


9 

Argo data management                                      Argo DAC trajectory cookbook 

which summarize this information in tables and can be referred to for an overview of which 

measurement codes are filled and how for each float type.     

To matchthe Format ID in Annex H to the float version list, please access this spreadsheet established 

by the Mathieu BELBEOCH and stored at OceanOPS: 

https://docs.google.com/spreadsheet/ccc?key=0AitL8e3zpeffdENUQmszRlY3djYweGZhbnBZSU1fT

FE&usp=sharing.  If the link does not work when clicking on it, please copy and paste it into your 

browser.  This list was created in 2012 and accurately describes the float types available at that time.  

Since then, most float types have been updated and is no longer actively maintained.  If you have 

questions about this list, please contact Victor TURPIN (vturpin@ocean-ops.org) or  Megan 

SCANDERBEG (mscanderbeg@ucsd.edu) . 

Many of the concerned float versions are obsolete for real time processing. However, even if these 

floats are no longer active, it is important to document how to decode the float data and create 

trajectory files for historical purposes. 

The float types presented in this document include: 

• The PROVOR float including PROVOR, PROVOR-MT and ARVOR floats in their Argos 

and Iridium versions 

• APEX 

• NINJA, Deep NINJA  

• SOLO 

• SOLO-II 

• NEMO 

• NAVIS 

• NOVA 

1.1 Cook book usage and update 

Each new float version must be fully studied, decoded and the results analyzed (in a "trajectory" point 

of view) before being added in the DAC Trajectory Cookbook and the accompanying Argo Trajectory 

Measurement Code Tables. 

This detailed information should provide each DAC with the ability to homogeneously process 

NetCDF TRAJ file contents no matter whether or not the DAC has prior knowledge about a float's 

trajectory data. 

For many float types, the ANNEX H tables are not up to date and should be used with caution.  The 

PROVOR and ARVOR tables are updated through 2014 and are the most reliable.   

For float types other than PROVOR and ARVOR manufactured before 2014, it is suggested to search 

for the float type in Section 2.  Section 2.1 describes how to fill surface positions and focuses largely 

on the type of positioning systems:  Argos, GPS, estimations and RAFOS.  Section 2.2details how to 

fill in the cycle timing variables by float type.  

1.2 Real time TRAJ file expected contents 

Three main types of data are expected to be stored in the real time NetCDF TRAJ files: 

• Surface fixes: Argos, GPS, Iridium or estimated locations of the float surface trajectory, 

• Cycle timings: The dated main cycle events associated (when available) with their sensor 

measurements, 

https://docs.google.com/spreadsheet/ccc?key=0AitL8e3zpeffdENUQmszRlY3djYweGZhbnBZSU1fTFE&usp=sharing
https://docs.google.com/spreadsheet/ccc?key=0AitL8e3zpeffdENUQmszRlY3djYweGZhbnBZSU1fTFE&usp=sharing
mailto:vturpin@ocean-ops.org
mailto:mscanderbeg@ucsd.edu


10 

Argo data management                                      Argo DAC trajectory cookbook 

• Other sensor measurements; including: 

o Drift phase CTD and/or BGC measurements: possibly dated measurements sampled 

during the drift phase at parking depth (used to determine ie the deep displacement 

immersion), 

o CTD and/or BGC measurements made outside the drift phase: depending on float 

versions, sensor make measurements during ascent, descent or on the surface; if these 

measurements include timing information, it helps define the vertical movements of 

the float and the associated rates. 

 

1.2.1 Duplicated times 

The cycle timing dates must be duplicated in the TRAJ files. They should be stored in the N_CYCLE 

arrays and in the N_MEASUREMENT arrays with the associated MEASUREMENT_CODE value. 

All Primary and Secondary Measurement Code (MC) events (see Annex F) that are experienced by 

the float are required to be present in the N_MEASUREMENT array and redundantly in the 

N_CYCLE variables. All other codes are voluntary. 

If the float experiences an event but the time is not able to be determined, then a *_STATUS = '9' is 

used. This indicates that it might be possible to estimate in the future and acts as a placeholder. 

In the N_CYCLE variables, if the float does not experience an event then *_STATUS = 'FillValue' is 

used. Only events that are experienced by a float are recorded in the N_MEASUREMENT array so 

status='FillValue' is not used in those variables. 

1.2.2 Data resolution 

The decoded data can sometimes have unusual resolutions depending on the measurement code. Store 

the nominal resolution in the <PARAM>:resolution attribute.  If the resolution differs by measurement 

code, provide this information in the “COMMENT_ON_RESOLUTION” attribute for the concerned 

variable and as a global attribute. 

See section 2.3.5.1 of the Argo User’s Manual for a more detailed example. 

Examples of differing resolutions are as follows: 

• Dates: reported timestampes might have a 1 minute or 6 minutes resolution, 

• Pressures: the PROVOR technical and spy pressures are sometimes given in bars rather than 

decibars, this is also the case for APEX descending pressure marks.  

1.2.3 N_CYCLE Array  

For the N_CYCLE array, there are a few details to mention here about the float launch and cycle 0.  

Specifically, launch information should not be included in the N_CYCLE array.  For cycle 0, 

CONFIG_MISSION_NUMBER should be fill value, but the other N_CYCLE variables should be 

filled appropriately, including the GROUNDED flag.   

1.2.4 Cycle number management in RT TRAJ 

Cycle numbers 

A cycle is defined as a series of actions made by a float and includes either a descending profile or an 

ascending profile (or, rarely, both);  it may also include immersion drift or surface drift.  An Argo 

cycle starts with a descent toward deep water, usually from the surface.  It ends with the next ascent to 

shallow water and data transmission (in some situations or for some floats, data transmission may not 



11 

Argo data management                                      Argo DAC trajectory cookbook 

always occur).  Each cycle of a float has a unique cycle number, increased by one after each ascent to 

shallow water.  For most floats, this will be the cycle number transmitted by the float.  In some cases, 

this number will need to be calculated by the operator.  Simple checks on cycle number can be 

performed in real time. 

For floats that provide cycle number, DACs should compare the provided cycle number with the 

expected cycle number. If they agree, the provided cycle number will be stored in CYCLE_NUMBER 

and CYCLE_NUMBER_INDEX variables. If they disagree, cycle number should be computed to be 

coherent with time versus cycle duration. Care should be taken not to overwrite a current cycle. 

For floats that do not provide cycle number, cycle number should be computed to be coherent with 

time versus cycle duration. These cycle numbers should be stored in CYCLE_NUMBER in real time. 

Both CYCLE_NUMBER and CYCLE_NUMBER_INDEX need to be filled in real time. The cycle 

number in CYCLE_NUMBER must match the profile cycle number, which is the number recorded in 

the CYCLE_NUMBER variable in the profile file. If a mismatch is detected between a trajectory cycle 

number and a profile cycle number, the trajectory cycle number must be changed to match the profile 

file cycle number and replaced on the GDAC. 

As mentioned previously, launch information should not be in the N_CYCLE array or in 

CYCLE_NUMBER_INDEX.   

CYCLE_NUMBER_INDEX indicates which cycle number information is contained in that index of 

the N_CYCLE array. For example, CYCLE_NUMBER_INDEX(4)=3 means the 4th element of all 

N_CYCLE variables is associated with the WMO_003.nc profile file. Additionally, all the elements of 

the N_MEASUREMENT variables for which CYCLE_NUMBER = 3 are likewise associated with the 

4th N_CYCLE elements and with the WMO_003.nc profile file. This stops confusion over which index 

in the N_CYCLE array corresponds to which cycle number in the N_MEASUREMENT array. 

The CYCLE_NUMBER_ADJUSTED and the CYCLE_NUMBER_INDEX_ADJUSTED variables 

will contain a cycle numbering which has been assessed and may be adjusted to be correct, especially 

for the purpose of trajectory calculations. 

If a cycle is recovered during delayed mode, DACs must choose to either (a) create a new profile file 

and renumber all profile files accordingly and then rewrite the trajectory file with the changes in 

CYCLE_NUMBER & CYCLE_NUMBER_INDEX to match the profile files OR (b) not create a new 

profile file and add the new cycle into the CYCLE_NUMBER_ADJUSTED and 

CYCLE_NUMBER_ADJUSTED_INDEX variables. Two examples of case (b) are below. 

The first example is where cycle number 5 is recovered either in delayed mode. The cycle number 

variables must be rewritten as follows: 

CYCLE_NUMBER                        1, 2, 3, 4, _, 6, 7, 8, 9, 10, 11,… , 

CYCLE_NUMBER_INDEX            1, 2, 3, 4, _, 6, 7, 8, 9, 10, 11,…,  

CYCLE_NUMBER_ADJUSTED              1, 2, 3, 4, 5, 6, 7, 8, 9, 10,   _    

CYCLE_NUMBER_ADJUSTED_INDEX       1, 2, 3, 4, 5, 6, 7, 8  9, 10,  _ 

Here, FillValue is added to CYCLE_NUMBER and CYCLE_NUMBER_INDEX to indicate that no 

profile files exist with cycle number 5. The trajectory file must be rewritten to add in the new cycle 

number information and any other information recovered for that profile. 

A second example of errors that might be discovered in cycle number in delayed mode involves floats 

that do not send cycle number and for which cycle number must be calculated. In this situation, there 



12 

Argo data management                                      Argo DAC trajectory cookbook 

are times when cycle numbers are incorrectly skipped. Here, cycle number 5 was incorrectly skipped 

in real time and added back in delayed mode: 

CYCLE_NUMBER                   1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12,… 

CYCLE_NUMBER_INDEX            1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12,…  

CYCLE_NUMBER_ADJUSTED         1, 2, 3, 4, 5, 6, 7, 8,   9, 10, 11, _, _ 

CYCLE_NUMBER_ADJUSTED_INDEX  1, 2, 3, 4, 5, 6, 7, 8,   9, 10, 11, _, _    

Missing cycles 

A cycle is defined as a series of actions, including collection of data, made by a float that ends with 

transmission of data, or the attempt to transmit data. If the float fails to collect or transmit data, a cycle 

has not occurred and can be defined as missing. 

Missing cycles should NOT be stored in the TRAJ file. No place holders are necessary and will 

not work with the new TRAJ file. 

1.2.5 Clock offset  

Some Argo float versions provide times for dated events or dated measurements. Over time, the float's 

clock may drift. Clock drift can be defined as the drift of the clock in hours/ minutes/ seconds per year. 

To correct for this, we must apply a clock offset where clock offset is defined as a measurement, done 

at a given time, of the offset of the clock due to clock drift. Thus a clock offset should be estimated for 

each of these float times. 

Note that clock offset can also embrace a clock that has not been correctly set or a clock that has been 

set in local time. Of course, in these cases, clock offset is not only revealing a drift of the float clock... 

Float clock offset is defined as: Float clock offset = Float time - UTC time. 

A good estimate of the clock offset can be obtained when the float transmits its Real Time Clock 

(RTC) time in the technical data. It can then be compared to the time from Argos of the corresponding 

message to compute a clock offset for all the float times of the concerned cycle. 

Unfortunately this is not always the case, some floats do not transmit their RTC time and even if they 

do, this RTC time is not always received. 

Here are some remarks on RTC time transmitted by Argo float versions: 

• For APEX Argos floats: the float times come from float versions which send the RTC time 

only once in the test message (thus around the launch time), 

• For APEX Iridium floats: the float times are given with the RTC time for every cycle, thus 

they can always be corrected, 

• For PROVOR and ARVOR Argos floats: the RTC time is in the technical message. If we do 

not receive the technical message, the float times cannot be computed for this cycle. Thus, 

when we cannot compute the clock offset, there are no float times to correct from clock offset, 

• For PROVOR Iridium floats: the RTC is set each cycle (using GPS time). Thus clock offset is 

considered to be equal to zero, 

• For NINJA Argos floats: the RTC time is provided each cycle but the corresponding message 

can be missing (not received), 

• For SIO and WHOI SOLO floats: no float time is transmitted, but the SIO float clock is reset 

each time, making clock offset essentially non-existent. 

• For SOLO-II: float time is transmitted. In addition the float clock is reset each surfacing, 

making clock offset essentially non-existent. 



13 

Argo data management                                      Argo DAC trajectory cookbook 

• For NEMO Argos floats: the decoding has been done by Optimare and we do not know how 

they manage clock offsets. 

• For NEMO Iridium floats: the RTC time is in the technical message. If we receive the 

technical message, we can correct RTC time by using GPS time. 

1.2.5.1 How to put clock offset into trajectory file in real time 

If a float can be corrected for clock offset in real time, DACs should determine the drift and adjust the 

time (inclusive of adjustment of zero). The corrected time should go in the JULD_ADJUSTED 

(N_MEASUREMENT) variable. 

The JULD_ADJUSTED_STATUS should be set to "3" if the clock offset is computed from the RTC 

time. 

The JULD_ADJUSTED_QC should also be filled. 

Simultaneously, the DATA_MODE should be marked as "A" indicating an adjusted float, and the 

CLOCK_OFFSET (N_CYCLE) variable should be appropriately filled. 

If a float cannot be corrected for clock offset in real time, the JULD_ADJUSTED* variables and the 

CLOCK_OFFSET variable should all be fill value. 

1.2.5.2 How to put clock offset in trajectory file in delayed mode 

If the float is corrected for clock offset in delayed mode, the corrected time should go in the 

JULD_ADJUSTED (N_MEASUREMENT) variable. 

The JULD_ADJUSTED_STATUS should be set to "3" if the clock offset is computed from the RTC 

time or to "1" if it is estimated using information sent by the float or if it is estimated using procedures 

that rely on typical float behavior. 

The JULD_ADJUSTED_QC should also be filled. 

The clock offset itself goes in the CLOCK_OFFSET(N_CYCLE) variable and the DATA_MODE 

should be marked as "D" indicating a delayed mode correction. 

If a float cannot be corrected for clock offset in delayed mode, the CLOCK_OFFSET variable should 

be fill value. The JULD_ADJUSTED* variables may be filled if other estimates are done on the 

timing information not related to clock offset. 

2 Trajectory files 

2.1 Surface fixes 

2.1.1 Launch position and time 

The launch position and time values should be duplicated from the META file to the TRAJ file. 

They should be stored as the first LATITUDE, LONGITUDE and JULD of the N_MEASUREMENT 

array with: 

• CYCLE_NUMBER = -1, 

• POSITION_QC = 0, 

• POSITION_ACCURACY = _FILLValue, 



14 

Argo data management                                      Argo DAC trajectory cookbook 

• MEASUREMENT_CODE = 0 

• JULD_STATUS = 4 - determined by satellite if that can be done, otherwise ‘9’ if the JULD is 

FILLValue 

The launch time should be as reliable as possible (because it is used in Argos surface location 

selection, see §Erreur ! Source du renvoi introuvable.). Therefore, methods, based on transmitted 

information, can be used to check the launch time. Once the launch position has been checked, its QC 

should be set to 1. 

Launch information should not be duplicated in the N_CYCLE array.  It goes only in the 

N_MEASUREMENT array. 

2.1.2 For Argos APEX floats 

Argos Apex floats send the information "Time from startup" in the test message. This information can 

be used to compute the STARTUP_DATE (in the metafile) of the float (using the time of the Argos 

message used for "Time from startup" information decoding). 

For APF9a/t floats, all firmware revisions are capable of self-activation via the pressure-activation 

mechanism.  For floats that self-activate, the “time from startup” is AFTER launch time.  For floats 

that were manually started while still on-board the ship, the start-time is before launch time.   

For APF8 floats, some firmware revisions had the pressure-activation mechanism while others did not.  

This means the “time from startup” can either be before launch time, if manually started, or after 

launch time if self-activated. 

2.1.3 Other surface location fixes 

All surface locations occurring after the launch time should be stored with their full resolution 

(some DACs do not store the seconds of the location time) in the TRAJ file. 

Required data: 

• JULD 

• JULD_QC 

• JULD_STATUS 

• JULD_DATA_MODE 

• LATITUDE 

• LONGITUDE 

• POSITION_ACCURACY 

• POSITION_QC 

• SATELITE_NAME 

• AXIS_ERROR_ELLIPSE  

 

2.1.3.1  Argos surface locations 

Some Argos locations can be computed twice by CLS in (near) real time and the improved results sent 

again. The Argos location data set of a given cycle should be updated from all CLS incoming data at 

least 2 days after the theoretical end of the Argos transmission (cf. ADMT12 action#53). 

The real time quality control test #20 (Questionable Argos Position test, also in ANNEX G: 

Implementation of the JAMSTEC trajectory quality control method) should be used on surface Argos 

locations to define the position QCs. 



15 

Argo data management                                      Argo DAC trajectory cookbook 

2.1.3.2 GPS surface locations 

GPS position(s) and time(s) should be included as the position fixes and times (see required data in 

section 2.1.3) when available.  

• POSITION_ACCURACY = ‘G’ 

• JULD_STATUS = ‘2’: transmitted by float 

• AXES_ERROR_ELLIPSE variables can be filled the estimated error. 

All the GPS positions should be stored in the TRAJ file with a measurement code of 703 

For APEX floats 

GPS locations provided in log file and message files should be merged. One suggested way to find the 

fixes for APEX 001087 floats, is to parse the log file using:  

GPS_FIX = ['GpsServices()        Profile ' sprintf('%d', a_cycleNum) ' GPS fix obtained in']; 

For PROVOR floats 

The time of the GPS position provided in the technical message is the float's time and date (also 

provided in this technical message). 

2.1.3.3 Iridium surface locations 

Iridium fixes can be included in the trajectory files.  In that case: 

• POSITION_ACCURACY = ‘I’ 

• AXES_ERROR_ELLIPSE variables can be filled with the estimated error 

• POSITIONING_SYSTEM = ‘GPS’ (because this is not an N_MEASUREMENT array 

variable, it needs to be recorded as ‘GPS’ and users can determine it is an Iridium location 

based on the POSITION_ACCURACY) 

• POSITION_QC would be a ‘1’ or ‘2’ 

All the Iridium positions should be stored in the TRAJ file with a measurement code of 703. 

 

2.1.3.4 Estimated positions 

The Argo Program has decided to allow estimated positions in trajectory files as of ADMT-20 in 

December 2019.  This means that if no positions are available for a profile/surface interval, DACs and 

DM operators can choose to enter in an estimated position.  In v3.1 and v3.2, the 

POSITIONING_SYSTEM variable is not N_MEASUREMENT long, so it will not be possible to 

indicate for each position which system, or lack thereof, was used to determine the position.  So, the 

following guidelines have been developed to try and provide as much information to the user as 

possible to indicate an estimated position. 

If no positions are available, but the DAC or DM operator chooses to put in an estimated position with 

MC = 703: 

• LATITUDE and LONGITUDE  

• POSITION_ACCURACY would be ‘U’  

• POSITION_QC would be ‘8’ 

• AXES_ERROR_ELLIPSE variables can be filled with an estimated error 

• POSITIONING_SYSTEM will record ‘GPS’ or ‘Argos’ or whichever is the main positioning 

system of the float 



16 

Argo data management                                      Argo DAC trajectory cookbook 

If there are GPS fixes, Iridium positions and estimated positions all in one trajectory file, 

POSITIONING_SYSTEM will still record ‘GPS’. 

2.1.3.5 RAFOS positions 

If RAFOS positions are calculated during the float’s drift phase, those positions should be stored as 

follows: 

• LATITUDE and LONGITUDE 

• POSITION_ACCURACY would be ‘R’ 

• POSITION_QC would be ‘1’, ‘2’, ‘3’ or ‘4’ 

• POSITIONING_SYSTEM would be main surface positioning system (Argos, GPS, etc) 

• AXES_ERROR_ELLIPSE variables can be filled with estimated errors 

• JULD should be filled with the corresponding time  

• MEASUREMENT CODE would be 275 to indicate it took place during drift 

Intermediate information used to calculate the RAFOS positions should be stored in the AUX 

directory 

 

2.2 How to calculate cycle timing variables 

Each Argo float cycle is composed of programmed events. Depending on float type, some of these 

events can be dated and associated sensor measurements can be provided. The following figure shows 

an example cycle, with the times ordered for Argos satellite communications. For Iridium floats, the 

order of surface events may be different. 

The sixteen following timed events can be highlighted. 



17 

Argo data management                                      Argo DAC trajectory cookbook 

 

 

 

Floats that profile on ascent would have the following primary cycle timings: 

DST, DET, PET, DDET, AST, AET, TST, all surface times and TET 

Floats that profile on descent might have the following cycle timings: 

DST, DDET, DAST, DET, PET, AST, AET, TST, all surface times and TET 

NOTE:  if a float is programmed to experience a primary cycle timing event, but no timing 

information is sent back and no estimate is possible, fill value should be inserted in the JULD array 

with the measurement code corresponding to the primary cycle timing event.  Examples of this 

include: 

- SOLO and APEX APF8 floats which send back no cycle timing 

information should have fill value for the primary measurement codes 

unless an estimated time can be determined 

- Ice detection floats that detect ice at the surface and then do not 

surface should have fill value for measurement codes 600-800 for the 

affected cycles.  For some Iridium floats, a time is available for 600.   

NOTE:  the diagram above shows the chronological order of timing events for an Argos float.  Iridium 

floats have a different chronological order of timing events.  In either case, times in the JULD variable 

should be arranged chronologically.  The only exception to this if a clock offset has been applied and 

FMT LMT 

Profile 
pressure 

Parking 
pressure 

Surface 

Cycle N 

DST DET DDET 

AST 

AET 

TST 

FLT 

LLT 

TET 

Depth 

Cycle N-1 

Argos/GPS locations 

FST PST 

DPST 

PET 

Dashed lines refer to 
some floats that 
profile on descent 

DAST DDET 

DPST 

AST 

Figure 1: Figure showing float cycle and the cycle timing variables.  Floats can profile either on 
descent or ascent.  Most floats profile on ascent.  Their  path is shown with a solid black line.  
Some floats profile on descent.  One such float, the new SOLO-II Deep float, has a cycle as shown 
by the dashed line. 



18 

Argo data management                                      Argo DAC trajectory cookbook 

then the JULD variable may have an inversion, but the JULD_ADJUSTED variable must be arranged 

chronologically.   



19 

Argo data management                                      Argo DAC trajectory cookbook 

Time MC Long name N_CYCLE variable  
name 

Description 

DST 100 Descent Start Time JULD_DESCENT_START 
JULD_DESCENT_START_STAT
US 

Time when float leaves the surface, 
beginning descent. 

FST 150 First Stabilization Time JULD_FIRST_STABILIZATION 
JULD_FIRST_STABILIZATION_
STATUS 

Time when a float first becomes 
water-neutral. 

DET 200 Descent End Time 
 

JULD_DESCENT_END 
JULD_DESCENT_END_STATUS 
 
Note: Float may approach drift 
pressure from above or below. 

Time when float first approaches 
within 3% of the eventual drift 
pressure. Float may be transitioning 
from the surface or from a deep 
profile. This variable is based on 
pressure only and can be measured or 
estimated by fall-rate. In the case of a 
float that overshoots the drift pressure 
on descent, DET is the time of the 
overshoot. 

PST 250 Park Start Time JULD_PARK_START 
JULD_PARK_START_STATUS 

Time when float transitions to its Park 
or Drift mission. This variable is based 
on float logic based on a descent timer 
(i.e. SOLO), or be based on 
measurements of pressure (i.e. 
Provor). 

Note on DET and PST: DET and PST might be near in time or hours apart depending on float model and cycle-to-cycle 
variability. PI has judgment call whether DET~=PST. 

PET 300 Park End Time JULD_PARK_END 
JULD_PARK_END_STATUS 

Time when float exits from its Park or 
Drift mission. It may next rise to the 
surface (AST) or sink to profile depth 
(DDET) 

DDET 400 Deep Descent End Time JULD_DEEP_DESCENT_END 
JULD_DEEP_DESCENT_END_S
TATUS 

Time when float first approaches 
within 3% of the eventual deep 
drift/profile pressure. This variable is 
based on pressure only and can be 
measured or estimated by fall-rate. 

DPST 450 Deep Park Start Time JULD_DEEP_PARK_START 
JULD_DEEP_PARK_START_ST
ATUS 

Time when float transitions to a deep 
park drift mission. This variable is only 
defined if the float enters a deep drift 
phase (i.e. DPST not defined in cases 
of constant deep pressure due to 
bottom hits, or buoyancy issues) 

DAST 550 Deep Ascent Start Time JULD_DEEP_ASCENT_START 
JULD_DEEP_ASCENT_START_
STATUS 

Time when float begins its rise to drift 
pressure. Typical for profile-on-
descent floats. 

AST 500 Ascent Start Time JULD_ASCENT_START 
JULD_ASCENT_START_STATU
S 

Time when float begins to return to 
the surface. 

AET 600 Ascent End Time JULD_ASCENT_END 
JULD_ASCENT_END_STATUS 

Time when float ends the ascending 
profile phase and starts the next 
phase of the cycle.  

TST 700 Transmission Start Time JULD_TRANSMISSION_START 
JULD_TRANSMISSION_START
_STATUS 

Time when float begins transmitting. 

FMT 702 First Message Time JULD_FIRST_MESSAGE 
JULD_FIRST_MESSAGE_STATU
S 

Earliest time of all messages received 
by telecommunications system 

FLT 703 First Location Time JULD_FIRST_LOCATION 
JULD_FIRST_LOCATION_STAT
US 

Earliest location of all float locations. 

LLT 703 Last Location Time JULD_LAST_LOCATION 
JULD_LAST_LOCATION_STAT
US 

Latest location of all float locations. 

LMT 704 Last Message Time JULD_LAST_MESSAGE 
JULD_LAST_MESSAGE_STATU
S 

Latest time of all messages received 
by telecommunications system 

TET 800 Transmission End Time JULD_TRANSMISSION_END 
JULD_TRANSMISSION_END_S
TATUS 

Time when floats stops transmitting. 

Table 1: Descriptions of cycle times shown in the previous figure 



20 

Argo data management                                      Argo DAC trajectory cookbook 

All these times are in both the N_MEASUREMENT and the N_CYCLE variable groups of the 

TRAJ file. These times should be included in chronological order in both the cases. This means 

events may not occur in the same order as in the table above, as it is developed around an Argos 

float.  For an Iridium float with a GPS fix taken before starting Iridium transmission, the 

measurement codes at the surface might look like this:  703, 700, 702, 704, 800 

The main times of a cycle can be separated in two parts: 

• Positioning and transmission system times: FMT, FLT, LLT and LMT, 

• Times of float events: the other ones. 

The trajectory file checker will be checking for ascending times in JULD and JULD_ADJUSTED.  

Due to float clock drift, the times from the float cannot be compared to times reported by the satellite 

systems to check for ascending times in JULD and JULD_ADJUSTED.  Therefore, two ascending 

time checks will be done on JULD and JULD_ADJUSTED.  One check for ascending times in JULD 

and JULD_ADJUSTED for times associated with the float (ie, *STATUS flags equal to 1, 2, or 3).  

The second check would be for ascending times in JULD and JULD_ADJSUTED for times not 

associated with the float (ie, *STATUS flags equal to 4).   

2.2.1 Positioning system and transmission system times 

The FMT, FLT, LLT and LMT times only depend on the positioning system and the transmission 

system used by the float. Additionally, the order these times and positions occur in chronologically 

depends on the system being used. The order is completely different for Argos than for Iridium and in 

many cases of Iridium usage, there is only a single position and time fix during the entire surfacing 

period. In addition, for Iridium floats with RUDICS, there is usually no additional timing information 

available detailing when Iridium first sent a transmission or when the final transmission was sent.  So, 

for Iridium floats which send back only timing associated with the position fix(s) measurement codes 

(FMT/702 and LMT/704) are not used.  For Iridium floats which send back additional timing 

information like when the first transmission started or when the last transmission ended, please fill all 

FMT/702 and LMT/704.   

2.2.1.1 For Argos floats 

See Annex A for Argos message time and Argos location time illustration as received from CLS. 

Status variables should be a "4 (value is determined by satellite)". 

2.2.1.1.1 First and last message times 

All Argos message times should be collected and the maximum and minimum values stored as FMT 

and LMT (we cannot assume that data are received from CLS in chronological order). 

If only one message has been received for a given cycle, its time should be duplicated in FMT and 

LMT. 

NOTE: Some DACs already store FMT and LMT in the TRAJ file but some of them are erroneous 

because they correspond to ghost Argos messages. 

As reliable FMTs and LMTs are crucial for other times estimation (such as APEX DST), we must 

think of a robust method to reject these ghost messages in real time. 

The best method for now is for floats which use a CRC in their Argos messages, to use in FMT and 

LMT only Argos messages that passed the CRC check. From AOML: [For known cycle times one can 

use that information plus an analysis of all cycles in the raw data to identify ghosts. We developed a 

program for this, but are not yet using it in operations. We could share that program with others once 

we are convinced it works.] 



21 

Argo data management                                      Argo DAC trajectory cookbook 

2.2.1.1.2 First and last location times 

All Argos location times should be collected and the maximum and minimum values stored as FLT 

and LLT (we cannot assume that data are received from CLS in chronological order). 

If only one location has been computed for a given cycle, its time should be duplicated in FLT and 

LLT. 

2.2.1.2 For Iridium floats 

The chronological order of the events on the surface does not follow the numerical order from the 

measurement code table which was designed more with the Argos system in mind. For example, 

usually the GPS fix comes first and then the float begins transmitting to Iridium.  Often several 

messages are sent to and received from Iridium and then the float stops transmitting.  If there are times 

associated with the transmissions sent by Iridium (SBD floats and some others), , following the 

chronological order of the times, the measurement codes would be 703, 700, 702, 704, 800.  For 

Iridium floats that do not send times associated with transmissions sent by Iridium, (usually RUDICS), 

the measurement codes would be 703,700, 800.    

2.2.1.2.1 First and last message times 

For NEMO and SOLO floats 

Use the "Time of Session" information, provided in all the Iridium e-mails received for each cycle, as 

the float message time. 

For NAVIS floats 

For Iridium, there are two values transmitted that replace the Argos transmission times. When the float 

reaches the surface, it acquires a GPS position. The time to do this is represented by TTFF (in 

seconds). After the GPS is acquired, then the Iridium transceiver is activated. The SBDT is the 

transmission time of the first Iridium packet (housekeeping packet). This is to give an indication of the 

transmission throughput as the housekeeping is a constant size as opposed to the other packets. After 

completion of the transmission, a satellite check is done to look for incoming commands. If there is 

one, it is processed and then the float starts its next profile. Note that SBDT refers to the previous 

profile, not the current one, as it is calculated AFTER the Iridium transmission takes place. 

First Message Time is TST + TTFF. 

Last Message Time is the same as LLT. 

For NOVA floats 

For Iridium, there are two values transmitted that replace the Argos transmission times. When the float 

reaches the surface, it acquires a GPS position. The time to do this is represented by TTFF (in 

seconds). After the GPS is acquired, then the Iridium transceiver is activated. The SBDT is the 

transmission time of the first Iridium packet (housekeeping packet). This is to give an indication of the 

transmission throughput as the housekeeping is a constant size as opposed to the other packets. After 

completion of the transmission, a satellite check is done to look for incoming commands. If there is 

one, it is processed and then the float starts its next profile. Note that SBDT refers to the previous 

profile, not the current one, as it is calculated AFTER the Iridium transmission takes place. 

First Message Time is TST + TTFF. 

Last Message Time is the same as the FMT - there is only one GPS fix. 



22 

Argo data management                                      Argo DAC trajectory cookbook 

For PROVOR  and APEX floats 

For Iridium SBD floats, use the "Time of Session" information, provided in all the Iridium e-mails 

received for each cycle, as the float message time. 

For Iridium RUDICS floats, no first and last message time is available, so these are not included in the 

trajectory file.   

2.2.1.2.2 First and last location times 

All Iridium location times should be collected and the maximum and minimum values stored as FLT 

and LLT. 

If only one location has been collected for a given cycle, its time should be duplicated in FLT and 

LLT. 

  



23 

Argo data management                                      Argo DAC trajectory cookbook 

2.2.2 Times of float events 

Each float type, and sometimes each model of float type, has different instructions on how to fill in the 

timing variables in the trajectory file. Remember that all mandatory cycle timing variables must be 

filled and are in both the N_MEASUREMENT and N_CYCLE arrays. If it is not possible to fill this 

time, even by an estimation, fill value must be used in both arrays. 

2.2.3 APEX floats 

2.2.4 APEX floats with the APF8 controller board 

The cycle timing information transmitted by APEX floats with the APF8 controller board is limited, so 

no event times are directly available.  

 

To compute or estimate the cycle times for APF8 floats, we must use "external" methods based on the 

float functioning. Some of the same methods can be used for the APF9a or APF9t floats, but should 

not replace the transmitted times.   

Two main methods have developed (from work done for ANDRO) to be efficient and may be robust 

enough to be implemented in real time.   

• The first one, based on float functioning, can be used to estimate TET, 

• The second one, based on float transmission strategy, can be used to compute TST. 

The first method to compute TET seems less robust for real time application and some DACs 

may choose not to estimate TET in real time.  If this is the case, then the delayed mode operator 

may choose to estimate a TET in delayed mode where more time can be spent visually inspecting 

each float’s TET estimate.  Even though this is a mandatory time, if the DAC or delayed mode 

operator feels that no time can be estimated accurately enough in delayed mode, the time should 

be left as fill value. 

The second method, based on float transmission strategy, relies on the raw Argos messages the 

DAC receives.  This method is also an estimate, but it is currently being implemented in some 

manner at the DACs.   There are a few different methods to make the estimate and thus, DACs 

may do it differently.  This document is including the recommended method that improves on 

the one from TWR. 

Other event times can be (roughly for some of them) estimated from TET or TST and float parameters 

and/or in situ data statistical results.   

This is the case for: 

• DST, DET and PET which are determined from TET, 

• AET and AST which are determined from TST. 

Again, if the TET is fill value in real time or delayed mode, then DST, DET and PET will be also 

fill value.  This is determined by the DACs and delayed mode operator. 

If float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET-

(N_CYCLE) variable and the JULD_ADJUSTED variables so users know it has been applied. 

Argo program measurement codes (MC) for APEX APF8 floats in REAL TIME 

Code (timing) APF8  Variable Description Units JULD_STATUS 



24 

Argo data management                                      Argo DAC trajectory cookbook 

0 Float does not know 
when it is launched.  If 
the launch time and 
location are available 
from the ship, enter 
that time and location If 
the launch time and 
location are not 
available, use fill value.  

Launch time and 
location 

Time, position 0:  value is estimated from pre-
deployment information found in 
the metafile  
Or 
9:  value is not immediately 
known, but believe it can be 
estimated later 

100 (DST) TET from previous cycle 
OR 
Fill Value 

If TET is estimated in 
real time, use the TET 
from previous cycle.   
OR 
If TET is not estimated 
in real time, use 
FillValue 

Time 1: value is estimated using 
information not transmitted by 
the float or by procedures that 
rely on typical float behaviour  
OR 
9:  value is not immediately 
known, but believe it can be 
estimated later 

200 (DET) Not available, so use Fill 
Value 
 

  9: value is not immediately 
known, but believe it can be 
estimated later 

250 (PST) Not available, so use Fill 
Value 
 

  9: value is not immediately 
known, but believe it can be 
estimated later 

During the drift phase, the APF8 makes drift measurements.  Common codes are listed below.  See 3.4.1.1 for CTD 
measurements during drift for APEX floats   

296 Average pressure 
Average temperature 

Any averaged 
measurements made 
during drift 

Pressure 
Temp 

9: value is not immediately 
known, but believe it can be 
estimated later 

297 Minimum pressure 
Minimum temperature 

Minimum value taken 
during drift 

Pressure 
Temp 

9: value is not immediately 
known, but believe it can be 
estimated later 

298 Maximum pressure 
Maximum temperature 

Maximum value taken 
during drift 

Pressure 
Temp 

9: value is not immediately 
known, but believe it can be 
estimated later 

End of drift measurements 

300 (PET) Not available, so use Fill 
Value 
 
CTD performed at end of 
drift 

 Time 
 
 
P, T, S 

9: value is not immediately 
known, but believe it can be 
estimated later 
 

301 Average pressure during 
drift 

Best estimate of drift 
depth.  See section 
2.4.2  for more details 

Pressure 9: value is not immediately 
known, but believe it can be 
estimated later 

400 (DDET) Not available, so use Fill 
Value 
 

  9: value is not immediately 
known, but believe it can be 
estimated later 

500 (AST) If PARK and PROFILE 
depths are equal and TET 
is estimated in real time: 
AST(i)=TET(i) – UP TIME 
OR 
FillValue  

 
See 2.2.4.10 

Time 1: value is estimated using 
information not transmitted by 
the float or by procedures that 
rely on typical float behaviour  
OR 
9:  value is not immediately 
known, but believe it can be 
estimated later 

501  DownTimeEpoch/UNIX 
epoch when the down-
time expired 

Down-time end time – 
time out 

Time 2: value is transmitted by the 
float  

502 Time of profile initiation 
provided in auxiliary 
engineering data See 
2.2.4.9 
ASTFL = DTETFL + TPI 
minutes 

 Time 3: value is directly computed 
from relevant, transmitted float 
information 



25 

Argo data management                                      Argo DAC trajectory cookbook 

600 (AET) Float does not know 
when it reaches the 
surface, so Fill Value 

 Time 9:  value is not immediately 
known, but believe it can be 
estimated later 

602 Time of MC=701 minus 
10 minutes 

 Time 3: value is directly computed 
from relevant, transmitted float 
information 

700 (TST) See section 2.2.4.11 & 4 Based on Argos 
messages 

Time 3: value is directly computed 
from relevant, transmitted float 
information  

701 TST sent by 
APEX floats 

TSTFL = DTETFL + TOTPI 
minutes 

See 2.2.4.13 Time 3: value is directly computed 
from relevant, transmitted float 
information 

702 (FMT) Earliest time of all Argos 
messages received 

Time Time 4:  value is determined by 
satellite 

703 (ST) All Argos times and 
locations 

 Time, Position 4:  value is determined by 
satellite 

704 (LMT) Latest time of all Argos 
messages received 

 Time 4:  value is determined by 
satellite 

800 (TET) 2.2.4.1 and ANNEX B: 
Transmission End Time 
estimation for an APEX 
Argos float 
OR 
FillValue 

DACs can choose to 
make this estimate in 
real time or not.  
Annex B explains how 
to make the estimate.  
2.2.4.1 gives guidance 
how to implement the 
method in Annex B 

Time 1: value is estimated using 
information not transmitted by 
the float or by procedures that 
rely on typical float behaviour  
OR 
9:  value is not immediately 
known, but believe it can be 
estimated later 

 

Argo program measurement codes (MC) for APEX APF8 floats in DELAYED MODE 

Code (timing) APF8  Variable Description Units JULD_STATUS 

0 Float does not know 
when it is launched.  If 
the launch time and 
location are available 
from the ship, enter 
that time and location If 
the launch time and 
location are not 
available, use fill value.  

Launch time and 
location 

Time, position 0:  value is estimated from pre-
deployment information found in 
the metafile  
Or 
9:  value is not immediately 
known, but believe it can be 
estimated later 

100 (DST) TET from previous cycle 
OR 
Fill Value 

If TET is estimated in 
delayed mode, use the 
TET from previous 
cycle.   
OR 
If TET is not estimated 
in real time, use 
FillValue 

Time 1: value is estimated using 
information not transmitted by 
the float or by procedures that 
rely on typical float behaviour  
OR 
9:  value is not immediately 
known, but believe it can be 
estimated later 

200 (DET) Not available, so use Fill 
Value 
 

  9: value is not immediately 
known, but believe it can be 
estimated later 

250 (PST) PST estimated from 
2.2.4.4 
OR 
FillValue 
 

See 2.2.4.4 for details Time 1: value is estimated using 
information not transmitted by 
the float or by procedures that 
rely on typical float behaviour  
OR 
9:  value is not immediately 
known, but believe it can be 
estimated later 

During the drift phase, the APF8 makes drift measurements.  Common codes are listed below.  See 3.4.1.1 for CTD 
measurements during drift for APEX floats   

296 Average pressure 
Average temperature 

Any averaged 
measurements made 

Pressure 
Temp 

9: value is not immediately 
known, but believe it can be 



26 

Argo data management                                      Argo DAC trajectory cookbook 

during drift estimated later 

297 Minimum pressure 
Minimum temperature 

Minimum value taken 
during drift 

Pressure 
Temp 

9: value is not immediately 
known, but believe it can be 
estimated later 

298 Maximum pressure 
Maximum temperature 

Maximum value taken 
during drift 

Pressure 
Temp 

9: value is not immediately 
known, but believe it can be 
estimated later 

End of drift measurements 

300 (PET) PET estimated from 
2.2.4.5 
OR 
 Fill Value 
 
CTD performed at end of 
drift 

See 2.2.4.5 for details 
on how to estimate 
PET 

Time 
 
 
 
 
P, T, S 

1: value is estimated using 
information not transmitted by 
the float or by procedures that 
rely on typical float behaviour  
OR 
9:  value is not immediately 
known, but believe it can be 
estimated later  

301 Average pressure during 
drift 

Best estimate of drift 
depth.  See section 
2.4.1.1for more 
details 

Pressure 9: value is not immediately 
known, but believe it can be 
estimated later 

400 (DDET) Not available, so use Fill 
Value 
 

  9: value is not immediately 
known, but believe it can be 
estimated later 

500 (AST) If PARK and PROFILE 
depths are equal and TET 
is estimated: 
AST(i)=TET(i) – UP TIME 
OR 
AST estimated from 
2.2.4.10 
 
OR 
 
FillValue  

See 2.2.4.10 
 
OR 
 
5 

Time 1: value is estimated using 
information not transmitted by 
the float or by procedures that 
rely on typical float behaviour  
OR 
1: value is estimated using 
information not transmitted by 
the float or by procedures that 
rely on typical float behaviour  
OR 
9:  value is not immediately 
known, but believe it can be 
estimated later 

501  DownTimeEpoch/UNIX 
epoch when the down-
time expired 

Down-time end time – 
time out 

Time 2: value is transmitted by the 
float  

502 Time of profile initiation 
provided in auxiliary 
engineering data.  See 
2.2.4.9 
ASTFL = DTETFL + TPI 
minutes 

 Time 3: value is directly computed 
from relevant, transmitted float 
information 

600 (AET) Float does not know 
when it reaches the 
surface, so Fill Value 

 Time 9:  value is not immediately 
known, but believe it can be 
estimated later 

602 Time of MC=701 minus 
10 minutes 

 Time 3: value is directly computed 
from relevant, transmitted float 
information 

700 (TST) See section 2.2.4.11 & 4 Based on Argos 
messages 

Time 3: value is directly computed 
from relevant, transmitted float 
information  

701 TST sent by 
APEX floats 

TSTFL = DTETFL + TOTPI 
minutes 

See 2.2.4.13 Time 3: value is directly computed 
from relevant, transmitted float 
information 

702 (FMT) Earliest time of all Argos 
messages received 

Time Time 4:  value is determined by 
satellite 

703 (ST) All Argos times and 
locations 

 Time, Position 4:  value is determined by 
satellite 

704 (LMT) Latest time of all Argos  Time 4:  value is determined by 



27 

Argo data management                                      Argo DAC trajectory cookbook 

messages received satellite 

800 (TET) 2.2.4.1 and ANNEX B: 
Transmission End Time 
estimation for an APEX 
Argos float 
OR 
FillValue 

Delayed mode 
operators can choose 
to make this estimate 
in real time or not.  
Annex B explains how 
to make the estimate.  
2.2.4.1 gives guidance 
how to implement the 
method in Annex B 

Time 1: value is estimated using 
information not transmitted by 
the float or by procedures that 
rely on typical float behaviour  
OR 
9:  value is not immediately 
known, but believe it can be 
estimated later 

 

2.2.4.1 Transmission End Time determination – APEX APF8 floats 

The TET can be estimated with the method proposed in §3.3. In this Annex B, two methods are 

proposed for finding TET depending on whether or not clock offset has been estimated. In order to 

ensure that these estimation methods are as robust as possible, the metadata information going into 

them (cycle time, whether the float is a Deep Profile First float, etc) must be correct.  A list has been 

compiled by J.P. Rannou of corrected meta data for floats used in the ANDRO Atlas work.  This file, 

found at ftp://ftp.ifremer.fr/ifremer/argo/etc/coriolis-custom/argo-andro-data/metadata_admt14/) (see 

http://www.argodatamgt.org/Documentation/Delayed-mode-trajectories-recovered-from-Andro-

project for details), may be a good place to start to confirm the metadata for many APEX floats.    If 

the DAC and/or delayed mode operator wishes to estimate the TET, thefollowing steps should be 

taken: 

• Correct clock drift at launch for clocks which have not been correctly set, 

• Estimate TET using the first algorithm (without clock drift estimation) for the first 32 cycles, 

• From cycle #33, estimate the clock drift: 

o If it is less than 20 minutes per year, estimate TET using the second algorithm (with 

clock drift estimation) for all float cycles, 

o If it is greater than 20 minutes per year, there was an unexpected behavior of the float 

and the TET should not be estimated. 

For more details, refer to Annex B. 

Regardless of whether clock offset has been estimated during the TET determination, the resulting 

values should be stored in the JULD_ADJUSTED variable in the N_MEASUREMENT array with the 

measurement code set to 800 and STATUS set to 1: value is estimated using information not 

transmitted by the float or by procedures that rely on typical float behavior 

N_CYCLE arrays: TET value should be stored in the JULD_TRANSMISSION_END variable and the 

JULD_TRANSMISSION_END_STATUS set to 1. 

If float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET 

(N_CYCLE) variable so users know it has been applied.  

If the DAC and/or delayed mode operator does not choose to estimate the TET, then fill value should 

be inserted into the JULD variable in the N_MEASUREMENT array with the measurement code set 

to 800 and the STATUS set to 9.   

N_CYCLE arrays: fill value should be stored in the JULD_TRANSMISSION_END variable and the 

JULD_TRANSMISSION_END_STATUS set to 9. 

 

2.2.4.2 Descent Start Time determination – APEX APF8  

DST = TET from previous cycle for all APEX floats. 

ftp://ftp.ifremer.fr/ifremer/argo/etc/coriolis-custom/argo-andro-data/metadata_admt14/
http://www.argodatamgt.org/Documentation/Delayed-mode-trajectories-recovered-from-Andro-project
http://www.argodatamgt.org/Documentation/Delayed-mode-trajectories-recovered-from-Andro-project


28 

Argo data management                                      Argo DAC trajectory cookbook 

2.2.4.3 Descent End Time determination – APEX APF8 

APEX floats do not measure or estimate pressure on their descent, so the time when the float first 

approaches within 3% of the eventual drift pressure cannot be calculated. Nothing is entered into the 

JULD variable in the N_MEASUREMENT array because the float cannot measure or estimate the 

pressure on descent.   

If, during delayed mode processing, it is determined that  the float overshoots the drift pressure on 

descent, DET is the time of the overshoot. This time can be entered into the JULD variables in the 

N_MEASUREMENT array with an MC=200 and a STATUS equal to 2: value is transmitted by the 

float. 

2.2.4.4 Park Start Time determination – APEX APF8 in Delayed Mode 

For non APF9 APEX floats, the PST can be roughly estimated using the DST and the duration of the 

descent to PARKING depth.   One way to estimate the PST is to use the mean descent rate as 

described in Annex I.  DACs and delayed mode operators can choose if they want to use this 

method to estimate the PST, but it should be done in delayed mode. 

If estimated in delayed mode, the PST value should be stored in the JULD_PARK_START variable 

and the JULD_PARK_START_STATUS set to 1 (estimated using procedures that rely on typical float 

behavior). 

If float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET 

(N_CYCLE) variable so users know it has been applied. 

In real time or if no estimate is made, fill value should be stored in the JULD variable in the 

N_MEASUREMENT array with the measurement code set to 250 and the STATUS set to 9. 

N_CYCLE arrays: fill value should be stored in the JULD_PARK_START variable and the 

JULD_PARK_START_STATUS set to 9. 

 

2.2.4.5 Park End Time determination – APEX APF8 

For Argos APEX floats, PET can be computed from TET.  This is not done in real time, but can be 

estimated later.  See Annex I for more details. 

  

2.2.4.6 Deep Descent End Time determination – APEX APF8 

For Argos APEX floats, DDET could be estimated from PET and the mean descent velocity estimated 

for DET determination. 

However: 

• Deep descent velocity is not necessarily the same as the mean velocity between the surface 

and the PARKING depth, 

• We have no in situ pressure measurements between PET and DDET from APEX floats, 

• DDET is not as important as DET. 

Consequently, DDET should not currently be required to be estimated for APEX Argos floats. 

However, because DDET might be estimated at a later date, fill value should go in the 

N_MEASUREMENT array with an MC = 400 and STATUS code of 9: value is not immediately 

known, but believe it can be estimated later 



29 

Argo data management                                      Argo DAC trajectory cookbook 

For the N_CYCLE array, JULD_DEEP_DESCENT_END = fill value as does 

JULD_DEEP_DESCENT_END_STATUS. 

. 

2.2.4.7 Ascent Start Time determination – APEX APF8 

2.2.4.8 Argos APEX floats that do not provide this time 

If the PARKING and PROFILE depths are equal for cycle #i, then: 

 AST(i) = TET(i) - UP TIME 

If not, we can however roughly estimate AST using AET and the profile duration.  See Annex J for 

more details. 

  

If estimated, the AST value should also be stored in the JULD_ADJUSTED variables with an MC = 

500 and STATUS set to 1: value is estimated using information not transmitted by the float or by 

procedures that rely on typical float behaviour. Apply clock offset if it has been determined. 

For the N_CYCLE array, the AST value should be stored in the JULD_ASCENT_START variable 

and the JULD_ASCENT_START_STATUS set to 1. If float clock offset has been estimated and 

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been 

applied. 

If the AST value is not estimated, fill value should be stored in the JULD variable with an MC=500 

and STATUS set to 9.   

N_CYCLE arrays: fill value should be stored in the JULD_ASCENT_START variable and the 

JULD_ASCENT_START_STATUS set to 9. 

 

2.2.4.9 Ascent Start Time provided by APEX floats 

Some float directly provide the time at the end of DOWN TIME period (DTETFL). 

These float versions also provide, in the Auxiliary Engineering Data (AED), the "Time of profile 

initiation". This information is defined as the time difference, in minutes, between profile start and end 

of DOWN TIME (negative for start before expiration and positive for start after expiration, thus in this 

latter case, necessarily when TOD feature has been set). 

The Auxiliary Engineering Data are not always transmitted (depending on the remaining space in the 

last Argos message) but if received, this "Time of profile initiation" (TPI) can be used to compute a 

second value of AST provided by the float (ASTFL). 

ASTFL = DTETFL + TPI minutes 

ASTFL value computed from DTETFL (corrected from clock offset) does not need to be corrected from 

clock offset but the information should be set in the ASTFL storage. 

ASTFL is stored in the JULD_ADJUSTED N_MEASUREMENT arrays with the MC = 502 and the 

STATUS equal to 3: value is computed from information transmitted by the float. Clock offset has 

been applied in the DTETFL variable. 



30 

Argo data management                                      Argo DAC trajectory cookbook 

2.2.4.10 Ascent End Time determination – APEX APF8 

For APEX APF8 floats, the AET is not fully determined and cannot be estimated with a simple 

formula.   

Fill value  should be stored in the JULD  variables in the N_MEASUREMENT array with an MC = 

600 and STATUS set to 9.For the N_CYCLE array, fill  value should be stored in the 

JULD_ASCENT_END variable and the JULD_ASCENT_END set to 9.  

 

2.2.4.11 Transmission Start Time determination – APEX APF8 

Some APEX floats provide the time at the end of the DOWN TIME period.  For these float types, it is 

possible to compute a TST based on the DOWN TIME and to compute a TST based on Argos 

transmission or GTS fixes.  In real time, it is difficult to know which method to compute TST is better 

because there may be problems with either the onboard clock (affecting the DOWN  TIME) or the 

actual Argos transmission (affecting the alternate method to calculate TST).  Therefore, it is best to 

compute TST using both methods in real time (going into MC=700 and MC=701).  In delayed-mode, 

an expert can examine the TST values and determine which is best.  The best value of TST should 

always go in MC=700 in delayed mode.  This might mean copying over the value in MC=701 if that 

value is determined to be better in delayed mode.  Both methods are outlined below. 

2.2.4.12 Argos APEX floats 

The TST can be computed with the method proposed in §4.2. 

The TST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 700 and STATUS set to 3: value is directly computed 

from relevant, transmitted float information. 

For the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable 

and the JULD_TRANSMISSION_START_STATUS set to 3. If the float clock offset has been 

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know 

it has been applied. 

2.2.4.13 Transmission Start Time provided by APEX Argos floats 

Some float versions directly provide the time at the end of the DOWN TIME period (DTETFL). 

If the float clock offset has been estimated during the TET determination, DTETFL value should first 

be corrected for clock offset and the information should also be set in the DTETFL storage. 

DTETFL is included in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 701 STATUS set to 2: value is transmitted by the float. 

These float versions also provide the time, in minutes, of telemetry phase initiation relative to DTETFL 

(TOTPI). 

Thus a TST, provided by the float, can be computed: TSTFL = DTETFL + TOTPI minutes 

TSTFL value computed from DTETFL (corrected for clock offset) does not need to be corrected for 

clock offset but the information should be set in the TSTFL storage. 

TSTFL is included in the JULD ( or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 701 and STATUS set to 3: value is directly computed 

from relevant, transmitted float information. 



31 

Argo data management                                      Argo DAC trajectory cookbook 

2.2.5 APEX floats with the APF9a or APF9t controller 

APEX floats equipped with most APF9a or APF9t controller boards have begun to address the lack of 

transmitted cycle timing by transmitting timing information both in the mission prelude (cycle 0) and 

each cycle.  Some of this timing information may be in the Auxiliary Engineering data. The four 

timing specifications that are transmitted during cycle 0 are: 

• ParkDescentPeriod 

• DeepProfileDescentPeriod 

• DownIntervals 

• UpIntervals 

 

In addition, two time stamps are transmitted from each cycle: 

• DownTimeEpoch 

• TelemetryEpoch 

 

These times should be used to calculate other cycle timing variables and stored in the TRAJ file with 

the appropriate *_STATUS flag to reflect that the timing information is transmitted or calculated from 

transmitted information.  If none of this timing information is available in the Auxiliary Engineering 

data and the APF9 float is an early version, please refer back to the APF8 instructions. 

 

2.2.5.1   Auxiliary Engineering Data (AED) 

The Auxiliary Engineering Data (AED) includes the "Time of profile initiation". This information is 

defined as the time difference, in minutes, between profile start and end of DOWN TIME (negative for 

start before expiration and positive for start after expiration, thus in this latter case, necessarily when 

TOD feature has been set). 

The AED are not always transmitted (depending on the remaining space in the last Argos message) but 

if received, this "Time of profile initiation" (TPI) can be used to compute the value of AST provided 

by the float (ASTFL). 

AST =DownTimeEpoch(ToD for down-time expiration)minutes + TPI minutes 

The AST value computed from DownTimeEpoch (corrected from clock offset) does not need to be 

corrected from clock offset but the information should be set in the AST storage. 

AST is stored in the JULD_ADJUSTED N_MEASUREMENT arrays with the MC = 500 and the 

STATUS equal to 3: value is computed from information transmitted by the float. Clock offset has 

been applied in the DownTimeEpoch variable. 

The descending pressure marks are also included in the Auxiliary Engineering Data and they are 

measured in bar.  These pressure marks can be entered in the JULD (N_MEASUREMENT) variable 

with a measurement code of 189 or 190 and a STATUS flag of 2:  value is transmitted by the float. 

APEX APF9a and APF9t floats provide the time at the end of the DOWN TIME period 

(DownTimeEpoch or ToD for down-time expiration).  For these float types, it is possible to compute a 

TST based on the DOWN TIME and to compute a TST based on Argos transmission (described in 

6.2).  In real time, it is difficult to know which method to compute TST is better because there may be 

problems with either the onboard clock (affecting the DOWN  TIME) or the actual Argos transmission 

(affecting the alternate method to calculate TST).  Therefore, it is best to compute TST using both 

methods in real time (going into MC=700 and MC=701).  In delayed-mode, an expert can examine the 

TST values and determine which is best.  The best value of TST should always go in MC=700 in 



32 

Argo data management                                      Argo DAC trajectory cookbook 

delayed mode.  This might mean copying over the value in MC=701 if that value is determined to be 

better in delayed mode.   

 

Argo program measurement codes (MC) for APEX APF9a or APF9t 

Code (timing) APF9a or APF9t 
Variable 

Description Units JULD_STATUS 

0 Float does not know 
when it is launched.  If 
the launch time and 
location are available 
from the ship, enter 
that time and location If 
the launch time and 
location are not 
available, use fill value.  

Launch time and 
location 

Time, position 0:  value is estimated from pre-
deployment information found in 
the metafile  
Or 
9:  value is not immediately 
known, but believe it can be 
estimated later 

100 (DST) DownTimeEpoch - 
DownIntervals 

Down 
TimeExpiredEpoch from 
current message cycle 
minus Down Time 
interval from cycle 0 
message. Notice one 
time is in days another 
in hours or minutes. 

Time  
DownTimeEpoch 
from N 
Down Time 
interval from Cy 0 

3: value is directly computed 
from relevant, transmitted float 
information 

If an APEX isopycnal float 

189 Descent() 
Pressure: XX.X  
Found in Auxiliary 
Engineering data, so 
sometimes not available 
every cycle 

Descending CTD 
measurements starting 
at a programmed time 
after DST (often six 
hours) and following 
every 60 minutes 

Time 
Pressure (bars) 

3: value is directly computed 
from relevant, transmitted float 
information  
OR 
9:  value is not immediately 
known, but believe it can be 
estimated later 

Endif an APEX isopycnal float 

190 Descent()   
Pressure: XX.X 
Found in Auxiliary 
Engineering data, so 
sometimes not available 
every cycle 

Descending CTD 
measurements starting 
at a programmed time 
after DST (often six 
hours) and following 
every 60 minutes.  See 
section 2.4.3.2 for more 
details 

Time 
Pressure (bars) 

3: value is directly computed 
from relevant, transmitted float 
information  
OR 
9:  value is not immediately 
known, but believe it can be 
estimated later 

200 (DET) Not available, so use Fill 
Value 
 

  9: value is not immediately 
known, but believe it can be 
estimated later 

250 (PST) DST + 
ParkDescentPeriod 

Descent Start Time 
from above plus Park 
Descent Period from 
Cycle 0.  Notice one 
time is in days another 
in hours. 
 
Note that this is a time-
out value and does not 
indicate when float 
actually stabilizes at 
drift pressure. 

Time 
DST from N 
Park Descent 
Period from Cy 0 

1: value is estimated using 
information not transmitted by 
the float or by procedures that 
rely on typical float behaviour 

During the drift phase, the APF9a and APF9t floats measure time pressure and temperature hourly, but these are not reported.  
Instead, a statistical pack of information is sent and the following measurement codes may apply.  Please check all the relative 
MCs for transitioning towards MC300 to see which are appropriate  

296 Average pressure 
Average temperature 

Any averaged 
measurements made 
during drift 

Pressure 
Temp 

9:  value is not immediately 
known 



33 

Argo data management                                      Argo DAC trajectory cookbook 

286 Any supporting 
measurements for 
average measurements.  
An example is pressure 
at average temperature 

 Pressure 
Temp 

9:  value is not immediately 
known 

295 Median pressure 
Median temperature 

Median of 
measurements made 
during drift 

Pressure 
Temp 

9:  value is not immediately 
known 

285 Any supporting 
measurements for the 
median measurements.  
An example is pressure 
at median temperature 
  

 Pressure 
Temp 

9:  value is not immediately 
known 

294 Standard deviation of 
measurements taken 
during drift 

 Pressure 
Temp 

9:  value is not immediately 
known 

297 Minimum pressure 
Minimum temperature 

Minimum value taken 
during drift 

Pressure 
Temp 

9:  value is not immediately 
known 

298 Maximum pressure 
Maximum temperature 

Maximum value taken 
during drift 

Pressure 
Temp 

9:  value is not immediately 
known 

287 Pressure at minimum 
temperature 

 Pressure 9:  value is not immediately 
known 

288 Pressure at maximum 
temperature 

 Pressure 9:  value is not immediately 
known 

End of drift measurements 

300 (PET) DOWN TIME EXPIRED 
EPOCH (GMT)    
minus  
DEEP PROFILE DESCENT 
PERIOD (HOURS)      

Down 
TimeExpiredEpoch 
from current message 
cycle minus Deep 
Profile Descent Period 
from cycle 0 message. 
Notice one time is in 
days another in hours. 

Time 
DST from N 
Deep Profile 
Descent Period 
from Cy 0 

3: value is directly computed 
from relevant, transmitted float 
information 

301 Average pressure during 
drift 

Best estimate of drift 
depth  

Pressure 9:  value is not immediately 
known, but believe it can be 
estimated later 

400 (DDET) Same as AST  Time 2:  value is transmitted by the 
float 

500 (AST) DOWN TIME EXPIRED 
EPOCH (GMT)    
plus 
TIME INITIATED TO 
EPOCH (MINUTES)        
 
Sent in Auxiliary 
engineering data which is 
not always available.  See 
section 2.2.5.1 

Time that float 
actually starts 
ascending;  Can be 
the same as the 
DownTimeEpoch if the 
float times out before 
reaching profile 
pressure.  Otherwise, 
float begins to ascend 
as soon as profile 
pressure is reached 

Time 2: value is transmitted by the 
float  

501  DownTimeEpoch/UNIX 
epoch when the down-
time expired/ToD for 
downtime expiration 

Down-time end time – 
time out 

Time (minutes) 2: value is transmitted by the 
float  

600 (AET)  700 minus 10 minutes Assume that float 
finishes ascent ten 
minutes before 
transmission start 
time 

Time 
N 

9:  value is not immediately 
known, but believe it can be 
estimated later 

602 701 – 10 minutes  Time 3: value is directly computed 
from relevant, transmitted float 
information 



34 

Argo data management                                      Argo DAC trajectory cookbook 

700 (TST) See section 4 Based on Argos 
messages 

Time 3: value is directly computed 
from relevant, transmitted float 
information  

701 TST sent by 
APEX floats 

DOWN TIME EXPIRED 
EPOCH (GMT)    
Plus 
START OF 
TRANSMISSION FROM 
EPOCH         

See 2.2.4.13 Time 3: value is directly computed 
from relevant, transmitted float 
information 

702 (FMT) Earliest of all Argos 
messages received: 
 
    +99.999   +999.999 
2012/12/04  7:34:55  000   
A     0 

FillValue for 
LATITUDE 
FillValue for 
LONGITUDE 
JULD (First time from 
Argos) 
Unknown 
SATELLITE_NAME 
FillValue for 
POSITION_ACCURACY 
 

Degrees 
Degrees 
Time 
Unknown 
N/A 
N/A 
N 

4:  value is determined by 
satellite 

703 (ST) All Argos times and 
locations. 
    -32.440   -141.872 
2012/12/04  7:39:39   
015   A     2  
    -32.443   -141.881 
2012/12/04  8:31:22   
011   L     1  
    -32.439   -141.889 
2012/12/04  9:18:39   
010   A     1  
    -32.448   -141.874 
2012/12/04  9:33:48   
015   P     2  
    -32.446   -141.871 
2012/12/04 10:09:44   
007   N     1  
    -32.449   -141.855 
2012/12/04 11:18:52   
013   P     2  
    -32.448   -141.850 
2012/12/04 11:49:51   
009   N     2  
    -32.445   -141.830 
2012/12/04 13:33:44   
005   N     1  
    -32.441   -141.835 
2012/12/04 13:34:57   
006   K     1  
    -32.434   -141.807 
2012/12/04 15:16:00   
005   K     1  
    -32.423   -141.796 
2012/12/04 16:19:01   
007   M     3  
    -32.403   -141.789 
2012/12/04 18:13:44   
007   L     2  
    -32.402   -141.788 
2012/12/04 18:55:13   
011   A     3  
 

LATITUDE 
LONGITUDE 
JULD 
Unknown 
SATELLITE_NAME 
POSITION_ACCURACY 

Degrees 
Degrees 
Time 
Unknown 
N/A 
N/A 
N 

4:  value is determined by 
satellite 

704 (LMT) Latest time of all Argos 
messages received 
 
+99.999   +999.999 
2012/12/04 18:59:50   
000   A     0  
 

FillValue for 
LATITUDE 
FillValue for 
LONGITUDE 
JULD (Last time from 
Argos) 
Unknown 

Degrees 
Degrees 
Time 
Unknown 
N/A 
N/A 
N 

4:  value is determined by 
satellite 



35 

Argo data management                                      Argo DAC trajectory cookbook 

SATELLITE_NAME 
FillValue for 
POSITION_ACCURACY 
 

800 (TET) DOWN TIME EXPIRED 
EPOCH (GMT)    
Plus 
UP TIME INTERVALS 
(HOURS)                

 Time 3: value is directly computed 
from relevant, transmitted float 
information 

 

 

2.2.6 APEX floats with the APF9i controller and Seabird NAVIS floats 

 

 

2.2.6.1 Transmitted time stamp information from msg files 

Seabird Navis and some APEX floats equipped with the firmware revisions 072314 or later,  telemeter 

6 time stamps in the msg file from each cycle and these can be slotted directly into 6 Argo cycle 

timing variables.  

For each cycle, the 6 transmitted time stamps are: 

1. TimeStartDescent (DST):  This timestamp marks the initiation of buoyancy reduction with 

the intent to descend from the surface.  This means the start of the piston retraction at the 

beginning of the profile cycle.  The float cannot detect when it actually descends below the 

surface.   This closely matches DST, but can be wrong in some pathological cases like when a 

float never descends. If float clock offset has been estimated and applied, make sure to fill in 

the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2. TimeStartPark (PST):  This timestamp marks the phase transition from the park-descent 

phase to the park phase.  During the park-descent phase, there is no attempt to autoballast the 

float – it is simply in free fall for a user-specified period of time. Therefore, there is not 

necessarily any connection to when the float approaches neutral buoyonacy.  So it matches up 

with PST, but not DET. 

3. TimeStartProfileDescent (PET):  This timestamp is defined only if the Park-n-Profile (PnP) 

feature is enabled.  This timestamp marks the initiation of buoyancy reduction with the intent 

to descend from the park pressure to the profile pressure.  This means the start of the piston 

retraction at the beginning of the profile-descent phase.  The float cannot detect when it 

actually begins to descend.  If PnP is enabled, this timestamp matches PET well. 

4. TimeStartProfile (AST):  This timestamp marks the transition to the profile phase of the 

profile cycle.  This means the start of the initial piston extension by a user-specified amount.  

The float cannot detect when it actually begins to ascend.  In some pathological cases, the 

float may continue to descend until the ascent-control algorithm’s feedback mechanism 

compensates for any lingering negative buoyancy.  This timestamp comes closest to matching 

AST, but there are differences. 

5. TimeStopProfile (AET):  This timestamp marks the termination of the profile phase.  The 

phase transition is induced by one of two conditions:  either the surface detection algorithm 

has returned true or else the ascent timeout period has expired.  Typically this phase transition 

happens a few meters below the sea surface but this is not guaranteed.  In unusual cases the 



36 

Argo data management                                      Argo DAC trajectory cookbook 

phase transition can happen after surfacing or far below the surface.  This timestamp matches 

AET, but it is noted that it has requirement for being at the surface. 

6. TimeStartTelemetry:  This timestamp marks the initiation of the telemetry phase of the 

profile cycle and it can occur while the float is still subsurface.  The telemetry phase consists 

of well-defined telemetry cycles that are spaced apart by a user-defined period.  Each cycle 

starts with acquisition of a GPS fix and then an attempt to upload data.  Cycles continue until 

all data is successfully uploaded or until the telemetry phase times-out.  This most closely 

matchs TST, but is assigned MC = 701 since it is possible to determine the TST based on the 

time from the satellite messages. 

 

These transmitted information should be used to calculate other cycle timing variables (if the data is 

not available in the log files) and stored in the TRAJ file with the appropriate *_STATUS flag to 

reflect that the timing information is transmitted or calculated from transmitted information (see 

following section for details and table below). 

2.2.6.1  Descent Start Time 

DescentInit() from log file or TimeStartDescent from msg file (if available)  

If a time stamp is not available, DST can be calculated as described in the table below. 

2.2.6.2 Descent End Time (DET) 

From the log file, ‘Descent()’ time and pressure stamps.  

Use the first pressure value within 3% of the configured drift pressure, or if a float overshoots the 

configured pressure, use the first depth/time of the overshoot. In this case, the DET should be in the 

JULD (or JULD_ADJUSTED if clock offset has been applied) variables in the N_MEASUREMENT 

array with an MC = 200 and STATUS is then set to 2: Value is transmitted by the float. 

Alternatively, DET can be interpolated from a line fit to the curve of Descent() pressure vs time. 

Calculate time when pressure is within 3% of drift pressure. In this case, the DET should be in the 

JULD (or JULD_ADJUSTED if clock offset has been applied) variables in the N_MEASUREMENT 

array with an MC = 200 and STATUS set to 3: value is directly computed from relevant, transmitted 

float information. 

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_END variable and the 

JULD_DESCENT_END_STATUS set to 3 (computed from information transmitted directly by the 

float). If the float clock offset has been estimated and applied, make sure to fill in the 

CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

If the log file is unavailable, the DET = PST. Or, calculate DET from the .msg file using the values 

output with ParkDescentP. ParkDescentP[1] is always made at DST+1796 seconds. ParkDescentP[n] 

measurements are then made every 1800 seconds. The output is pressure rounded to the nearest bar. 

The most accurate way to calculate fall rate is from the change in pressure and the change in net 

seconds from the Descent() lines in the .log file. But it can be estimated from ParkDescentP[n] in the 

.log file. Pressure samples 1 to n are made 1800 seconds (30 minutes) apart. The value output by 

ParkDescentP is pressure rounded to the nearest bar. The time between ParkDescentP[0] and 

ParkDescentP[1] should not be used as the timing between the two samples is variable.   

2.2.6.3 Park End Time (PET) 

GoDeepInit() Or TimeStartProfileDescent 



37 

Argo data management                                      Argo DAC trajectory cookbook 

The PET should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 300 and STATUS set to 2: value is transmitted by float. 

In the N_CYCLE array, the value should be stored in the JULD_PARK_END variable and the 

JULD_PARK_END_STATUS set to 2. If the float clock offset has been estimated and applied, make 

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.6.4 Ascent Start Time (AST) and Deep Descent End Time (DDET) 

DDET is the same as AST (see next section). The DDET should be in the JULD (or 

JULD_ADJUSTED if clock offset has been applied) variables in the N_MEASUREMENT array with 

an MC = 400 and STATUS set to 2 or 3 depending on how AST is calculated. 

In the N_CYCLE array, the value should be stored in the JULD_PARK_END variable and the 

JULD_PARK_END_STATUS set to 2 or 3 depending on how AST is calculated. If the float clock 

offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable 

so users know it has been applied. 

2.2.6.5 Ascent Start Time 

ProfileInit()  Sample 0 initiated at XXXXX from the log file. Or TimeStartProfile from the msg 

file. AST can be calculated if neither is available (see table below). 

The AST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 500 and STATUS set to 2: value is transmitted by float. 

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_START variable and the 

JULD_ASCENT_START_STATUS set to 2: value transmitted by float. If the float clock offset has 

been estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users 

know it has been applied. 

When the time is estimated, the AST value should also be stored in the JULD_ADJUSTED variables 

in the N_MEASUREMENT arrays with an MC = 500 and STATUS set to 3: value is directly 

computed from relevant, transmitted float information.  

For the N_CYCLE array, the AST value should be stored in the JULD_ASCENT_START variable 

and the JULD_ASCENT_START_STATUS set to 1. If float clock offset has been estimated and 

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been 

applied. 

2.2.6.6 Ascent End Time (AET) 

SurfaceDetect() in the log file or TimeStopProfile in the msg file (if available). 

The AET should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 600 and STATUS set to 2: value is transmitted by float. 

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_END variable and the 

JULD_ASCENT_END_STATUS set to 2: value transmitted by float. If the float clock offset has been 

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know 

it has been applied. 

2.2.6.7 Transmission Start Time (TST) 

CLogin() or login() from the log file, or TimeStartTelemetry from the msg file (if available) 

The TST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 700 and STATUS set to 2: value is transmitted by float. 



38 

Argo data management                                      Argo DAC trajectory cookbook 

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable 

and the JULD_TRANSMISSION_START_STATUS set to 2: value is transmitted by float. If the float 

clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) 

variable so users know it has been applied. 

2.2.6.8 Transmission End Time (TET) 

This is the last time that the Telemetry() command is recorded 

The TET should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 800 and STATUS set to 2: value is transmitted by float. 

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_END variable and 

the JULD_TRANSMISSION_END_STATUS set to 2: value is transmitted by float. If the float clock 

offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable 

so users know it has been applied. 

 

Argo trajectory file measurement codes (MC) for APF9i and Seabird NAVIS floats 
 

Code 
(timing) 

Name in float data output Description Units and 
data 
profile 
number 

JULD_STATUS 

0 (launch) Best option is time, lat, long taken from 
metadata records on ship launch date/time.  
 
If not available, from *.000.msg file (this may 
be hours before float actually launched): 
 
# GPS fix obtained in 38 seconds. 
#         lon     lat mm/dd/yyyy hhmmss nsat 
Fix:  119.906 -60.007 12/15/2015 043710   10 
 

Launch time and 
location 
 
Occurs only once 
in a trajectory file. 

Time, position 
n = 0 

0 if taken from 
ship metdata 
 
2 if taken from 
000.msg file 

100 DST 
transmitted 
(first choice) 

Best option from APEX and NAVIS log files: 

(Jan 14 2016 04:45:15,       7 sec) 
DescentInit()        Deep profile 5 initiated at 
mission-time 853679sec. 

Alternative option from NAVIS msg file: 

TimeStartDescent=1478131066         Nov 02 
2016 23:57:46 

*In some older Navis floats, the 
TimeStartDescent was not available and cannot 
be used.   
 

Descent start time Time 
n 

2. value is 
transmitted by the 
float 

100 DST 
calculated 
(800 TET 
calculated) 

if PST (code 250) is not empty: 
DST = PST – ParkDescentTime/24/60 
 
Obtain ParkDescentTime from msg file: 
$ ParkDescentTime(300) [min] 
 
Can be applied  to TET for n-1 profile. 

Descent start time Time 
n 
 

3. value is directly 
computed from 
relevant, 
transmitted float 
information 

190 DSP Taken preferably from log file: 
 
(Feb 10 2018 05:03:38,     724 sec) Descent()            
Pressure: 49.8 

Descending CTD 
measurements 

Time, 
Pressure 
n 

2. value is 
transmitted by the 
float 



39 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF9i and Seabird NAVIS floats 
 

Code 
(timing) 

Name in float data output Description Units and 
data 
profile 
number 

JULD_STATUS 

(Feb 10 2018 05:51:38,    3604 sec) Descent()            
Pressure: 408.8 
(Feb 10 2018 06:51:38,    7204 sec) Descent()            
Pressure: 731.5 
(Feb 10 2018 07:51:38,   10804 sec) Descent()            
Pressure: 938.4 
(Feb 10 2018 08:51:38,   14404 sec) Descent()            
Pressure: 993.9 
(Feb 10 2018 09:51:38,   18004 sec) Descent()            
Pressure: 993.9 
 
A non-time stamped, low-resolution version 
(need to multiply by 10) is available from the 
msg file: 
ParkDescentP[0]=5 
ParkDescentP[1]=41 
ParkDescentP[2]=73 
ParkDescentP[3]=94 
ParkDescentP[4]=99 
ParkDescentP[5]=99 

189 Optional buoyancy adjustment times when 
float begins descent: 
 
(Nov 22 2008 02:25:22,       0 sec) 
DescentInit()        Deep profile 3 initiated at 
mission-time 878770sec. 
(Nov 22 2008 02:25:24,       2 sec) 
DescentInit()        Surface pressure: 0.2dbars. 
(Nov 22 2008 02:25:29,       7 sec) 
PistonMoveAbsWTO()    211->070 ....  

Active 
adjustments to 
buoyancy on 
descent 

Time, n  2. value is 
transmitted by the 
float 

During the drift phase 

200 DET 
transmitted 
(best choice) 

From the log file: 
 
For a float that overshoots: 
(Feb 06 2018 05:23:02,     620 sec) Descent()            
Pressure: 8.1 
(Feb 06 2018 05:42:45,    1804 sec) Descent()            
Pressure: 168.8 
(Feb 06 2018 06:12:45,    3604 sec) Descent()            
Pressure: 413.4 
(Feb 06 2018 06:42:45,    5404 sec) Descent()            
Pressure: 632.8 
(Feb 06 2018 07:12:44,    7204 sec) Descent()            
Pressure: 837.5 
(Feb 06 2018 07:42:44,    9004 sec) Descent()            
Pressure: 997.9 
(Feb 06 2018 08:12:44,   10804 sec) Descent()            
Pressure: 1120.7  DET, time of overshoot 
(Feb 06 2018 08:42:43,   12604 sec) Descent()            
Pressure: 1227.7 
(Feb 06 2018 09:12:43,   14404 sec) Descent()            
Pressure: 1271.7 
(Feb 06 2018 09:42:42,   16204 sec) Descent()            
Pressure: 1301.6 
 
For a non-overshoot float: 
(Feb 10 2018 05:03:38,     724 sec) Descent()            
Pressure: 49.8 
(Feb 10 2018 05:51:38,    3604 sec) Descent()            
Pressure: 408.8 
(Feb 10 2018 06:51:38,    7204 sec) Descent()            

Descent end time. 
Time when float 
first approaches 
within 3% of the 
CONFIGURED drift 
pressure. Float 
may be 
transitioning from 
the surface or 
from a deep 
profile. This 
variable is based 
on pressure only 
and can be 
measured only 
and can be 
estimated by fall-
rate (see below). 
In the case of a 
float that 
overshoots the 
drift pressure on 
descent, DET is 
the time of the 
overshoot. 
 

Time 
n 

2. Value is 
transmitted by the 
float 



40 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF9i and Seabird NAVIS floats 
 

Code 
(timing) 

Name in float data output Description Units and 
data 
profile 
number 

JULD_STATUS 

Pressure: 731.5 
(Feb 10 2018 07:51:38,   10804 sec) Descent()            
Pressure: 938.4 
(Feb 10 2018 08:51:38,   14404 sec) Descent()            
Pressure: 993.9   DET, within 3% of mission 
park (1000db) 
(Feb 10 2018 09:51:38,   18004 sec) Descent()            
Pressure: 993.9 
(Feb 10 2018 09:51:38,   18004 sec) ParkInit()            
 
For NAVIS floats and newer APEX floats, 
CONFIGURED drift pressure is found in the 
.msg file at the start  
$ ParkPressure(1000) [dbar]. 

200 DET 
estimated 
(use if 
transmitted 
DET is not 
available) 

DET = PST or you can calculate DET based on 
the fall rate using times associated with 
descending park measurements.  
  
For Navis (and Apex?) floats, you can calculate 
DET from the .msg file using the values output 
with ParkDescentP. ParkDescentP[1] is always 
made at DST+1796 seconds. ParkDescentP[n] 
measurements are then made every 1800 
seconds. The output is pressure rounded to the 
nearest bar. 
The most accurate way to calculate fall rate is 
from the change in pressure and the change in 
net seconds from the Descent() lines in the 
.log file. But it can be estimated from 
ParkDescentP[n] in the .log file. Pressure 
samples 1 to n are made 1800 seconds (30 
minutes) apart. The value output by 
ParkDescentP is pressure rounded to the 
nearest bar. The time between 
ParkDescentP[0] and  ParkDescentP[1] should 
not be used as the timing between the two 
samples is variable.   

See above 
Fall rate is not 
output, only can 
be calculated from 
Descent() in .log 
files* 

Time 
n 

3. value is directly 
computed from 
relevant, 
transmitted float 
information 

250 PST From the log file: 
(Feb 06 2018 09:42:44,   16206 sec) ParkInit()             
 
In some floats, eg Navis, the msg file may 
contain: 
TimeStartPark=1517910164            Feb 06 
2018 09:42:44 
 
If either of the above is unavailable, use first 
park point from msg file: 
ParkPts:    Feb 06 2018 09:43:08  1517910188   
16230 1301.58  5.0065 34.4284 

Time of park start 
Time when float 
transitions to its 
Park or Drift 
mission. This 
variable is based 
on float logic  

Time 
n 

2. Value is 
transmitted by the 
float 

290 PTM If float is programmed to take one sample, 
299, otherwise use 290. 
 
Usually Navis floats only record one ParkPts 
during profile *.001 
 
From the msg file: 
ParkPts:    Feb 10 2018 09:52:10  1518256330   
18036  993.93  4.8352 34.3890 
ParkPts:    Feb 10 2018 10:52:07  1518259927   
21633  997.28  4.7839 34.3902 
ParkPts:    Feb 10 2018 11:52:07  1518263527   

A series of 
pressure 
measurements 
taken daily during 
drift. 

Time, 
pressure, 
temp, PSAL, 
etc. n 

 



41 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF9i and Seabird NAVIS floats 
 

Code 
(timing) 

Name in float data output Description Units and 
data 
profile 
number 

JULD_STATUS 

25233  998.61  4.7770 34.3908 
ParkPts:    Feb 10 2018 12:52:07  1518267127   
28833  993.30  4.7229 34.3888 
ParkPts:    Feb 10 2018 13:52:07  1518270727   
32433  994.89  4.6988 34.3971 
ParkPts:    Feb 10 2018 14:52:07  1518274327   
36033  997.07  4.6915 34.3956 
ParkPts:    Feb 10 2018 15:52:07  1518277927   
39633 1000.34  4.7448 34.3929 
ParkPts:    Feb 10 2018 16:52:07  1518281527   
43233  996.92  4.7109 34.3895 
ParkPts:    Feb 10 2018 17:52:07  1518285127   
46833  991.47  4.6570 34.3980 
ParkPts:    Feb 10 2018 18:52:07  1518288727   
50433  995.81  4.6700 34.3968 
ParkPts:    Feb 10 2018 19:52:07  1518292327   
54033  997.65  4.6712 34.3970 
ParkPts:    Feb 10 2018 20:52:07  1518295927   
57633 1005.26  4.8114 34.3890 
ParkPts:    Feb 10 2018 21:52:07  1518299527   
61233  998.14  4.7660 34.3889 
ParkPts:    Feb 10 2018 22:52:07  1518303127   
64833  991.14  4.6677 34.3995 
ParkPts:    Feb 10 2018 23:52:07  1518306727   
68433 1000.03  4.7145 34.3938 
ParkPts:    Feb 11 2018 00:52:07  1518310327   
72033 1004.18  4.7084 34.3950 
ParkPts:    Feb 11 2018 01:52:07  1518313927   
75633  995.84  4.7796 34.3916 
ParkPts:    Feb 11 2018 02:52:07  1518317527   
79233 1000.93  4.8089 34.3897 
ParkPts:    Feb 11 2018 03:52:07  1518321127   
82833 1002.78  4.7672 34.3917 
.... 
ParkPts:    Feb 19 2018 07:52:10  1519026730  
788436  998.07  4.1888 34.4374 
ParkPts:    Feb 19 2018 08:52:10  1519030330  
792036 1007.68  4.2876 34.4312 
ParkPts:    Feb 19 2018 09:52:10  1519033930  
795636 1010.83  4.3498 34.4274 
ParkPts:    Feb 19 2018 10:52:10  1519037530  
799236 1008.37  4.3494 34.4277 
ParkPts:    Feb 19 2018 11:52:10  1519041130  
802836 1005.17  4.2945 34.4317 
$ Profile 9640.087 terminated: Mon Feb 19 
23:53:36 2018 
 

299 From the log file: 
(Feb 19 2018 12:52:00,  806426 sec) 
ParkTerminate()      Piston Position:74 
Vacuum:79 Vq:196 Aq:5 Vsbe:181 Asbe:9 
(Feb 19 2018 12:52:28,  806454 sec) 
ParkTerminate()      PTS: 999.3dbars 4.2391C 
34.4367PSU 
 
From the msg file, no date/time stamp 
available: 
$ Profile 9640.087 terminated: Mon Feb 19 
23:53:36 2018 
$ Discrete samples: 2 
$       p        t        s 
   999.30   4.2391  34.4367 (Park Sample) 

Any measurement 
recorded during 
transition toward 
PET. 

Time, 
pressure, 
temperature, 
salinity 
n 

2: value 
transmitted by the 
float 



42 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF9i and Seabird NAVIS floats 
 

Code 
(timing) 

Name in float data output Description Units and 
data 
profile 
number 

JULD_STATUS 

  2000.29   2.2072  34.6579 
# Feb 19 2018 23:59:06 Sbe41cpSerNo[6437] 
NSample[21714] NBin[998] 
 
 
*  For Navis floats, the discrete sample labelled 
(Park Sample) is always taken at the 
termination of the parking phase. If there is a 
second discrete sample, it is taken at the start 
of profiling, but it is taken after ascent start 
and after 500 (AST) is output in the .log file as 
ProfileInit() or in the .msg file as 
TimeStartProfile = ***.   This second discrete 
sample should go in as 503 since continuous 
profiling will start later.*  

 

300 PET 
transmitted 
(best choice) 

From the log file: 
(Feb 19 2018 12:52:28,  806454 sec) 
ParkTerminate()      PTS: 999.3dbars 4.2391C 
34.4367PSU 
(Feb 19 2018 12:52:28,  806454 sec) 
GoDeepInit()         Moving piston. 
 
If the GoDeepInit line is not there, use the 
ParkTerminate line. 
 
For NAVIS floats:  from the msg file, there may 
be: 
TimeStartProfileDescent=1518719438  Feb 15 
2018 18:30:38 
 
If neither is available, use the last park time 
from msg file. 
 

Time when float 
exits from its Park 
or Drift mission. It 
may next rise to 
the surface (AST) 
or sink to profile 
depth (DDET) 

Time 
n 

2: value 
transmitted by the 
float 

300 PET 
calculated 
(second 
choice) 

If PET is not available from methods above, it 
can be estimated which relies on DST being 
known.  
 
PET = DST + DownTime/60/24 - 
DeepProfileDescentTime/60/24; 
 
From msg file, get DownTime and 
DeepProfileDescentTime: 
$ DownTime(14030) [min] 
$ DeepProfileDescentTime(270) [min] 

Time when float 
exits from its Park 
or Drift mission. It 
may next rise to 
the surface (AST) 
or sink to profile 
depth (DDET) 

Time 
n 

3. value is directly 
computed from 
relevant, 
transmitted float 
information 

301 Average of hourly pressure measurements 
from MC 290. 

Representative 
park pressure 

Pressure 
n 

3: value is directly 
computed from 
relevant, 
transmitted float 
information  

End of drift measurements 

400 DDET Same as AST (code 500) Time when float 
first approaches 
within 3% of the 
eventual deep 
profile pressure. 
This variable is 
based on pressure 
only and can be 

Time 
n 

2: value 
transmitted by the 
float 



43 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF9i and Seabird NAVIS floats 
 

Code 
(timing) 

Name in float data output Description Units and 
data 
profile 
number 

JULD_STATUS 

measured or 
estimated by fall-
rate. 

500 AST 
transmitted 
(best choice) 

From the log file: 

ProfileInit()        PrfId:098  
Pressure:1964.6dbar  pTable[1]:1950dbar 

For Navis floats:  from the msg file, there may 
be: 
 
TimeStartProfile=1518727187         Feb 15 
2018 20:39:47 

* For Navis floats, the time in TimeStartProfile 
in the .msg file corresponds to the time the 
GoDeep() command is executed because it 
actually executed the ProfileInit() command* 

Ascent start time Time 
n 

2: value 
transmitted by the 
float 

500 AST 
calculated 
(second 
choice) 

If the above values are not available, AST can 
be estimated. However, relies on DST being 
known.  
* Analysis of Navis data found that when you 
do calculate AST, the mean difference is about 
12 hours. The difference changes throughout 
the course of the deployment as the ascent 
and descent rates are optimized.*   
 
AST = DST + DownTime[min]/60/24 
 
From the msg file: 
$ DownTime(13740) [min] 
 
If the calculated AST using value above is 
earlier than PET (eg, in the case the float hits 
the bottom), then use PET + 
DeepProfileDescentTime as the AST estimate. 
 
From the msg file: 
$ DeepProfileDescentTime(300) [min] 
 
if AST < PET or AST > AET 
            AST = PET + 
DeepProfileDescentTime/60/24; 
            if AST < PET or AST > AET 
                AST = NaN; 
            end 
end 
 
If TimeOfDay setting is enabled in mission 
(BGC floats):  
*Yes, this is an option available in Navis BGCi 
floats. If it is in the firmware you will see the 
following line in the n.msg file. In this case 
TimeOfDay is disabled.* 
$ TimeOfDay(DISABLED) [min] 
 
DownTime will be affected if TimeOfDay value 
is enabled and set. 
To enable a float to surface at a particular time 

Ascent start time Time 
n 

3: value computed 
from relevant, 
transmitted float 
information 



44 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF9i and Seabird NAVIS floats 
 

Code 
(timing) 

Name in float data output Description Units and 
data 
profile 
number 

JULD_STATUS 

of day, DownTime should be set to one day 
less than the entire cycle length, then the 
TimeOfDay value added to the DownTime 
Value; 
 
Eg: 
For a 10-day cycle with the float scheduled to 
surface around midday GMT: DownTime = 
12960 min (9 days), and TimeOfDay = 100 
min (or number of minutes after midnight local 
time to ensure arrival at the surface at time 
required). 
 
If time of profile start (AST) has to be 
calcuated use either: 
AST = DST + DownTime/60/64 + 
TimeOfDay/60/64; 
 

503  For both APEX and Navis floats, where there 
are 2 discrete samples, the second one is 
Sample 0 at profile initiation time and should 
be recorded in MC 503 as it occurs after the 
AST.   

 
From the msg file, no date/time stamp 
available: 
 
$ Profile 9640.087 terminated: Mon Feb 19 
23:53:36 2018 
$ Discrete samples: 2 
$       p        t        s 
   999.30   4.2391  34.4367 (Park Sample) 
  2000.29   2.2072  34.6579 
# Feb 19 2018 23:59:06 Sbe41cpSerNo[6437] 
NSample[21714] NBin[998] 
 
From the log file: 
 
(Feb 19 2018 17:46:38,  824104 sec) 
GoDeep()             Sequence point detected at 
2000.3dbar. 
(Feb 19 2018 17:46:41,  824107 sec) 
ProfileInit()        PrfId:087  
Pressure:2000.3dbar  pTable[0]:2000dbar 
(Feb 19 2018 17:47:19,  824145 sec) Profile()            
Sample 0 initiated at 2000.3dbars for bin 0 
[2000dbars].  PTS: 2000.3dbars 2.2072C 
34.6579PSU 
 

Deepest bin 
reached during 
ascending profile 

Time, 
Pressure, 
Temp, Salinity 
n 

2: value 
transmitted by the 
float 

589 Optional. Buoyancy adjustment times on the 
Ascent. 
 
(Feb 19 2018 17:46:41,  824107 sec) 
ProfileInit()        PrfId:087  
Pressure:2000.3dbar  pTable[0]:2000dbar 
(Feb 19 2018 17:47:19,  824145 sec) Profile()            
Sample 0 initiated at 2000.3dbars for bin 0 
[2000dbars].  PTS: 2000.3dbars 2.2072C 
34.6579PSU 

Active 
adjustments to 
buoyancy on 
ascent 

Time 
n 

2: value 
transmitted by the 
float 

 

 

 



45 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF9i and Seabird NAVIS floats 
 

Code 
(timing) 

Name in float data output Description Units and 
data 
profile 
number 

JULD_STATUS 

(Feb 19 2018 17:47:19,  824145 sec) 
PistonMoveAbsWTO()    020->042 021 022 
023 024 [30sec, 12.5Volts, 0.830Amps, 
CPT:1013sec] 
(Feb 19 2018 17:47:59,  824185 sec) 
PistonMoveAbsWTO()    024->042 025 026 
027 028 [30sec, 12.6Volts, 0.822Amps, 
CPT:1043sec] 
(Feb 19 2018 17:50:07,  824313 sec) 
Sbe41cpStartCP()     Continuous profile 
started. 
(Feb 19 2018 17:50:07,  824313 sec) 
PistonMoveAbsWTO()    029->042 030 031 
032 033 [30sec, 12.6Volts, 0.866Amps, 
CPT:1073sec] 
(Feb 19 2018 17:50:49,  824355 sec) 
PistonMoveAbsWTO()    033->042 034 035 
036 037 [30sec, 12.6Volts, 0.842Amps, 
CPT:1103sec] 
(Feb 19 2018 17:51:31,  824397 sec) 
PistonMoveAbsWTO()    037->042 038 039 
040 041 [30sec, 12.6Volts, 0.846Amps, 
CPT:1133sec] 
(Feb 19 2018 17:52:13,  824439 sec) 
PistonMoveAbsWTO()    041->042 042 [2sec, 
12.6Volts, 0.846Amps, CPT:1135sec] 
(Feb 19 2018 18:38:15,  827201 sec) 
AscentControlAgent() Bouyancy nudge to 52 
(v=0.078dbar/sec). 

 

 

 

590 For some Navis bio floats, the discrete sample 
information is included in the log files. 
 
(Jul 10 2016 20:34:13,   13162 sec) Profile()            
Sample 0 initiated at 1601.5dbars for bin 8 
[1600dbars].  
PTS/O2Ph,O2T/FlBbCd/OcrI/OcrR/EcoFlBbCd/C
rv: 1597.1dbars,3.0014C,34.5900PSU / 
26.211u,1.091539V / 63,466,213 / 130827,13 
2055,131162,131012 / 
130820,131443,131096,131516 / 
16959,16959,16959 / 15547 -0.02200 
(Jul 10 2016 20:43:24,   13713 sec) Profile()            
Sample 2 initiated at 1501.5dbars for bin 10 
[1500dbars].  
PTS/O2Ph,O2T/FlBbCd/OcrI/OcrR/EcoFlBbCd/C
rv: 1497.3dbars,3.2007C,34.5710PSU / 
26.072u,1.085170V / 66,444,207 / 130835,1 
32049,131168,130998 / 
130812,131448,131090,131518 / 
16959,16959,16959 / 15547 -0.02200 
(Jul 10 2016 20:53:07,   14296 sec) Profile()            
Sample 4 initiated at 1401.3dbars for bin 12 
[1400dbars].  
PTS/O2Ph,O2T/FlBbCd/OcrI/OcrR/EcoFlBbCd/C
rv: 1397.4dbars,3.4660C,34.5450PSU / 
25.717u,1.076850V / 61,473,203 / 130838,1 
32037,131166,131000 / 
130825,131444,131110,131520 / 
16959,16959,16959 / 15546 -0.02100 
(Jul 10 2016 21:03:23,   14912 sec) Profile()            
Sample 6 initiated at 1301.4dbars for bin 14 
[1300dbars].  

Series of 
measurements 
transitioning 
towards AET 

Time, 
Pressure, 
Temp, Salinity 
n 

2: value 
transmitted by the 
float 



46 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF9i and Seabird NAVIS floats 
 

Code 
(timing) 

Name in float data output Description Units and 
data 
profile 
number 

JULD_STATUS 

PTS/O2Ph,O2T/FlBbCd/OcrI/OcrR/EcoFlBbCd/C
rv: 1297.6dbars,3.7270C,34.5230PSU / 
25.302u,1.068646V / 63,448,200 / 130831,1 
32047,131152,131003 / 
130806,131441,131106,131520 / 
16959,16959,16959 / 15547 -0.02200 
(Jul 10 2016 21:14:24,   15573 sec) Profile()            
Sample 8 initiated at 1200.5dbars for bin 16 
[1200dbars].  
PTS/O2Ph,O2T/FlBbCd/OcrI/OcrR/EcoFlBbCd/C
rv: 1197.1dbars,4.0622C,34.5010PSU / 
24.853u,1.058171V / 62,451,194 / 130836,1 
32036,131163,130999 / 
130812,131444,131105,131514 / 
16959,16959,16959 / 15548 -0.02200 
(Jul 10 2016 21:26:08,   16277 sec) Profile()            
Sample 10 initiated at 1101.1dbars for bin 18 
[1100dbars].  
PTS/O2Ph,O2T/FlBbCd/OcrI/OcrR/EcoFlBbCd/C
rv: 1098.0dbars,4.4999C,34.4720PSU / 
24.226u,1.044719V / 64,444,189 / 130844, 
132039,131158,131003 / 
130808,131435,131106,131517 / 
16959,16959,16959 / 15546 -0.02100 
(Jul 10 2016 21:39:23,   17072 sec) Profile()            
Sample 12 initiated at 1000.7dbars for bin 20 
[1000dbars].  
PTS/O2Ph,O2T/FlBbCd/OcrI/OcrR/EcoFlBbCd/C
rv: 997.8dbars,5.1208C,34.4510PSU / 
23.597u,1.025704V / 58,448,179 / 130844,1 
32038,131152,130992 / 
130801,131438,131112,131505 / 
16959,16959,16959 / 15548 -0.02200 

600 AET From log file: 
 
(Feb 06 2018 03:42:10,  856511 sec) 
SurfaceDetect()      SurfacePressure:-0.0dbars 
Pressure:4.0dbars BuoyancyPosition:556 
(Feb 06 2018 03:42:10,  856512 sec) 
Sbe41cpStopCP()      Continuous profile 
stopped. 
* For Navis floats, SurfaceDetect() triggers the 
ProfileTerminate() command, which then 
writes TimeStopProfile then $Profile lines to the 
.msg file. This is when the CTD turns off. 
  
From msg file: 
$ Profile 0800.021 terminated: Fri Feb 16 
03:12:43 2018 
 
From msg file, some floats (eg Navis), may 
have: 
TimeStopProfile=1518750763          Feb 16 
2018 03:12:43 
*This is written by the same command.  See 
comment above 
 

Time float 
switches from 
ascent mode to 
surface mode 

Time 
n 

2: value 
transmitted by the 
float 

Float is on the surface 

Notes on 
how float 
behaves 

From log file, (matches with the 
TimeStartTelemetry indicated in Navis msg 
files): 

   



47 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF9i and Seabird NAVIS floats 
 

Code 
(timing) 

Name in float data output Description Units and 
data 
profile 
number 

JULD_STATUS 

when it 
reaches the 
surface 

(Feb 06 2018 03:48:41,  856902 sec) 
TelemetryInit()      Profile 20. (Npf ARGO 
FwRev: 170210) 
** TelelmetryInit() starts a sequence where 
the bladder is inflated to get the antenna mast 
above the surface, then it tries to get a GPS 
position, the first GPS position is defined by 
gga, then it starts trying to connect to the 
modem with CLogin, and doesn’t make the 
connection until the login() command is 
executed with the Login successful message. * 

703 ST From the log file (fixes are from the PREVIOUS 
cycle, and should be added to the n-1 cycle): 
(Jan 14 2016 03:15:47,  848318 sec) 
GpsServices()        Profile 4 GPS fix obtained in 
26 seconds. 
(Jan 14 2016 03:15:47,  848318 sec) 
GpsServices()                  lon     lat 
mm/dd/yyyy hhmmss nsat 
(Jan 14 2016 03:15:48,  848318 sec) 
GpsServices()        Fix:  118.333 -59.042 
01/14/2016 031520   10 
 
From the msg file (fixes relate to the CURRENT 
cycle, add to n cycle) 
# GPS fix obtained in 167 seconds. 
#         lon     lat mm/dd/yyyy hhmmss nsat 
Fix:  118.333 -59.042 01/14/2016 031520   10 

Satellite times and 
locations. One for 
each fix, in 
chronological 
order. 

Time, Position 
n-1 if from 
the log file, n 
if from the 
msg file. 

4. value is 
determined by 
satellite 

700 TST When the float first connects to the modem: 
( 
(Dec 17 2016 21:48:18,   47230 sec) login()              
Login successful. 
 
* For Navis and APEX floats, the login() 
command with the following text is the true 
time telemetry starts* 
 
If this time is not available, can use: 

- Time of last GPS fix 
(Apr 12 2018 09:16:35,   11053 sec) 
GpsServices()        Fix:  154.3182 -33.8677 
04/12/2018 091700    9 

- Time of TelemetryInit() 
(Apr 12 2018 09:15:16,   10975 sec) 
TelemetryInit()      Profile 0. (Npf ARGO 
FwRev: 170425) 

- TimeStartTelemetry (some NAVIS 
msg files) 

TimeStartTelemetry=1523524515       Apr 12 
2018 09:15:15 

Time of change of 
float phase to 
telemetry. 

Time n-1 if 
from the log 
file, n if from 
the msg file. 

2. Value 
transmitted by the 
float 

 702 FMT, 
and 704 
LMT 

Not necessary for Iridium floats Time of first/last 
iridium message 

  

800 TET 
transmitted 
(best choice) 

For consistency, it might be best to use the last 
time that the Telemetry() command is 
executed. The TelemetryTerminate() is also 
executed during ice evasion. This could lead to 
confusing results since the float never surfaces 
when evading ice. 

Time of the end of 
transmission for 
the float. 
 

Time, Position 
n-1 

2. Value 
transmitted by the 
float 



48 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF9i and Seabird NAVIS floats 
 

Code 
(timing) 

Name in float data output Description Units and 
data 
profile 
number 

JULD_STATUS 

 (Feb 06 2018 05:12:40,  861943 sec) 
Telemetry()          Telemetry cycle complete: 
PrfId=20 ConnectionAttempts=4  
Connections=4 

800 TET 
estimated 
(second 
choice) 

TET can be estimated using the final position 
fix from 703 ST. 

Time of the end of 
transmission for 
the float. 
 

Time, Position 
n-1 

2. Value 
transmitted by the 
float 

903 Taken from surface pressure in msg file: 
 
SurfacePressure=0.01 
 
Or from log file: 
(Dec 22 2008 18:49:46,       0 sec) 
DescentInit()        Deep profile 6 initiated at 
mission-time 888601sec. 
(Dec 22 2008 18:49:48,       2 sec) 
DescentInit()        Surface pressure: 0.3dbars 
 
*This is the pressure in dbar as sampled by the 
CTD. This is in all versions of Navis firmware. 
The only tricky bit is that when the floats are in 
ice evasion mode and not coming to the 
surface, the SurfacePressure is not updated 
until the float surfaces again. So the value of 
SurfacePressure is the pressure taken the last 
time the float surfaced. In some case this 
could be several months prior.* 
 

Surface pressure 
offset value 

Pressure 
n 

2. Value 
transmitted by the 
float 

 

2.2.7 Apex APF11 Argos floats with firmware version 2.8.0 or 2.10.4 

Argo trajectory file measurement codes (MC) for Apex APF11 Argos floats 

Code (timing) Name in float data 
output 

Description and name 
of data file where this is 
found 

Units and 
data 
profile 
number 

JULD_STATUS 

0 (launch position) Provided by PI (from 
deployment team). 

From Coriolis Excel deployment 
file provided at Coriolis DAC by 
float PI. 
 

Time, 
latitude, 
longitude. 
Cycle #-1 
(convention). 

4 (value is 
determined by 
satellite) 

100 (DST) Duplication of TET of the 
previous cycle. 

 Time. 
Cycle #N. 

3 (value is directly 
computed from 
relevant, transmitted 
float information) 

Start of the drift phase 

287 = PET-13 
(minimum meas of 
park-level PT 
samples supporting 
meas) 

‘Pressure associated with Tmin of park-level PT 
samples’ and ‘Minimum temperature of park-
level PT samples’. 

Argos float data 
message. 

PRES, TEMP. 
Cycle #N. 

No time 



49 

Argo data management                                      Argo DAC trajectory cookbook 

288 = PET-12 
(maximum meas of 
park-level PT 
samples supporting 
meas) 

‘Pressure associated with Tmax of park-level PT 
samples’ and ‘Maximum temperature of park-
level PT samples’. 

Argos float data 
message. 

PRES, TEMP. 
Cycle #N. 

No time 

293 = PET-7 (mean 
PRES diff of park-
level PT samples) 

‘Mean pressure diff of park-level PT samples’. Argos float data 
message. 

PRES. 
Cycle #N. 

No time 

294 = PET-6 
(standard deviation 
of meas of park-level 
PT samples) 

‘Standard deviation of pressure of park-level PT 
samples’ and ‘Standard deviation of 
temperature of park-level PT samples’. 

Argos float data 
message. 

PRES, TEMP. 
Cycle #N. 

No time 

296 = PET-4 (mean 
TEMP of park-level 
PT samples) 

‘Mean temperature of park-level PT samples’. Argos float data 
message. 

TEMP. 
Cycle #N. 

No time 

297 = PET-3 
(minimum meas of 
park-level PT 
samples) 

‘Minimum pressure of park-level PT samples’ 
and ‘Minimum temperature of park-level PT 
samples’. 

Argos float data 
message. 

PRES, TEMP. 
Cycle #N. 

No time 

298 = PET-2 
(maximum meas of 
park-level PT 
samples) 

‘Maximum pressure of park-level PT samples’ 
and ‘Maximum temperature of park-level PT 
samples’. 

Argos float data 
message. 

PRES, TEMP. 
Cycle #N. 

No time 

300 (PET) PET is not set when PARK_PRESSURE = 
PROFILE_PRESSURE (since PET = AST) 
otherwise PET = TET – UpTime – 
DeepDescentTimeout. 

 Time. 
Cycle #N. 

3 (value is directly 
computed from 
relevant, transmitted 
float information) 

301 (representative 
park measurement) 

Average value of measurements stored with 
MC=287 and MC=288. 
REPRESENTATIVE_PARK_PRESSURE_STATUS 
= 5. 

 PRES, TEMP. 
Cycle #N. 

No time 

End of drift measurements 

501 DOWN_TIME_END = ‘RTC time when down 
time expired’. 

Argos float data 
message. 

Time. 
Cycle #N. 

2 (value is 
transmitted by the 
float) 

400 (DDET) DDET = AST.  Time. 
Cycle #N. 

2 (value is 
transmitted by the 
float) 

Start of profile 

500 (AST) AST = DOWN_TIME_END.  Time. 
Cycle #N. 

2 (value is 
transmitted by the 
float) 

503 (deepest 
measurement) 

Deepest value of PTS profile. Argos float data 
message. 

PRES, TEMP. 
Cycle #N. 

No time 

Float is on the surface 

700 (TST) Computed from Argos satellite times (and float 
transmission strategy). 

Argos float data 
message and 
CLS 
information. 

Time. 
Cycle #N. 

1 (value is estimated 
using information not 
transmitted by the 
float or by 
procedures that rely 
on typical float 
behaviour) 

701 (TST 
transmitted by the 
float) 

Computed from ‘Time when telemetry phase 
was initiated relative to down time end'. 
This time is stored in Real Time only; in 
Delayed Mode, once checked this value should 

Argos float data 
message. 

Time. 
Cycle #N. 

3 (value is directly 
computed from 
relevant, transmitted 
float information) 



50 

Argo data management                                      Argo DAC trajectory cookbook 

replace TST. 

702 (FMT) Earliest time of current cycle Argos messages. CLS information 
(Argos message 
dates). 

Time. 
Cycle #N. 

4 (value is 
determined by 
satellite) 

703 (surface 
location) 

All Argos fixes provided. CLS information 
(Argos fixes 
estimated by 
CLS). 

Time, 
latitude, 
longitude, 
location 
class. 
Cycle #N. 

4 (value is 
determined by 
satellite) 

704 (LMT) Latest time of current cycle Argos messages. CLS information 
(Argos message 
dates). 

Time. 
Cycle #N. 

4 (value is 
determined by 
satellite) 

800 (TET) TET = DOWN_TIME_END + UpTime. 
If UpTime is unknown (and couldn't be 
estimated) TET is estimated from LMTs. 

 Time. 
Cycle #N. 

3 (value is directly 
computed from 
relevant, transmitted 
float information) 

 

2.2.8 Apex APF11 floats with Iridium 

Coriolis decoder for Apex APF11 Iridium floats (Firmware version 2.10.1 or 2.11.1, Coriolis version 

2.10.1 or 2.11.1, Decoder Id 1321 or 1322).   

Notes: 

1. Cycle times DST, PST, PET and AET are provided in science_log and system_log files 

(associated timestamps may be slightly different however).  Coriolis decided to keep the 

science_log file ones so that one can consistently associate a pressure to each time using the 

CTD_P measurements provided in this file. 

2. Cycle time adjustment: cycle times can be adjusted in real time from float clock drift that can 

be estimated from ‘GPS Skew’ information provided in system_log file. 

Coriolis chooses to include as much data as possible from the floats which is great, but not some 

measurements codes are not required including buoyancy adjustments. These are highlighted in grey 

in the following table. 

Argo trajectory file measurement codes (MC) for APF11 

Code 
(timing) 

Name in float data output Description 
and name of 
data file 
where this is 
found 

Units and 
data profile 
number 

JULD_STA
TUS 

0 (launch) Ideally would come from Ship deployment 
records/logs. 
 
From zero cycle file system log 000 
In pressure activated mode – time of activation: 
 
20171212T112421|5|IDLE|Activation pressure 
detected: 168.99 dbar 
20171212T112421|5|go_to_state|Mission state IDLE 
-> PRELUDE 
 

Time of launch 
Position at end of 
prelude cycle 

Time, position 
N = 0 

0 if taken from 
ship metdata 
 
2 if taken from 
000.msg file 



51 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF11 

Code 
(timing) 

Name in float data output Description 
and name of 
data file 
where this is 
found 

Units and 
data profile 
number 

JULD_STA
TUS 

Later GPS fix appears in the file twice: 
 
20171212T121045|5|update_almanac|Updating GPS 
Almanac 12/12/2017 12:10 
20171212T122549|3|read_str|COM6 RX Overrun 
Detected! 
20171212T122550|5|RMC|Set Clock: 12/12/2017 
12:25:50 
20171212T122550|5|GPS|GPS TimeToFix: 2 secs 
20171212T122550|5|GPS|GPS Skew: -2 secs 
20171212T122550|5|GPS|GPS Fix: 12/12/2017 
12:25:50,-28.79842,-158.99509,9 
20171212T122550|5|wait_for_done|GPS 
time/location set 
20171212T122550|5|test|RF Board Max Current: 
37.4  mA 
20171212T122550|5|test|Battery Min Voltage: 15.1 
V 
20171212T122550|5|test|                                                 
GPS Test : <<PASS>> 
20171212T122552|5|update_almanac|Updating GPS 
Almanac 12/12/2017 12:25 
20171212T124058|5|update_offset|Surface Offset 
Pressure: 0.0300 
20171212T124058|5|PRELUDE|                                                
Self Test : <<PASS>> 
20171212T124059|5|RMC|Set Clock: 12/12/2017 
12:40:59 
20171212T124059|5|GPS|GPS TimeToFix: 2 secs 
20171212T124059|5|GPS|GPS Skew: 0 secs 
20171212T124059|5|GPS|GPS Fix: 12/12/2017 
12:40:59,-28.79814,-158.99414,9 
 
 
Do we include these positions as launch, or as TST? 
 
Would need to expand this for manual activation – 
need an example 
 

90 = DST – 10 
(relative series 
of 
measurements
) 

All timestamped measures provided in science_log 
files (CTD_P, CTD_PT, CTD_PTS, CTD_PTSH, O2, 
etc… depending on the sensors mounted on the 
float) that have been sampled after deployment and 
before DST. 

science_log file Time, all 
available 
measurements. 
Cycle #N. 

2 (value is 
transmitted by 
the float) 

100 DST Change in state to park descent. 
From *.system.log file: 
 
20180202T081820|5|go_to_state|Mission state 
SURFACE -> PARKDESCENT 

OR 

From *.science_log file: 
Message,20180202T081826,Park Descent 
Mission********* 

System_log file  
Or 
Science_log file 

Time, PRES 
Cycle #N 
 

2. value is 
transmitted by 
the float 

189 = DET-11 
(buoyancy 
actions) 

Could put buoyancy adjustments in here if you 
wanted to (optional) 
From the *.system_log.txt file: 
20180201T214841|5|ASCENT|Adjusting Buoyancy to 
578 

Buoyancy 
adjustments 
made during 
descent 
(between DST 

Time, PRES 
Cycle #N 
 

2. value is 
transmitted by 
the float 



52 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF11 

Code 
(timing) 

Name in float data output Description 
and name of 
data file 
where this is 
found 

Units and 
data profile 
number 

JULD_STA
TUS 

20180201T214842|5|buoyancy_engine_task|Buoyan
cy Start Position: 280 
20180201T215035|5|buoyancy_engine_task|Buoyan
cy engine destination 578 reached after 01:52 . 
20180201T215610|5|start_profile|Continuous Profile 
Started*********** 
20180201T221848|5|ASCENT|Ascending Too Slowly: 
0.079 dbar/sec @ 1851.3 dbar 
20180201T221854|5|ASCENT|Ascending Too Slowly: 
0.079 dbar/sec @ 1850.9 dbar 
20180201T221907|5|ASCENT|Ascending Too Slowly: 
0.079 dbar/sec @ 1849.8 dbar 
20180201T221907|5|do_ascent|target_position: 
742.000000 
 

and DET) in 
system_log file 

190 = DET-10 
(relative series 
of 
measurements
) 

All timestamped measures provided in science_log 
files (CTD_P, CTD_PT, CTD_PTS, CTD_PTSH, O2, 
etc… depending on the sensors mounted on the 
float) that have been sampled between DST and 
DET. 
 
From *.science_log file: 
 
Message,20171115T174117,Park Descent 
Mission********** 
CTD_P,20171115T175601,25.99 
CTD_P,20171115T175603,26.24 
CTD_P,20171115T185606,524.39 
CTD_P,20171115T185608,524.58 
CTD_P,20171115T195613,843.10 
CTD_P,20171115T195615,843.19 
CTD_P,20171115T205620,1021.85 
CTD_P,20171115T205622,1021.90 
 

Descending CTD 
measurements 
 
Science_log file 

Time, all 
available 
measurements. 
Cycle #N. 

2. value is 
transmitted by 
the float 

200 DET Best option and set this MC here only if it 
occurs before PST:  Computed, from science_log 
file CTD_P data, as the first time the float enters in 
the [PARK_PRES-3%;PARK_PRES+3%] interval. 
Associated pressure is the first CTD_P of 
[PARK_PRES-3%;PARK_PRES+3%] interval.  Data 
looks like this: 
 
Message,20171212T131937,Park Descent 
Mission********* 
CTD_P,20171212T133305,27.990 
CTD_P,20171212T143309,516.390 
CTD_P,20171212T153314,881.230 
CTD_P,20171212T163319,1095.690 
Message,20171212T163325,Park 
Mission***************** 
 
 
 
2nd option and set this MC here only if it occurs 
before PST:   
 
When the float has reached park depth. From the 
*.system_log.txt file: 
 
20171212T163320|5|PARKDESCENT|Reached Park 
Depth: 1095.80 dbar 

Descent end 
time. 
Time when float 
first approaches 
within 3% of the 
configured drift 
pressure. Float 
may be 
transitioning 
from the surface 
or from a deep 
profile. This 
variable is based 
on pressure only 
and can be 
measured or 
estimated by fall-
rate. In the case 
of a float that 
overshoots the 
drift pressure on 
descent, DET is 
the time of the 
overshoot. 
 
Science_log file 
 
Or  

Time 
n 

3 (value is 
directly 
computed from 
relevant, 
transmitted 
float 
information) 
 
Or 
 
2. Value is 
transmitted by 
the float 
 
Or 
 
2. Value is 
transmitted by 
the float 



53 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF11 

Code 
(timing) 

Name in float data output Description 
and name of 
data file 
where this is 
found 

Units and 
data profile 
number 

JULD_STA
TUS 

3rd option and set this MC after PST if a 
timeout:   
 
If ‘Reached Park Depth’ not available in the 
*.system_log.txt file due to a timeout, look for: 

20180112T001404|4|PARKDESCENT|Park Descent 
Timeout: 314 min @ 962.1 dbar 

 
system_log file 

239 = PST-11 
(buoyancy 
actions) 

Could put buoyancy adjustments in here if you 
wanted to (optional) 
Buoyancy action (time and pressure) recorded in 
system_log file between DET and PST. 

Buoyancy 
adjustments 
made during 
descent 
(between DET 
and PST)  
system_log file 

Time, PRES. 
Cycle #N. 

2 (value is 
transmitted by 
the float) 

240 = PST-10 
(relative series 
of 
measurements
) 

All timestamped measures provided in science_log 
files (CTD_P, CTD_PT, CTD_PTS, CTD_PTSH, O2, 
etc… depending on the sensors mounted on the 
float) that have been sampled between DET and 
PST. 

science_log file Time, all 
available 
measurements. 
Cycle #N. 

2 (value is 
transmitted by 
the float) 

Start of the drift phase 

250 PST From 'Park Mission' of science_log file. Associated 
pressure is the CTD_P measurement with the same 
timestamp if exists; otherwise the average value of 
the 2 surrounding CTD_P measurements. 
 
OR 
 
Based on float logic. A statement that it has reached 
the depth. 
From the *.system_log.txt file: 
 
20171116T090439|5|go_to_state|Mission state 
PARKDESCENT -> PARK 

Time of park 
start 
Time when float 
transitions to its 
Park or Drift 
mission. This 
variable is based 
on float logic. 
 
Science_log file  
 
OR 
 
System_log file 

Time 
n 

2. Value is 
transmitted by 
the float 

289 = PET-11 
(buoyancy 
actions) 

Could put buoyancy adjustments in here if you 
wanted to (optional) 
 
Buoyancy action (time and pressure) recorded in 
system_log file between PST and PET. 
 
From the *.system_log.txt file: 
20180118T221551|5|PARK|Adjusting Buoyancy to 
1091 

Time of active 
buoyancy 
adjustment 
during park 
phase 
 
system_log file 

Time, PRES. 
n 

2 (value is 
transmitted by 
the float) 

290 = PET-10 
(relative series 
of 
measurements
) 

All timestamped measures provided in science_log 
files (CTD_P, CTD_PT, CTD_PTS, CTD_PTSH, O2, 
etc… depending on the sensors mounted on the 
float) that have been sampled between PST and 
PET. 
 
Message,20171116T090444,Park 
Mission****************** 
CTD_P,20171116T090447,1026.53 
CTD_PTSH,20171116T090509,1027.10,1.5959,34.70
70,-0.977961 
O2,20171116T090512,231.35490,52.98427,1.60344,
42.96755,40.87555,49.02606,8.15051,488.42319,80
2.80371,648.11133 

A series of 
pressure 
measurements 
taken daily 
during drift. Can 
assign JULD 
values for APF11 
floats. 
 
Science_log file 

Time, all 
available 
measurements. 
n 

2: value 
transmitted by 
the float 



54 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF11 

Code 
(timing) 

Name in float data output Description 
and name of 
data file 
where this is 
found 

Units and 
data profile 
number 

JULD_STA
TUS 

CTD_P,20171116T090514,1027.25 
CTD_P,20171116T100518,1045.72 
CTD_PTSH,20171116T100541,1045.70,1.5607,34.70
50,-0.978141 
O2,20171116T100544,235.17410,53.80836,1.56928,
42.78669,40.69469,48.86159,8.16690,485.97198,80
3.06158,649.16498 
CTD_P,20171116T100546,1045.68 
CTD_P,20171116T110550,1054.54 
Message,20171212T163830,Deep Descent 
Mission***************** 

300 PET From the *.system_log.txt file: 
 
20171116T193820|5|go_to_state|Mission state 
PARK -> DEEPDESCENT 
 
In the case of a float going from park to ascent, it 
might look like this: 
 
20171116T193820|5|go_to_state|Mission state 
PARK -> ASCENT 
 
OR 
 
From the science_log file:   
 
From 'Deep Descent Mission' (or ‘Profiling Mission’ in 
the case of a float going from park to ascent) of 
science_log file. Associated pressure is the CTD_P 
measurement with the same timestamp if exists; 
otherwise the average value of the 2 surrounding 
CTD_P measurements. 

Time when float 
exits from its 
Park or Drift 
mission. It may 
next rise to the 
surface (AST) or 
sink to profile 
depth (DDET) 
 
System_log file  
or 
science_log file 

Time, PRES. 
n 

2: value 
transmitted by 
the float 

301 
(representativ
e park 
measurement) 

Averaged values of CTD_PTS, CTD_PTSH and O2 
measurements sampled during the [Park start 
time;Park end time] time interval (MC = 290). 
REPRESENTATIVE_PARK_PRESSURE_STATUS = 1. 

science_log file All available 
measurements. 
n 

3: value is 
directly 
computed from 
relevant, 
transmitted 
float 
information 

End of drift measurements 

389 = DDET-
11 (buoyancy 
actions) 

Could put buoyancy adjustments in here if you 
wanted to (optional) 
 
Buoyancy action (time and pressure) recorded in 
system_log file between PET and DDET. 
 
From the system_log.txt file 

20180518T162610|5|DEEPDESCENT|Adjusting 
Buoyancy to 187 

Buoyancy 
adjustments 
made during 
deep descent 
(between PET 
and DDET)  
system_log file 

Time, PRES. 
n. 

2: value 
transmitted by 
the float 

390 = DDET-
10 (relative 
series of 
measurements
) 

All timestamped measures provided in science_log 
files (CTD_P, CTD_PT, CTD_PTS, CTD_PTSH, O2, 
etc… depending on the sensors mounted on the 
float) that have been sampled between PET and 
DDET. 

Measurements between: 

Time stamped 
measurements 
collected down 
to deep descent. 
 
science_log file 

Time, all 
available 
measurements. 
n. 

2: value 
transmitted by 
the float 



55 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF11 

Code 
(timing) 

Name in float data output Description 
and name of 
data file 
where this is 
found 

Units and 
data profile 
number 

JULD_STA
TUS 

Message,20171116T193828,Deep Descent 
Mission****************** 
And 
Message,20171116T222642,Profiling 
Mission************* 
 

From the *.science_log.csv file: 

Message,20171116T193828,Deep Descent 
Mission****************** 
CTD_P,20171116T194757,1088.93 
CTD_P,20171116T194759,1089.14 
CTD_P,20171116T195304,1133.28 
CTD_P,20171116T195306,1133.51 
CTD_P,20171116T195811,1177.30 
CTD_P,20171116T195813,1177.49 
CTD_P,20171116T200318,1219.82 
CTD_P,20171116T200320,1220.02 
CTD_P,20171116T200825,1260.75 
CTD_P,20171116T200827,1260.97 
CTD_P,20171116T201332,1301.30 
CTD_P,20171116T201334,1301.51 

400 DDET Calculate this from the measurements between: 

Message,20171116T193828,Deep Descent 
Mission****************** 
 And 
Message,20171116T222642,Profiling 
Mission************* 
 

400 is the first value within 3% of configured deep 
depth.  

This MC is set only if it occurs before AST. 

From the *.science_log.csv file (continued on from 
the snippet in code 399, above): 

CTD_P,20171116T220101,1922.43   399 
CTD_P,20171116T220606,1940.07   400 DDET (first 
measurement within 3% of 2000db) Where do we 
put Pressure value? 490? 
CTD_P,20171116T220608,1940.15   490 
(measurements between 400 DDET and 500 AST) 
CTD_P,20171116T221113,1956.34   490 
CTD_P,20171116T221115,1956.43   490 
CTD_P,20171116T221620,1971.78   490 
CTD_P,20171116T221622,1971.86   490 
CTD_P,20171116T222127,1986.43   490 
CTD_P,20171116T222129,1986.53   490 
CTD_P,20171116T222634,1999.88   490 
CTD_P,20171116T222636,1999.92   490 
Message,20171116T222642,Profiling 
Mission************* 
 

Time when float 
first approaches 
within 3% of the 
eventual deep 
profile pressure. 
This variable is 
based on 
pressure only 
and can be 
measured or 
estimated by fall-
rate. 
 
science_log file 
 
 

Time, PRES. 
n. 

3 (value is 
directly 
computed from 
relevant, 
transmitted 
float 
information) 
 
OR  
 
2: value 
transmitted by 
the float 



56 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF11 

Code 
(timing) 

Name in float data output Description 
and name of 
data file 
where this is 
found 

Units and 
data profile 
number 

JULD_STA
TUS 

489 = AST-11 
(buoyancy 
actions) 

Could put buoyancy adjustments in here if you 
wanted to (optional) 
 
Buoyancy action (time and pressure) recorded in 
system_log file between DDET and AST. 

Buoyancy 
adjustments 
made during 
descent 
(between DDET 
and AST)  
 
system_log file 

Time, PRES. 
n. 

2 (value is 
transmitted by 
the float) 

490 = AST-10 
(relative series 
of 
measurements
) 

All timestamped measures provided in science_log 
files (CTD_P, CTD_PT, CTD_PTS, CTD_PTSH, O2, 
etc… depending on the sensors mounted on the 
float) that have been sampled between DDET and 
AST. 

From the *.science_log.csv file (same snippet from 
code 400, above): 

CTD_P,20171116T220608,1940.15   490 
(measurements between 400 DDET and 500 AST) 
CTD_P,20171116T221113,1956.34   490 
CTD_P,20171116T221115,1956.43   490 
CTD_P,20171116T221620,1971.78   490 
CTD_P,20171116T221622,1971.86   490 
CTD_P,20171116T222127,1986.43   490 
CTD_P,20171116T222129,1986.53   490 
CTD_P,20171116T222634,1999.88   490 
CTD_P,20171116T222636,1999.92   490 
Message,20171116T222642,Profiling 
Mission************* 
 

A series of 
measurements 
transitioning 
towards 500, 
AST.  
 
 
science_log file 

Time, all 
available 
measurements. 
n. 

2: value 
transmitted by 
the float 

500 AST From *.system_log.txt file: 

20171116T222637|5|go_to_state|Mission state 
DEEPDESCENT -> ASCENT 
 
In the case of a float going from park to ascent, it 
might look like this: 
 
20171116T193820|5|go_to_state|Mission state 
PARK -> ASCENT 
 
OR 
From the science_log file: 
 
From 'Profiling Mission' of science_log file. 
Associated pressure is the CTD_P measurement with 
the same timestamp if exists; otherwise the average 
value of the 2 surrounding CTD_P measurements. 
 

System_log file  
Or 
Science_log file 

Time 
n 

2: value 
transmitted by 
the float 

503 (deepest 
measurement) 

Deepest value from CTD_CP, CTD_CP_H or profile 
CTD_PTS, CTD_PTSH measurements. 

science_log file Time (if 
available), all 
available 
measurements. 
Cycle #N. 

2: value 
transmitted by 
the float 

589 = AET-11 
(buoyancy 
actions) 

Could put buoyancy adjustments in here if you 
wanted to (optional) 
 
Buoyancy action (time and pressure) recorded in 
system_log file between AST and AET. 
 

Buoyancy 
adjustments 
made during 
descent 
(between AST 
and AET)  

Time, PRES. 
n. 

2: value 
transmitted by 
the float 



57 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF11 

Code 
(timing) 

Name in float data output Description 
and name of 
data file 
where this is 
found 

Units and 
data profile 
number 

JULD_STA
TUS 

From the *.system_log.txt file: 
20180518T101453|5|ASCENT|Adjusting Buoyancy to 
570 

 
system_log file 

590 = AET-10 
(relative series 
of 
measurements
) 

All timestamped measures provided in science_log 
files (CTD_P, CTD_PT, CTD_PTS, CTD_PTSH, O2, 
etc… depending on the sensors mounted on the 
float) that have been sampled between AST and 
AET. 
 
 
Cyan rows are the profile data and go in the profile 
netcdf. They can be duplicated in the trajectory file if 
desired. 
 
Green rows are rise rate and go in traj file with code 
590. 
 
From the *.science_log.csv file: 
 
Message,20171116T222642,Profiling 
Mission************* 
CTD_P,20171116T222645,2000.28 
CTD_P,20171116T222646,2000.33 
CTD_P,20171116T222846,1998.49 
CTD_PTSH,20171116T222908,1996.50,0.7812,34.69
20,-0.981964 
O2,20171116T222911,244.32410,54.70848,0.79020,
42.75586,40.66386,48.78920,8.12534,482.74139,80
7.42743,673.09949 
CTD_P,20171116T222913,1995.97 
CTD_P,20171116T223017,1990.00 
CTD_P,20171116T223019,1989.82 
CTD_P,20171116T223123,1983.93 
CTD_P,20171116T223125,1983.82 
CTD_P,20171116T223229,1977.94 
CTD_P,20171116T223231,1977.76 
CTD_P,20171116T223335,1972.03 
CTD_P,20171116T223337,1971.84 
CTD_P,20171116T223441,1966.22 
 
CTD_P,20171117T045001,4.32 
CTD_P,20171117T045017,3.41 
CTD_P,20171117T045019,3.34 
Message,20171117T045024,Surface 
Mission*************** 
 
 
 

Point sample 
pressures on 
ascent to 
surface. 
 
science_log file 

Time, all 
available 
measurements. 
n. 

2: value 
transmitted by 
the float 

600 AET From the *.system_log.txt file: 
 
20171117T045019|5|go_to_state|Mission state 
ASCENT -> SURFACE 
 
OR 
 
From the science_log file: 
 
From Surface Mission' of science_log file. Associated 
pressure is the CTD_P measurement with the same 
timestamp if exists; otherwise the average value of 
the 2 surrounding CTD_P measurements. 

Time of change 
to surface 
mission. Will 
likely be before 
the float reaches 
the surface. 
 
System_log file  
OR 
science_log file 

Time 
n 

2: value 
transmitted by 
the float 



58 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF11 

Code 
(timing) 

Name in float data output Description 
and name of 
data file 
where this is 
found 

Units and 
data profile 
number 

JULD_STA
TUS 

 

Float is on the surface 

690 = TST-10 
(relative series 
of 
measurements
) 

All timestamped measures provided in science_log 
files except O2 relative ones (CTD_P, CTD_PT, 
CTD_PTS, CTD_PTSH, etc… depending on the 
sensors mounted on the float) that have been 
sampled between AET and TST. 

science_log file Time, all 
available 
measurements. 
Cycle #N. 

2: value 
transmitted by 
the float 

700 TST From the *.system_log.txt file: 
 
20171117T050104|5|connect|Received CONNECT 
 
Or 
 
From first occurrence of 'Found sky.' in system_log 
file. 
 
For RBR prototype float, this is the n profile for this 
float. 
20180519T031207|5|network_quality|Modem 
Quality = 5 %taken from the end of the file. Not the 
start, which is associated with n-1 and is not used 
for trajectory files. 

Time of first z-
modem activity. 
 
System_log file 

Time 
Cycle n-1  
 
Or 
 
Time. 
Cycle n. 

2: value 
transmitted by 
the float 

703 ST Multiple fixes may appear and all should be included 
here. The first fix in the science_log and system_log 
files is the location for profile n-1, the last fix is the 
location for profile n. Every fix is additional to any 
from previous profile files. 
 
Also, the float may produce additional files for any 
given profile if the float has trouble connecting. 
These files will be smaller but contain more GPS 
fixes and surface pressure measurements and they 
will apply to profile n. EG: 
 
-rw-rw-rw- 1 18157 argo-hf   240 Feb 23 10:56 
f8157.007.20180202T081336.vitals_log.bin 
-rw-rw-rw- 1 18157 argo-hf   433 Feb 23 10:55 
f8157.007.20180202T081336.vitals_log.csv 
-rw-rw-rw- 1 18157 argo-hf 15236 Feb 23 10:56 
f8157.007.20180202T081758.science_log.bin 
-rw-rw-rw- 1 18157 argo-hf 39696 Feb 23 10:56 
f8157.007.20180202T081758.science_log.csv 
-rw-rw-rw- 1 18157 argo-hf 12716 Feb 23 10:56 
f8157.007.20180212T073604.system_log.txt 
-rw-rw-rw- 1 18157 argo-hf   169 Feb 23 10:56 
f8157.007.20180212T073834.vitals_log.bin 
-rw-rw-rw- 1 18157 argo-hf   361 Feb 23 10:56 
f8157.007.20180212T073834.vitals_log.csv 
-rw-rw-rw- 1 18157 argo-hf   247 Feb 23 10:56 
f8157.007.20180212T082954.science_log.bin 
-rw-rw-rw- 1 18157 argo-hf   550 Feb 23 10:56 
f8157.007.20180212T082954.science_log.csv 
-rw-rw-rw- 1 18157 argo-hf  6155 Feb 23 10:55 
f8157.007.20180212T110402.system_log.txt 
 
 
From the *.system_log.txt file: 

Satellite times 
and locations. 
One for each fix. 

Time, Position 
n-1 and n 

4. value is 
determined by 
satellite 



59 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF11 

Code 
(timing) 

Name in float data output Description 
and name of 
data file 
where this is 
found 

Units and 
data profile 
number 

JULD_STA
TUS 

 
20180202T081758|5|GPS|GPS Skew: 0 secs 
20180202T081758|5|GPS|GPS Fix: 02/02/2018 
08:17:58,-31.62194,-164.89915,77   Fix for profile 
n-1 
20180202T081758|5|wait_for_done|GPS 
time/location set 
20180202T081820|5|go_to_state|Mission state 
SURFACE -> PARKDESCENT 
 
20180212T073341|5|stop_profilers|Stopping 
profilers 
20180212T073352|5|update_offset|Surface Offset 
Pressure: 0.4900 
20180212T073603|5|RMC|Set Clock: 02/12/2018 
07:36:03 
20180212T073603|5|GPS|GPS TimeToFix: 126 secs 
20180212T073603|5|GPS|GPS Skew: 0 secs 
20180212T073603|5|GPS|GPS Fix: 02/12/2018 
07:36:03,-31.71048,-165.08408,67   Fix for profile n 
20180212T073603|5|wait_for_done|GPS 
time/location set 
20180212T073603|5|SURFACE|Completing Mission 
No.: 7 
 
From the *.science_log.csv file: 
 
Message,20180202T081758,Firmware: 03/06/17 
21:21:20 APF11-2MB-v2.5.2 
Message,20180202T081758,FloatId/Username: 
f8157 
GPS,20180202T081758,-31.6219,-164.8992,7   Fix 
for profile n-1 
CTD_P,20180202T081759,0.110 
 
Message,20180212T073055,Surface 
Mission************** 
CTD_P,20180212T073057,0.410 
CTD_P,20180212T073310,0.390 
CTD_P,20180212T073341,0.280 
CTD_P,20180212T073352,0.490 
GPS,20180212T073603,-31.7105,-165.0841,6   Fix 
for profile n. 
 

 702 FMT, and 
704 LMT 

Don’t use for APF11 floats Time of first/last 
iridium message 

Time 
n-1 

4. value is 
determined by 
satellite 

790 = TET-10 
(relative series 
of 
measurements
) 

All timestamped measures provided in science_log 
files (CTD_P, CTD_PT, CTD_PTS, CTD_PTSH, O2, 
etc… depending on the sensors mounted on the 
float) that have been sampled between TST and 
TET. 

science_log file Time, all 
available 
measurements. 
Cycle #N. 

2: value 
transmitted by 
the float 

800 TET End of upload of files to the modem. Applies to cycle 
n-1. 
From the *.system_log.txt file: 
 
20180202T081728|5|zmodem_upload_files|Uploade
d: f8157.006.20180123T085222.science_log.bin.gz 
20180202T081728|5|zmodem_upload_files|Uploade
d: f8157.006.20180202T081104.system_log.txt.gz 
20180202T081728|5|zmodem_upload_files|Uploade

Time of last z-
modem activity 

Time 
n-1 

2: value 
transmitted by 
the float 



60 

Argo data management                                      Argo DAC trajectory cookbook 

Argo trajectory file measurement codes (MC) for APF11 

Code 
(timing) 

Name in float data output Description 
and name of 
data file 
where this is 
found 

Units and 
data profile 
number 

JULD_STA
TUS 

d: f8157.006.20180123T084118.vitals_log.bin.gz 
20180202T081728|5|zmodem_upload_files|Uploade
d 12489 bytes in 99 secs at 126.1515 bytes/sec 
 

710 (in-water 
samples, part 
of surface 
sequence) 

For O2 floats only. 
All O2 relative measurements sampled between AET 
and ‘Inflating air bladder’ time (provided in 
system_log file). 

science_log file Time, all 
available 
measurements. 
Cycle #N. 

2: value 
transmitted by 
the float 

711 (in-air 
samples, part 
of surface 
sequence) 

For O2 floats only. 
All O2 relative measurements sampled between 
‘Inflating air bladder’ time (provided in system_log 
file) and TST. 

science_log file Time, all 
available 
measurements. 
Cycle #N. 

2: value 
transmitted by 
the float 

901 (grounded 
cycle) 

Grounding detection (time and pressure) recorded in 
system_log file. 

system_log file Time, PRES. 
Cycle #N. 

2: value 
transmitted by 
the float 

903 Surface pressure measurements. 
From the *.system_log.txt file: 
20180518T135447|5|update_offset|Surface Offset 
Pressure: 0.0900 
 
 

Surface pressure 
offset value 

Pressure 
n 

2: value 
transmitted by 
the float 

 

2.2.9 HM2000 floats 

Argo program measurement codes (MC) for HM2000 floats 

Code (timing) HM2000 Variable Description Units JULD_STATUS 

0 (launch)  Launch time and 
location as recorded by 
deployer 
 
 
If not recorded, use Fill 
Value 

Time and location 
 
 
 

 0:  value is estimated from pre-
deployment information found in 
the metafile 

 
 
9: value is not immediately 
available but may be estimated 
at a later date 

 

100 (DST) Estimated from 
engineering data 

 YYYY/MM/DD 
HH:MM:SS 

3: value is directly computed 
from relevant, transmitted float 
information  

150 (FST) HM2000 float doesn't 
transmit FST, use Fill 
Value 
 

   

189 None, use Fill Value 
 
 
 
 

Next two stabilization 
times given as hours 
and minutes elapsed 
since DST.  

  

200 (DET) Estimated from 
engineering data 

 YYYY/MM/DD 
HH:MM:SS 

3: value is directly computed from 
relevant, transmitted float 
information  

250 (PST) Use Fill Value   
 

  



61 

Argo data management                                      Argo DAC trajectory cookbook 

During the drift phase, HM2000 floats measure pressure, temperature and salinity every 3 or 6 hours 

290 Series of pressure 
 

A series of pressure 
measurements taken 
daily during drift.  No 
time can be assigned to 
these pressures, so use 
Fill Value in JULD 

Pressure 
 

2: value is transmitted by the 
float 

End of drift measurements 

300 (PET) Use Fill Value     

301 Estimated from all drift 
depth 

Best estimate of drift 
depth  

Pressure 3: value is directly computed 
from relevant, transmitted float 
information 

400 (DDET) Use Fill Value    

500 (AST) Estimated from 
engineering data 

 YYYY/MM/DD 
HH:MM:SS 

3: value is directly computed from 
relevant, transmitted float 
information  

590 none Transmitted data is of 
the elapsed time for 
each vertical slice of 
ascent (from the max 
pressure to 2000 db 
for the first slice; and 
for each 100 dbar 
think slice until the 
surface) 

  

600 (AET) Computed from TST - 3 
min (fixed) 

 YYYY/MM/DD 
HH:MM:SS 
 

3: value is directly computed 
from relevant, transmitted float 
information 

700 (TST) starting acquisition date 
of the BDS/GPS fix(es). 
 

 Time 2: value is transmitted by the 
float 

702 (FMT) Earliest time of all BDS 
messages received 

 YYYY/MM/DD 
HH:MM:SS 

4:  value is determined by 
satellite 

703 (ST) All  times from BDS or 
GPS 

 Time, Position 4:  value is determined by 
satellite 

704 (LMT) Last time of all BDS 
messages received 

 Time 4:  value is determined by 
satellite 

800 (TET) Last time of float 
transmission 

 Time 2: value is transmitted by the float 

 

The positioning system used by HM2000 float can be switched between BDS (BeiDou Satellite) and 

GPS. At present, all the floats deployed are using BDS for positioning. 

When using the BDS system, when the float hits the surface, it tries to get a BDS position, then it 

transmits its messages to BDS and then it tries to get another BDS position.  Please put the 

measurement codes in the correct chronological order depending on when the positions were obtained 

from BDS. 

The manufacture provides a windows-based software to decode BDS messages and generate a data file 

for each profile. 

The prototype of HM2000 float does not have a fixed cycle time (does not have time-outs just like 

Apex float ) because the engineers from the manufacture (HSOE) didn't recognize the importance of 

trajectory information for ocean current estimation. The future products will be designed to have a 

fixed cycle time and record a time at each action (e.g. Descent start time, Descent end time, Ascent 

start time, Ascent end time, Transmission start time, Transmission end time...). Currently all the times 

except for satellite fixed times are estimated from technical information. 



62 

Argo data management                                      Argo DAC trajectory cookbook 

Ascent Start Time 

The AST is estimated from the AET - time consumed by air pump (3 minutes) - time consumed by 

ascent phase. Users can get it from each data file. 

Ascent End Time 

The AET is computed from the corresponding TST. AET=TST - 3 minutes. (Present version of 

HM2000 float will wait 3 minutes for getting a BDS position after it hits the surface) 

Transmission Start Time  

The TST is obtained after the float hits the surface (3 minutes). It is transmitted by the float, and users 

can get the TST from each data file. 

Transmission End Time 

The TET is obtained after the float finishes transmitting messages. It is transmitted by the float, and 

users can get it from each data file. 

Descent Start Time 

The DST is computed as the TST - time consumed at each phase under water. Users can get it from 

each data file. 

Descent End Time 

The DET is computed as the AET - time consumed from its start drifting phase. Users can get it from 

each data file. 

 

  



63 

Argo data management                                      Argo DAC trajectory cookbook 

2.2.10 NEMO floats 

Argo program measurement codes (MC) for NEMO floats 

Code (timing) NEMO Variable Description Units JULD_STATUS 

0 (launch)  Launch time and 

location as recorded by 

deployer 

 

 

 

If not recorded, use Fill 

Value 

Time and location 

 

 

 

 0:  value is estimated from pre-

deployment information found 

in the metafile 

 

 

9: value is not immediately 

known, but believe it can be 

estimated later 

 

100 (DST) Descent_start_time  

 

OR 

 

Descent_starttime 

See section 3.2.2.3.1 

 

Time 

 

 

 

Time 

2: value is transmitted by the 

float 

 

 

2: value is transmitted by the 

float 

200 (DET) Not usually available, so 

use Fill Value unless 

timeout error is 

triggered. 

 

 

If timeout occurs, enter 

time of abort 

If float doesn’t reach 

parking depth in time, 

the descent is aborted 

and a timeout error is 

reported.  If this 

happens, enter this 

value into DET.  If not, 

use Fill Value. See 

section 3.2.2.3.3 

 9: value is not immediately 

known, but believe it can be 

estimated later 

 

 

 

2: value is transmitted by the 

float 

250 (PST) Parking_start_time 

 

 

 

Not available, so use Fill 

Value 

 

Only available for 

newer floats.  Do not 

enter this if timeout 

error occurs.  Use Fill 

Value in that case. 

 See section 3.2.2.3.3 

Time 

 

 

2: value is transmitted by the 

float 

 

 

9: value is not immediately 

known, but believe it can be 

estimated later 

During the drift phase, NEMO  floats measure time pressure and temperature 

290 What kind of drift 

measurements are 

made??  A series, an 

average?? 

   

End of drift measurements 

300 (PET) Upcast_start_time Only available for 

newer floats.  See 

section 3.2.2.3.4 

 2: value is transmitted by the 

float 

 

301 Average pressure during 

drift 

Best estimate of drift 

depth  

Pressure 3: value is directly computed 

from relevant, transmitted float 

information 

500 (AST) Ascent_start_time  

 

Or 

 

Ascent_starttime 

See section 3.2.2.3.6 

 

Is this a time out 

value??  Does float 

start ascending if it 

hits profile pressure? 

Time 

 

 

 

Time 

2: value is transmitted by the 

float  

 

 

2: value is transmitted by the 

float 

600 (AET) Surfacingtime 

 

Or 

See section 3.2.2.3.7 

 

Is this a time out 

Time 

 

 

2: value is transmitted by the 

float  

 



64 

Argo data management                                      Argo DAC trajectory cookbook 

 

Ascent_end_time 

value or does float 

know it is at the 

surface? 

 

Time 

 

 

2: value is transmitted by the 

float 

700 (TST) End_of_profile_time 

 

Or 

 

Surface_start_time 

See section 3.2.2.3.8 

 

Time 

 

 

 

Time 

2: value is transmitted by the 

float 

 

 

2: value is transmitted by the 

float  

702 (FMT) Earliest time of all Argos 

messages received 

 Time  4:  value is determined by 

satellite 

703 (ST) All Argos times and 

locations 

 Time, Position 4:  value is determined by 

satellite 

704 (LMT) Latest time of all Argos 

messages received 

 Time  4:  value is determined by 

satellite 

800 (TET) Not available, so use Fill 

Value 

See section 3.2.2.3.9  9: value is not immediately 

known, but believe it can be 

estimated later 

     

 

 

2.2.10.1.1 Descent Start Time - NEMO 

DST is called descent_start_time or descent_starttime.  

The DST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 100 and STATUS set to 2: value is transmitted by float. 

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the 

JULD_DESCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.10.1.2 First Stabilization Time - NEMO 

FST is not measured by the float and should be excluded from the N_MEASUREMENT array. 

In the N_CYCLE array, the value should be stored in the JULD_FIRST_STABILIZATION variable 

and the JULD_FIRST_STABILIZATION_STATUS set to fill value. 

2.2.10.1.3 Descent End Time & Park Start Time - NEMO 

PST is called parking_start_time and is not available for all floats. For newer floats with serial 

numbers >113 this time will be in the recorded technical data. The time recorded here is either when 

the floats reaches programmed parking depth under a controlled descent (actually measuring the 

pressure) or at a programmed count of the pump for a parkcount descent. Both of these times are based 

either on an actual measurement of pressure or on a descent timer, so they are characterized as Park 

Start Time rather than Descent End Time. The PST should be in the JULD (or JULD_ADJUSTED if 

clock offset has been applied) variables in the N_MEASUREMENT array with an MC = 250 and 

STATUS set to 2: value is transmitted by float. 

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the 

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 



65 

Argo data management                                      Argo DAC trajectory cookbook 

The only exception is for a timeout error when the float, during a controlled descent, is not able to 

reach the parking depth and aborts the procedure after a predetermined time. In this case the time of 

the abort is recorded. If this timeout occurs, the time of abort should be recorded in the Descent End 

Time variable as it is a timeout value. The DET should be in the JULD (or JULD_ADJUSTED if 

clock offset has been applied) variables in the N_MEASUREMENT array with an MC = 200 and 

STATUS set to 2: value is transmitted by float. 

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_END variable and the 

JULD_DESCENT_END_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

In the N_CYCLE array, fill value should be stored in the JULD_DESCENT_END, 

JULD_DESCENT_END_STATUS, JULD_PARK_START and JULD_PARK_START_STATUS 

variables. 

2.2.10.1.4 Park End Time - NEMO 

PET is called upcast_start_time. This variable is available for all floats with serial number >113. 

While this may seem like an odd name, the float manufacturer chose this following their internal logic. 

The PET should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 300 and STATUS set to 2: value is transmitted by float. 

In the N_CYCLE array, the value should be stored in the JULD_PARK_END variable and the 

JULD_PARK_END_STATUS set to 2. If the float clock offset has been estimated and applied, make 

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

If the upcast_start_time is not available, it should be excluded from the N_MEASUREMENT array. 

In the N_CYCLE array, fill value should be stored in the JULD_PARK_END and the 

JULD_PARK_END_STATUS variables. 

2.2.10.1.5 Deep Descent End Time - NEMO 

DDET is not an event for this float, so it should be excluded from the N_MEASUREMENT array. 

In the N_CYCLE array, fill value should be stored in the JULD_DEEP_DESCENT_END and the 

JULD_DEEP_DESCENT_END_STATUS variables.  

2.2.10.1.6 Ascent Start Time - NEMO 

AST is called ascent_start_time or ascent_starttime. 

The AST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 500 and STATUS set to 2: value is transmitted by float. 

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_START variable and the 

JULD_ASCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.10.1.7 Ascent End Time - NEMO 

AET is called surfacingtime or ascent_end_time. 

The AET should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 600 and STATUS set to 2: value is transmitted by float. 



66 

Argo data management                                      Argo DAC trajectory cookbook 

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_END variable and the 

JULD_ASCENT_END_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.10.1.8 Transmission Start Time - NEMO 

TST is called end_of_profile_time or surface_start_time. 

The TST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 700 and STATUS set to 2: value is transmitted by float. 

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable 

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been 

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know 

it has been applied. 

2.2.10.1.9 Transmission End Time - NEMO 

TET is not known for the actual profile, the float starts descending immediately after transmission. But 

the DST for the next profile will be the TET of the current profile. Before this time is known, the TET 

is a fill value with a status of "9". 

The TET should be set to fill value for the current cycle in the JULD variable in the 

N_MEASUREMENT array with an MC = 800 and STATUS set to 9: value is not immediately known, 

but believe it can be estimated later. 

When the next cycle arrives, the TET should be set to the DST of current profile in the JULD (or 

JULD_ADJUSTED if clock offset has been applied) variable in the N_MEASUREMENT array with 

an MC = 800 and STATUS set to 2: value is transmitted by float. 

For the N_CYCLE array, fill value should be stored in the JULD_TRANSMISSION_END variable 

and the JULD_TRANSMISSION_END_STATUS set to 9 for the current cycle.  

Once the DST of the next profile occurs, and hence the TET of the previous profile is known, the TET 

can be filled in the previous cycle. 

The value should be stored in the JULD_TRANSMISSION_END variable and the 

JULD_TRANSMISSION_END_STATUS set to 2. If the float clock offset has been estimated and 

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been 

applied. 

  



67 

Argo data management                                      Argo DAC trajectory cookbook 

2.2.11 NINJA floats 

There are two types of NINJA floats: those deployed in 2002 - 2007 and those deployed in 2008. For 

the floats deployed in 2002 - 2007, some times are directly provided by the float (the day (day number 

in the current month), hours, minutes and seconds of the event are transmitted). Other times must be 

computed from technical information. 

All these times must be corrected for clock offset before storage in the N_CYCLE and 

N_MEASUREMENT arrays. 

Argo program measurement codes (MC) for NINJA 300001, 300002, 300003 floats 

Code (timing) NINJA Variable Description Units JULD_STATUS 

0 (launch)  Launch time and 

location as recorded by 

deployer 

 

 

 

If not recorded, use Fill 

Value 

Time and location 

 

 

 

 0:  value is estimated from pre-

deployment information found 

in the metafile 

 

 

9: value is not immediately 

available but may be estimated 

at a later date 

 

100 (DST) Descent_Start_Day See section 3.2.2.4.1.1 

 

Day number in the 

month, hours, 

minutes and 

seconds 

2: value is transmitted by the 

float 

150 (FST) First Stabilization Time 

 

 

 

 

 

Pressure provided with 

time 

First of three 

stabilization times 

provided as hours and 

minutes elapsed since 

DST.  See section 

3.2.2.4.1.2 

Time (hours and 

minutes since 

DST) 

 

 

 

Pressure 

2: value is transmitted by the 

float 

 

 

 

 

2: value is transmitted by the 

float 

189 Second and Third 

Stabilization Times 

 

 

 

Pressure provided with 

time. 

Next two stabilization 

times given as hours 

and minutes elapsed 

since DST. See section 

3.2.2.4.1.2 

Time (hours and 

minutes since 

DST) 

 

 

Pressure 

2: value is transmitted by the 

float 

 

 

 

2: value is transmitted by the 

float 

200 (DET) Not available, so use Fill 

Value 

  9: value is not immediately 

known, but believe it can be 

estimated later 

250 (PST) Parking_Depth_in_Time 

 

 

 

 

Pressure 

 See section 3.2.2.4.1.3 

 

 

Day number in the 

month, hours, 

minutes and 

seconds 

 

Pressure 

2: value is transmitted by the 

float 

 

 

 

2: value is transmitted by the 

float 

During the drift phase, NINJA 300001, 300002, 300003 floats measure pressure daily. 

290 Series of pressure 

 

A series of pressure 

measurements taken 

daily during drift.  No 

time can be assigned to 

these pressures, so use 

Pressure 

 

2: value is transmitted by the 

float 



68 

Argo data management                                      Argo DAC trajectory cookbook 

Fill Value in JULD 

End of drift measurements 

300 (PET) Not available, so use Fill 

Value 

 

 

Pressure 

See section 

3.2.2.4.1.4 

 

 

 

 

Pressure 

9: value is not immediately 

known, but believe it can be 

estimated later 

301 Average pressure during 

drift 

Best estimate of drift 

depth  

Pressure 3: value is directly computed 

from relevant, transmitted float 

information 

400 (DDET) Not available, so use Fill 

Value 

See section 

3.2.2.4.1.5 

 9: value is not immediately 

known, but believe it can be 

estimated later 

500 (AST) Ascent_Start_Day See section 

3.2.2.4.1.6 

Day number in the 

month, hours, 

minutes and 

seconds 

2: value is transmitted by the 

float  

590 Times associated with 

ascending CTD 

measurements 

Transmitted data is of 

the elapsed time for 

each vertical slice of 

ascent (from the max 

pressure to 2000 db 

for the first slice; and 

for each 100 dbar 

think slice until the 

surface) 

Time 2: value is transmitted by the 

float 

600 (AET) AST + profile duration See section 

3.2.2.4.1.6 

Day number in the 

month, hours, 

minutes and 

seconds 

 

3: value is directly computed 

from relevant, transmitted float 

information 

700 (TST) ARGOS_Start_day See section 

3.2.2.4.1.8 

Day number in the 

month, hours, 

minutes and 

seconds 

 

2: value is transmitted by the 

float 

702 (FMT) Earliest time of all Argos 

messages received 

 Time  4:  value is determined by 

satellite 

703 (ST) All Argos times and 

locations 

 Time, Position 4:  value is determined by 

satellite 

704 (LMT) Latest time of all Argos 

messages received 

 Time  4:  value is determined by 

satellite 

800 (TET) Not available, so use Fill 

Value 

See section 

3.2.2.4.1.9 

 9: value is not immediately 

known, but believe it can be 

estimated later 

 

2.2.11.1.1 Dated events for NINJA 300001, 300002 and 300003 versions 

2.2.11.1.1.1 Descent Start Time - NINJA 

The DST is directly provided by these NINJA versions (Descent_Start_Day): the day (day number in 

the month), hours, minutes and seconds of DST are transmitted. 



69 

Argo data management                                      Argo DAC trajectory cookbook 

The DST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 100 and STATUS set to 2: value is transmitted by float. 

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the 

JULD_DESCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.11.1.1.2 First Stabilization Time - NINJA 

Three Stabilization Times are provided by these NINJA versions (as hours and minutes elapsed since 

DST) with the associated pressures. 

The three Stabilization Times and pressures should be stored in the JULD (or JULD_ADJUSTED if 

clock offset has been applied) and PRES variables in the N_MEASUREMENT array with the MC set 

to 150 for the first stabilization and 189 for the next two. STATUS should be set to 2: value 

transmitted by float. 

In the N_CYCLE array, the first stabilization value should be stored in the 

JULD_FIRST_STABILIZATION variable and the JULD_FIRST_STABILIZATION_STATUS set to 

2. If the float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET 

(N_CYCLE) variable so users know it has been applied. 

2.2.11.1.1.3 Park Start Time - NINJA 

The PST is directly provided by these NINJA versions (Parking_Depth_in_Time): the day (day 

number in the month), hours, minutes and seconds of DST are transmitted. 

The associated  pressure is also transmitted. 

The time and pressure should be stored in the JULD (or JULD_ADJUSTED if clock offset has been 

applied) and PRES variables in the N_MEASUREMENT array with the MC set to 250 and STATUS 

set to 2: value transmitted by float. 

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the 

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.11.1.1.4 Park End Time - NINJA 

NINJA 30001 can only observe given information on the parking depth (parking depth = profile 

depth) just after it is deployed. Then, the times from PET to AST are not in the technical message. 

NINJA 30002 and 300003 can observe from profile depth which is deeper than parking depth, but 

their firmware are only updated a little from 30001. The times from PET to AST are not added in the 

technical message. Therefore, we cannot know the times from PET to AST. 

Unfortunately, there is no constant amount of time from AST. Since the PET is an event that occurs 

for the float, without the time known, it will be fill value in the JULD & JULD_ADJUSTED variables 

in the N_MEASUREMENT array with an MC = 300 and STATUS set to 9 as it might be estimated at 

a later time. 

In the N_CYCLE array, fill value should be stored in the JULD_PARK_END and the 

JULD_PARK_END_STATUS should be set to 9. 

2.2.11.1.1.5 Deep Descent End Time - NINJA 

NINJA floats do not record this time, so use fill value in the JULD and JULD_ADJUSTED variables 

in the N_MEASUREMENT array with an MC=400 and JULD_STATUS and 

JULD_ADJUSTED_STATUS of ‘9’.   



70 

Argo data management                                      Argo DAC trajectory cookbook 

In the N_CYCLE array, fill value should be stored in the JULD_DEEP_DESCENT_END variable and 

the JULD_DEEP_DESCENT_END_STATUS should be set to 9. If the float clock offset has been 

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know 

it has been applied. 

2.2.11.1.1.6 Ascent Start Time - NINJA 

The AST is directly provided by these NINJA versions (Ascent_Start_Day): the day (day number in 

the month), hours, minutes and seconds of AST are transmitted. 

The AST should be stored in the JULD (or JULD_ADJUSTED if clock offset has been applied) 

variable in the N_MEASUREMENT array with the MC set to 500 and STATUS set to 2: value 

transmitted by float. 

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_START variable and the 

JULD_ASCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.11.1.1.7 Ascent End Time - NINJA 

The AET is not directly provided by these NINJA versions. 

 However, these floats provide the elapsed time for each vertical slice of ascent (from the max pressure 

to 2000 dbar for the first slice; and for each 100 dbar thick other slices until the surface). 

The cumulative sum of these times is thus the profile duration and can be used to compute AET from 

AST. 

The AET should be stored in the JULD (or JULD_ADJUSTED if clock offset has been applied) 

variable in the N_MEASUREMENT array with the MC set to 600 and STATUS set to 3: value is 

directly computed from relevant, transmitted float information. 

In the N_CYCLE array, the corresponding sum should be stored in the JULD_ASCENT_END 

variable and the JULD_ASCENT_END_STATUS set to 3. If the float clock offset has been estimated 

and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has 

been applied. 

AET is stored as Ascent_0db_time 

2.2.11.1.1.8 Transmission Start Time - NINJA 

The TST is directly provided by these NINJA versions: the day (day number in the month), hours, 

minutes and seconds of TST are transmitted. The variable is called “ARGOS_START_Day”. 

The TST should be stored in the JULD (or JULD_ADJUSTED if clock offset has been applied) 

variable in the N_MEASUREMENT array with the MC set to 700 and STATUS set to 2: value 

transmitted by float. 

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable 

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been 

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know 

it has been applied. 

2.2.11.1.1.9 Transmission End Time - NINJA 

TET is not known. Since the TET is an event that occurs for the float, without the time known, it will 

be fill value in the JULD & JULD_ADJUSTED variables in the N_MEASUREMENT array with an 

MC = 800 and STATUS set to 9 as it might be estimated at a later time. 



71 

Argo data management                                      Argo DAC trajectory cookbook 

In the N_CYCLE array, fill value should be stored in the JULD_TRANSMISSION_END variable and 

the JULD_TRANSMISSION_END_STATUS set to 9. If the float clock offset has been estimated and 

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been 

applied. 

2.2.11.1.2 2008 NINJA floats 

No timing information is available in real time or in delayed mode. Nothing should be included in the 

N_MEASUREMENT array. All cycle timing variables and their status flags should be fill value in the 

N_CYCLE array. 

 

  



72 

Argo data management                                      Argo DAC trajectory cookbook 

 

2.2.12 Deep NINJA floats 

Deep NINJA floats profile to deeper than 2000db and the accuracy of the CTD data below 2000 db is 

not yet well understood.  Currently, Argo is labeling these data with lower quality flags (2 and 3) in 

real time.  So, if any pressure measurements included in the trajectory file are below 2000 db, they 

should be flagged with a 2 or 3 in real time. 

Argo program measurement codes (MC) for DeepNINJA floats 

Code (timing) DeepNINJA 

Variable 

Description Units JULD_STATUS 

0 (launch)  Launch time and 

location as recorded by 

deployer 

 

 

 

If not recorded, use Fill 

Value 

Time and location 

 

 

 

 0:  value is estimated from pre-

deployment information found 

in the metafile 

 

 

9: value is not immediately 

available but may be estimated 

at a later date 

 

100 (DST) Descent_Start_Time 

 

 

 

 

Pressure provided with 

time. 

Time when float starts 

descending to the 

parking depth from sea 

surface. 

Date and Time 

 

 

 

 

Pressure (dbar) 

2: value is transmitted by the 

float 

 

 

 

2: value is transmitted by the 

float 

150 (FST) Not available, so use Fill 

Value 

  9: value is not immediately 

known, but believe it can be 

estimated later 

200 (DET) Descent_End_Time 

 

 

 

Pressure provided with 

time. 

Time when float 

reaches the parking 

depth and start drifting 

Date and Time 

 

 

 

Pressure(dbar) 

2: value is transmitted by the 

float 

 

 

2: value is transmitted by the 

float 

250 (PST) Use DET Time when float 

reaches the parking 

depth and start drifting 

Date and Time 

 

 

 

Pressure(dbar) 

2: value is transmitted by the 

float 

 

 

2: value is transmitted by the 

float 

During the drift phase, DeepNINJA floats measure time pressure, temperature and salinity hourly. 

290 Series of time, pressure, 

temperature and salinity 

measured during drift 

 

A series of pressure 

measurements taken 

daily during drift.   

Date and Time 

Pressure (dbar) 

Temperature (C) 

Salinity(psu) 

 

2: value is transmitted by the 

float 

End of drift measurements 

300 (PET) Deep_Descent_Start_Tim

e 

 

 

 

Time when float start 

descending from the 

parking depth to the 

profile depth. 

Date and Time 

 

 

 

 

2: value is transmitted by the 

float 

 

 

 



73 

Argo data management                                      Argo DAC trajectory cookbook 

Pressure provided with 

time. 

Pressure(dbar) 2: value is transmitted by the 

float 

301 Average pressure during 

drift 

Best estimate of drift 

depth  

Pressure 3: value is directly computed 

from relevant, transmitted float 

information 

400 (DDET) Deep_Descent_End_Time 

 

 

 

Pressure provided with 

time. 

Time when float 

reaches the profile 

depth. 

Date and Time 

 

 

 

Pressure(dbar) 

2: value is transmitted by the 

float 

 

 

2: value is transmitted by the 

float 

500 (AST) Ascent_Start_Time 

 

 

 

Pressure provided with 

time. 

Time when float starts 

ascending to the sea 

surface 

 

Date and Time 

 

 

 

Pressure(dbar) 

2: value is transmitted by the 

float  

 

 

2: value is transmitted by the 

float 

600 (AET) Ascent_End_Time 

 

 

 

Pressure provided with 

time. 

Time when float 

reaches the sea 

surface and stop 

ascending. 

Date and Time 

 

 

 

Pressure(dbar) 

2: value is transmitted by the 

float 

 

 

2: value is transmitted by the 

float 

703 (ST) GPS fix  Time, Position 2:  value is transmitted by the 

float 

700 (TST) First Message Time 

 

 

 

Pressure provided with 

time 

Time when the float 

transmits the first 

message 

Date and Time 

 

 

 

Pressure(dbar) 

2: value is transmitted by the 

float 

 

 

2: value is transmitted by the 

float 

702 (FMT) Time when the first 

message is received 

 Date and Time 4:  value is determined by 

satellite 

704 (LMT) Time when the last 

message is received 

 

 Date and Time 

 

4:  value is determined by 

satellite 

800 (TET) Transmit_END_Time 

 

 

Pressure provided with 

time. 

Time when float stops 

transmitting. 

Date and Time 

 

 

Pressure(dbar) 

2: value is transmitted by the 

float 

 

2: value is transmitted by the 

float 

 

 

 

2.2.13 NOVA floats 

The housekeeping data packet has most of the cycle timing variables in it. The variable names and 

how they are calculated are described below. 

Argo program measurement codes (MC) for NOVA floats 

Code (timing) NOVA Variable Description Units JULD_STATUS 



74 

Argo data management                                      Argo DAC trajectory cookbook 

0 (launch) Time of last GPS fix – 

PARAM 12 setting 

(accurate to +/-5 

minutes) 

 

Time of activation 

(within one hour of GPS 

fix )  

Launch time and 

location.  See section 

3.2.2.5.1 

 

 

Launch time and 

location.  See section 

3.2.2.5.1 

Time (seconds), 

position 

 

 

 

Time (seconds), 

position 

3: value is directly computed 

from relevant, transmitted float 

information 

 

 

2: value is transmitted by the 

float 

100 (DST) NVS/3 + time stamp of 

previous Iridium 

transmission 

See section 3.2.2.5.2 

DST not transmitted by 

float 

NVS (no unit) 

Time of Iridium 

message 

3: value is directly computed 

from relevant, transmitted float 

information 

150 (FST) FST See section 3.2.2.5.3 Time (hours) 2: value is transmitted by the 

float 

190 CTD taken during first  

descent after activation 

CTD only taken on 

descent only after 

activation 

Time (hours) 

Pressure (dbar) 

Temp (deg C) 

Salinity (psu) 

2: value is transmitted by the 

float 

200 (DET) Deepest Temp,Pres pair 

taken during first 

descent after activation 

CTD only taken on 

descent only after 

activation 

Time (hours) 

Pressure (dbar) 

Temp (deg C) 

Salinity (psu) 

2: value is transmitted by the 

float 

250 (PST) EDT  Float recognizes when 

it has stabilized at 

depth and changes into 

park phase.   See 

section 3.2.2.5.4 

Time (hours) 2: value is transmitted by the 

float 

During the drift phase, NOVA floats measure time pressure and temperature at variable times.  Choose the measurement code 

below that most appropriately describes what types of measurements are taken: 

290 Series of pressure 

Series of temperature 

Series of salinity 

A series of CTD 

measurements taken 

during drift at user 

specified times 

Time (hours) 

Pressure (dbar) 

Temp (deg C) 

Salinity (psu) 

2: value is transmitted by the 

float 

297 Minimum pressure Minimum pressure 

recorded during drift 

phase 

Pressure (dbar) 2: value is transmitted by the 

float 

298 Maximum pressure Maximum pressure 

recorded during drift 

phase 

Pressure (dbar) 2: value is transmitted by the 

float 

End of drift measurements 

300 (PET) DDST See section 3.2.2.5.5 Time (hours) 3: value is directly computed 

from relevant, transmitted float 

information 

301 Average pressure during 

drift 

Best estimate of drift 

depth  

Pressure 3: value is directly computed 

from relevant, transmitted float 

information 

400 (DDET) DDET  See section 3.2.2.5.6 Time (hours) 2:  value is transmitted by the 

float 

500 (AST) SAT  See section 3.2.2.5.7 Time (hours) 2: value is transmitted by the 

float  

600 (AET) EAT  See section 3.2.2.5.8 Time (hours) 2: value is transmitted by the 

float 

703 (surface fixes) All GPS fixes  Time, Position 2:  value is transmitted by the 

float 



75 

Argo data management                                      Argo DAC trajectory cookbook 

700 (TST) AET + SBDT from 

previous message 

See section 3.2.2.5.9 Time (AET in 

hours, SBDT in 

seconds) 

3: value is directly computed 

from relevant, transmitted float 

information  

702 (FMT) AET + SBDT from 

previous message 

See section 3.2.2.5.9 Time (AET in 

hours, SBDT in 

seconds) 

3: value is directly computed 

from relevant, transmitted float 

information 

704 (LMT) TST + SBDT from 

previous cycle 

See section 3.2.2.5.10 Time (TST in 

hours, SBDT in 

seconds) 

3: value is directly computed 

from relevant, transmitted float 

information 

800 (TET) TST + SBDT from 

previous cycle 

See section 3.2.2.5.10 Time (TST in 

hours, SBDT in 

seconds) 

3: value is directly computed 

from relevant, transmitted float 

information 

 

2.2.13.1.1 Launch time 

Once the magnet is removed, the float looks at the PARAMETER 12 setting ( the delay before mission 

which can be set to between 0 and up to 1 hour ).  Once that time has elapsed, the float will acquire a 

GPS location and other diagnostic information and send a housekeeping message (time and location 

stamped) prior to beginning its mission.  The message can be identified by its CYCLE COUNT = 255.  

Depending on how accurate you want to be: 

a) Activation can be calculated from the housekeeping message:  

Time of Last GPS fix – PARAM 12 setting = activation time to +/-5 minutes 

b)  The time of the activation will be within 1 hour of housekeeping message for cycle 255 

 

2.2.13.1.2 Descent Start Time - NOVA 

DST is not transmitted directly by the float, but must be calculated from the NVS variable. NVS is the 

number of valve activations at the surface. There is no unit on this and the minimum value is zero and 

the maximum value is 255. The start byte is 10 and the bit length is 8. The decoding equation is y = x. 

DST = NVS/3 + time stamp of previous Iridium transmission. 

The DST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 100 and STATUS set to 3: value is directly computed 

from relevant, transmitted float information. 

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the 

JULD_DESCENT_START_STATUS set to 3.. If the float clock offset has been estimated and 

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been 

applied. 

2.2.13.1.3 First Stabilization Time - NOVA 

FST is called FST and is the time in the day when the float first activated the valve during its descent. 

It is measured in hours, had a minimum value of zero and a maximum value of 23.9. The start byte is 5 

and the bit length is 8. The decoding equation is y = 0.1 * x. 

The FST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 150 and STATUS set to 2: value is transmitted by float. 

In the N_CYCLE array, the first stabilization value should be stored in the 

JULD_FIRST_STABILIZATION variable and the JULD_FIRST_STABILIZATION_STATUS set to 



76 

Argo data management                                      Argo DAC trajectory cookbook 

2. If the float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET 

(N_CYCLE) variable so users know it has been applied. 

2.2.13.1.4 Park Start Time - NOVA 

PST is called EDT and is the time in the day when the float ended its descent to parking. It is 

measured in hours, has a minimum value of zero and a maximum value of 23.9. The start byte is 4 and 

the bit length is 8. The equation to calculate it is y = 0.1 * x.  This time can change from cycle to cycle 

because the float recognizes it is stable at the parking depth. 

 

The PST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 250 and STATUS set to 2: value is transmitted by float. 

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the 

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.13.1.5 Park End Time - NOVA 

PET is called PET and is the time in the day when the float started its descent to profile depth. The 

unit is hours, has a minimum value of zero and a maximum value of 23.9. The start byte is 6 and the 

bit length is 8. The equation to calculate it is y = 0.1 * x. 

The PET should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 300 and STATUS set to 2: value is transmitted by float. 

2.2.13.1.6 Deep Descent End Time - NOVA 

DDET is called DDET and is the time in the day when the float achieved its profile depth. The unit is 

hours, has a minimum value of zero and a maximum value of 23.9. The start byte is 7 and the bit 

length is 8. The decoding equation is y = 0.1 * x.  The float recognizes when it is at the profile 

pressure and and reports this time as DDET.  It can change from profile to profile. 

The DDET should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables 

in the N_MEASUREMENT array with an MC = 400 and STATUS set to 2: value is transmitted by 

float. 

In the N_CYCLE array, the value should be stored in the JULD_DEEP_DESCENT_END variable and 

the JULD_DEEP_DESCENT_END_STATUS set to 2. If the float clock offset has been estimated and 

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been 

applied. 

2.2.13.1.7 Ascent Start Time - NOVA 

AST is called SAT and is the time in the day when the float started its ascending profile. The unit is 

hours, has a minimum value of zero and a maximum value of 23.9. The start byte is 8 and the bit 

length is 8. The decoding equation is y = 0.1 * x.  This time is set in PARAMETER 2, but should be 

sufficiently after DDET.   

The AST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 500 and STATUS set to 2: value is transmitted by float. 

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_START variable and the 

JULD_ASCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 



77 

Argo data management                                      Argo DAC trajectory cookbook 

2.2.13.1.8 Ascent End Time - NOVA 

AET is called EAT and is the time in the day when the float ended its ascending profile. The unit is 

hours, has a minimum value of zero and a maximum value of 23.9. The start byte is 9 and the bit 

length is 8. The decoding equation is y = 0.1 * x.  Once the CTD stops profiling at 6 db, the internal 

bladder is emptied and the float rises to the surface.  At that time, the EAT is recorded.  Afterwards, 

GPS acquisition starts and then Iridium transmission. 

The AET should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in 

the N_MEASUREMENT array with an MC = 600 and STATUS set to 2: value is transmitted by float. 

2.2.13.1.9 Transmission Start Time & First Message Time- NOVA 

For Iridium, there are two values transmitted. When the float reaches the surface, it acquires a GPS 

position. The time to do this is represented by TTFF (in seconds). After the GPS is acquired, then the 

Iridium transceiver is activated. The time to do this is represented by SBDT (again in seconds). After 

completion of the transmission, a satellite check is done to look for incoming commands. If there is 

one, it is processed and then the float starts its next profile. Note that SBDT refers to the previous 

profile, not the current one, as it is calculated AFTER the Iridium transmission takes place.  TST and 

FMT should be the same for NOVA floats 

TST = AET + SBDT from previous cycle.  

The TST & FMT should be set to fill value for the current cycle in the JULD variable in the 

N_MEASUREMENT array with an MC = 700 and STATUS set to 9: value is not immediately known, 

but believe it can be estimated later. 

When the next cycle arrives, the TST & FMT should be filled in the JULD (or JULD_ADJUSTED if 

clock offset has been applied) variable in the N_MEASUREMENT array with an MC = 700 and 

STATUS set to 3: value is directly computed from relevant, transmitted float information. 

For the N_CYCLE array, fill value should be stored in the JULD_TRANSMISSION_START variable 

and the JULD_TRANSMISSION_START_STATUS set to 9 for the current cycle.  

Once the next profile occurs, and hence the TST & FMT of the previous profile is known, the TST & 

FMT can be filled in the previous cycle. 

The value should be stored in the JULD_TRANSMISSION_START variable and the 

JULD_TRANSMISSION_START_STATUS set to 3. If the float clock offset has been estimated and 

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been 

applied. 

 

2.2.13.1.10 Transmission End Time & Last Message Time- NOVA 

TET = TST + SBDT from previous cycle.  

The TETand the LMT  should be set to fill value for the current cycle in the JULD variable in the 

N_MEASUREMENT array with an MC = 800 and STATUS set to 9: value is not immediately known, 

but believe it can be estimated later. 

When the next cycle arrives, the TET & LMT should be filled in the JULD (or JULD_ADJUSTED if 

clock offset has been applied) variable in the N_MEASUREMENT array with an MC = 800 and 

STATUS set to 3: value is directly computed from relevant, transmitted float information. 



78 

Argo data management                                      Argo DAC trajectory cookbook 

For the N_CYCLE array, fill value should be stored in the JULD_TRANSMISSION_END variable 

and the JULD_TRANSMISSION_END_STATUS set to 9 for the current cycle.  

Once the next profile occurs, and hence the TET & LMT of the previous profile is known, the TET & 

LMTcan be filled in the previous cycle. 

The value should be stored in the JULD_TRANSMISSION_END variable and the 

JULD_TRANSMISSION_END_STATUS set to 3. If the float clock offset has been estimated and 

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been 

applied. 

 

  



79 

Argo data management                                      Argo DAC trajectory cookbook 

2.2.14 PROVOR  floats 

PROVOR floats directly provide, in the technical message, cycle timing information. 

More precisely the provided times can be decoded to obtain the hours and minutes of a timed event but 

the corresponding day must be obtained by other means (see §2.2.14.1.8). 

For PROVOR Argos floats, these times must be corrected for clock offset whereas for PROVOR 

Iridium floats the clock is set each cycle, thus the clock offset can be neglected. 

Most of the times have an unusual time resolution (see §2.2.14.1.9) which must be stored in the data.  

PROVOR floats do not provide a quick, easy real time estimate for Transmission End Time, but the 

float actually experiences this event. Therefore, in the N_MEASUREMENT array TET (MC = 800) 

should be fill value and its status flag should be a "9". 

In the N_CYCLE array, fill value should be stored in the JULD_TRANSMISSION_END variable and 

the JULD_TRANSMISSION_END_STATUS should be set to 9. 

PROVOR floats do experience both JULD_DESCENT_END (DET) and 

JULD_DEEP_DESCENT_END (DDET), but there is no way to know these times right now. 

Therefore, in the N_MEASUREMENT array DET (MC = 200) and DDET (MC = 400) should be fill 

value and its status flag should be a "9". 

In the N_CYCLE array, fill value should be stored in the JULD_DESCENT_END and 

JULD_DEEP_DESCENT_END variables and JULD_DESCENT_END_STATUS and 

JULD_DEEP_DESCENT_END_STATUS should be set to 9. 

2.2.14.1.1 Timed events for PROVOR 101011, 101012, 101014, 101015, 101013, 100001, 
101017, 101018 and 101019 versions 

All status flags should be a "2" since they come directly from the float. 

2.2.14.1.1.1 Descent Start Time 

The hours and minutes of the DST are provided, in the technical message, by the technical parameter 

"descent start time". 

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the 

JULD_DESCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.1.2 First Stabilization Time 

The hours and minutes of the FST are provided, in the technical message, by the technical parameter 

"float First Stabilization Time" (or "first float First Stabilization Time" for PROVOR 101018 and 

101019 versions). 

The associated pressure (in bars) is also provided, in the technical message, by the technical 

parameter "float stabilization pressure" (or "first float stabilization pressure" for PROVOR 101018 and 

101019 versions). 

The stabilization value should be stored in the JULD_FIRST_STABILIZATION variable and the 

JULD_FIRST_STABILIZATION_STATUS set to 2. If the float clock offset has been estimated and 

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been 

applied. 



80 

Argo data management                                      Argo DAC trajectory cookbook 

2.2.14.1.1.3 Park Start Time 

The hours and minutes of the PST are provided, in the technical message, by the technical parameter 

"end of descent time". 

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the 

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.1.4 Park End Time 

The hours and minutes of the PET are provided, in the technical message, by the technical parameter 

"profile descent start time". 

In the N_CYCLE array, the value should be stored in the JULD_PARK_END variable and the 

JULD_PARK_END_STATUS set to 2. If the float clock offset has been estimated and applied, make 

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.1.5 Deep Park Start Time 

The hours and minutes of the DPST are provided, in the technical message, by the technical parameter 

"profile descent stop time". 

In the N_CYCLE array, the value should be stored in the JULD_DEEP_PARK_START variable and 

the JULD_DEEP_PARK_START_STATUS set to 2. If the float clock offset has been estimated and 

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been 

applied. 

2.2.14.1.1.6 Ascent Start Time 

The hours and minutes of the AST are provided, in the technical message, by the technical parameter 

"profile ascent start time". 

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_START variable and the 

JULD_ASCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.1.7 Ascent End Time 

The AET is deduced from TST by the following relation: AET = TST - 16 minutes 

In the N_CYCLE array, the corresponding sum should be stored in the JULD_ASCENT_END 

variable and the JULD_ASCENT_END_STATUS set to 2. If the float clock offset has been estimated 

and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has 

been applied. 

2.2.14.1.1.8 Transmission Start Time 

The hours and minutes of the TST are provided, in the technical message, by the technical parameter 

"time at end of ascent". 

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable 

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been 

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know 

it has been applied. 

  



81 

Argo data management                                      Argo DAC trajectory cookbook 

N_MEASUREMENT Array 

PROVOR floats 101011, 101012, 101014, 101015, 101013, 100001, 101017, 101018 and 
101019 versions 
MC Float type JULD JULD_STATUS  

100 
DST 

101011, 
101012, 
101014, 
101015, 
101013, 
100001, 
101017, 
101018, 
101019 

Descent Start Time without 
clock offset applied 
(2.2.14.1.1.1) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Descent Start Time with clock 
offset applied (2.2.14.1.1.1) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

150 
FST 

101011, 
101012, 
101014, 
101015, 
101013, 
100001, 
101017, 
101018, 
101019 

First Stabilization Time without 
clock offset applied 
(2.2.14.1.1.2) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

First Stabilization Time with 
clock offset applied 
(2.2.14.1.1.2) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

250 
PST 

101011, 
101012, 
101014, 
101015, 
101013, 
100001, 
101017, 
101018, 
101019 

Park Start Time without clock 
offset applied (2.2.14.1.1.3) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Park Start Time with clock offset 
applied (2.2.14.1.1.3) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

300 
PET 

101011, 
101012, 
101014, 
101015, 
101013, 
100001, 
101017, 
101018, 
101019 

Park End Time without clock 
offset applied (2.2.14.1.1.4) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Park End Time with clock offset 
applied (2.2.14.1.1.4) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

450 
DPST 

101011, 
101012, 
101014, 
101015, 
101013, 
100001, 
101017, 
101018, 
101019 

Deep Park Start Time without 
clock offset applied 
(2.2.14.1.1.5) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Deep Park Start Time with clock 
offset applied (2.2.14.1.1.5) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

500 
AST 

101011, 
101012, 
101014, 
101015, 
101013, 
100001, 
101017, 
101018, 
101019 

Ascent Start Time without clock 
offset applied (2.2.14.1.1.6) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Ascent Start Time with clock 
offset applied (2.2.14.1.1.6) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

600 
AET 

101011, 
101012, 
101014, 
101015, 
101013, 
100001, 
101017, 

Ascent End Time without clock 
offset applied (2.2.14.1.1.7) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Ascent End Time with clock 
offset applied (2.2.14.1.1.7) 

2: value is transmitted by float  



82 

Argo data management                                      Argo DAC trajectory cookbook 

101018, 
101019 

MC Float type JULD JULD_STATUS  

700 
TST 

101011, 
101012, 
101014, 
101015, 
101013, 
100001, 
101017, 
101018, 
101019 

Transmission Start Time without 
clock offset applied 
(2.2.14.1.1.8) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Transmission Start Time with 
clock offset applied 
(2.2.14.1.1.8) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

800 
TET 

101011, 
101012, 
101014, 
101015, 
101013, 
100001, 
101017, 
101018, 
101019 

Fill value 9: not immediately know, but believe 
value can be estimated later 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Fill value 9: not immediately know, but believe 
value can be estimated later 

 

 

2.2.14.1.2 Timed events for PROVOR 102002, 102003 and 102004 versions 

2.2.14.1.2.1 Descent Start Time 

The hours and minutes of the DST are provided, in the technical message, by the technical parameter 

"descent start time". 

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the 

JULD_DESCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.2.2 First Stabilization Time 

The hours and minutes of the FST are provided, in the technical message, by the technical parameter 

"float First Stabilization Time". 

The associated pressure (in bars) is also provided, in the technical message, by the technical 

parameter "float stabilization pressure" (except for PROVOR 102004 version). 

In the N_CYCLE array, the stabilization value should be stored in the 

JULD_FIRST_STABILIZATION variable and the JULD_FIRST_STABILIZATION_STATUS set to 

2. If the float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET 

(N_CYCLE) variable so users know it has been applied. 

2.2.14.1.2.3 Park Start Time 

The hours and minutes of the PST are provided, in the technical message, by the technical parameter 

"end of descent time". 

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the 

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.2.4 Park End Time 

The hours and minutes of the PET are provided, in the technical message, by the technical parameter 

"profile descent start time". 



83 

Argo data management                                      Argo DAC trajectory cookbook 

In the N_CYCLE array, the value should be stored in the JULD_PARK_END variable and the 

JULD_PARK_END_STATUS set to 2. If the float clock offset has been estimated and applied, make 

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.2.5 Deep Park Start Time 

The hours and minutes of the DPST are provided, in the technical message, by the technical parameter 

"profile descent stop time". 

In the N_CYCLE array, the value should be stored in the JULD_DEEP_PARK_START variable and 

the JULD_DEEP_PARK_START_STATUS set to 2. If the float clock offset has been estimated and 

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been 

applied. 

2.2.14.1.2.6 Ascent Start Time 

The hours and minutes of the AST are provided, in the technical message, by the technical parameter 

"profile ascent start time". 

In the N_CYCLE array, the corresponding number should be stored in the JULD_ASCENT_START 

variable and the JULD_ASCENT_END_STATUS set to 2. If the float clock offset has been estimated 

and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has 

been applied. 

2.2.14.1.2.7 Ascent End Time 

The AET is deduced from TST by the following relation: AET = TST - 14 minutes 

In the N_CYCLE array, the corresponding sum should be stored in the JULD_ASCENT_END 

variable and the JULD_ASCENT_END_STATUS set to 2. If the float clock offset has been estimated 

and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has 

been applied. 

2.2.14.1.2.8 Transmission Start Time 

The hours and minutes of the TST are provided, in the technical message, by the technical parameter 

"time at end of ascent". 

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable 

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been 

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know 

it has been applied. 

N_MEASUREMENT Array 

PROVOR floats 102002, 102003 and 102004 versions 
MC Float type JULD JULD_STATUS  

100 
DST 

102002, 
102003, 
102004 

Descent Start Time without 
clock offset applied 
(2.2.14.1.2.1) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Descent Start Time with clock 
offset applied (2.2.14.1.2.1) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

150 
FST 

102002, 
102003, 
102004 

First Stabilization Time without 
clock offset applied 
(2.2.14.1.2.2) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

First Stabilization Time with 
clock offset applied 
(2.2.14.1.2.2) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  



84 

Argo data management                                      Argo DAC trajectory cookbook 

250 
PST 

102002, 
102003, 
102004 

Park Start Time without clock 
offset applied (2.2.14.1.2.3) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Park Start Time with clock offset 
applied (2.2.14.1.2.3) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

300 
PET 

102002, 
102003, 
102004 

Park End Time without clock 
offset applied (2.2.14.1.2.4) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Park End Time with clock offset 
applied (2.2.14.1.2.4) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

450 
DPST 

102002, 
102003, 
102004 

Deep Park Start Time without 
clock offset applied 
(2.2.14.1.2.5) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Deep Park Start Time with clock 
offset applied (2.2.14.1.2.5) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

500 
AST 

102002, 
102003, 
102004 

Ascent Start Time without clock 
offset applied (2.2.14.1.2.6) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Ascent Start Time with clock 
offset applied (2.2.14.1.2.6) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

600 
AET 

102002, 
102003, 
102004 

Ascent End Time without clock 
offset applied (2.2.14.1.2.7 

3: value is directly computed from 
relevant, transmitted float information 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Ascent End Time with clock 
offset applied (2.2.14.1.2.7) 

3: value is directly computed from 
relevant, transmitted float information 

 

MC Float type JULD JULD_STATUS  

700 
TST 

102002, 
102003, 
102004 

Transmission Start Time without 
clock offset applied 
(2.2.14.1.2.8) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Transmission Start Time with 
clock offset applied 
(2.2.14.1.2.8) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

800 
TET 

102002, 
102003, 
102004 

Fill value 9: not immediately know, but believe 
value can be estimated later 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Fill value 9: not immediately know, but believe 
value can be estimated later 

 

 

2.2.14.1.3 Timed events for PROVOR 101009, 101006, 101008 and 101010 versions 

2.2.14.1.3.1 Descent Start Time 

The hours and minutes of the DST are provided, in the technical message, by the technical parameter 

"descent start time". 

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the 

JULD_DESCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.3.2 First Stabilization Time 

The hours and minutes of the FST are provided, in the technical message, by the technical parameter 

"float First Stabilization Time". 

The associated pressure (in bars) is also provided, in the technical message, by the technical 

parameter "float stabilization pressure". 



85 

Argo data management                                      Argo DAC trajectory cookbook 

In the N_CYCLE array, the stabilization value should be stored in the 

JULD_FIRST_STABILIZATION variable and the JULD_FIRST_STABILIZATION_STATUS set to 

2. If the float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET 

(N_CYCLE) variable so users know it has been applied. 

2.2.14.1.3.3 Park Start Time 

The hours and minutes of the PST are provided, in the technical message, by the technical parameter 

"end of descent time". 

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the 

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.3.4 Park End Time 

The PET is deduced from AST by the following relation: PET = AST - DELAI 

where DELAI is a programmed meta-data parameter that determines the maximum amount of time 

given to the float for diving from PARKING to PROFILE depth. 

In the N_CYCLE array, the value should be stored in the JULD_PARK_END variable and the 

JULD_PARK_END_STATUS set to 2. If the float clock offset has been estimated and applied, make 

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.3.5 Deep Park Start Time 

There is no easy way to get this time for this PROVOR float, so fill value should be used. 

In the NC_CYCLE array, fill value should be stored in the JULD_DEEP_PARK_START variable and 

the JULD_DEEP_PARK_START_STATUS set to 9. If the float clock offset has been estimated and 

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been 

applied. 

2.2.14.1.3.6 Ascent Start Time 

The hours and minutes of the AST are provided, in the technical message, by the technical parameter 

"profile ascent start time". 

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_START variable and the 

JULD_ASCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.3.7 Ascent End Time 

The AET is deduced from TST by the following relation: AET = TST - 16 minutes 

In the N_CYCLE array, the corresponding sum should be stored in the JULD_ASCENT_END 

variable and the JULD_ASCENT_END_STATUS set to 2. If the float clock offset has been estimated 

and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has 

been applied. 

2.2.14.1.3.8 Transmission Start Time 

The hours and minutes of the TST are provided, in the technical message, by the technical parameter 

"time at end of ascent". 

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable 

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been 



86 

Argo data management                                      Argo DAC trajectory cookbook 

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know 

it has been applied. 

  



87 

Argo data management                                      Argo DAC trajectory cookbook 

N_MEASUREMENT Array 

PROVOR floats 101009, 101006, 101008 and 101010 versions 
MC Float type JULD JULD_STATUS  

100 
DST 

101009, 
101006, 
101008, 
101010 

Descent Start Time without 
clock offset applied 
(2.2.14.1.3.1) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Descent Start Time with clock 
offset applied (2.2.14.1.3.1) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

150 
FST 

101009, 
101006, 
101008, 
101010 

First Stabilization Time without 
clock offset applied 
(2.2.14.1.3.2) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

First Stabilization Time with 
clock offset applied 
(2.2.14.1.3.2) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

250 
PST 

101009, 
101006, 
101008, 
101010 

Park Start Time without clock 
offset applied (2.2.14.1.3.3) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Park Start Time with clock offset 
applied (2.2.14.1.3.3) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

300 
PET 

101009, 
101006, 
101008, 
101010 

Park End Time without clock 
offset applied (2.2.14.1.3.4) 

3: value is directly computed from 
relevant, transmitted float information 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Park End Time with clock offset 
applied (2.2.14.1.3.4) 

3: value is directly computed from 
relevant, transmitted float information 

 

MC Float type JULD JULD_STATUS  

450 
DPST 

101009, 
101006, 
101008, 
101010 

Fill value (2.2.14.1.3.5) 9: not immediately know, but believe 
value can be estimated later 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Fill value (2.2.14.1.3.5) 9: not immediately know, but believe 
value can be estimated later 

 

MC Float type JULD JULD_STATUS  

500 
AST 

101009, 
101006, 
101008, 
101010 

Ascent Start Time without clock 
offset applied (2.2.14.1.3.6) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Ascent Start Time with clock 
offset applied (2.2.14.1.3.6) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

600 
AET 

101009, 
101006, 
101008, 
101010 

Ascent End Time without clock 
offset applied (2.2.14.1.3.7) 

3: value is directly computed from 
relevant, transmitted float information 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Ascent End Time with clock 
offset applied (2.2.14.1.3.7) 

3: value is directly computed from 
relevant, transmitted float information 

 

MC Float type JULD JULD_STATUS  

700 
TST 

101009, 
101006, 
101008, 
101010 

Transmission Start Time without 
clock offset applied 
(2.2.14.1.3.8) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Transmission Start Time with 
clock offset applied 
(2.2.14.1.3.8) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

800 
TET 

101009, 
101006, 
101008, 
101010 

Fill value 9: not immediately know, but believe 
value can be estimated later 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Fill value 9: not immediately know, but believe 
value can be estimated later 

 

 



88 

Argo data management                                      Argo DAC trajectory cookbook 

2.2.14.1.4 Timed events for PROVOR 100006, 100005, 100004, 100008 and 100003 versions 

2.2.14.1.4.1 Descent Start Time 

The hours and minutes of the DST are provided, in the technical message, by the technical parameter 

"descent start time". 

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the 

JULD_DESCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.4.2 First Stabilization Time 

The hours and minutes of the FST are provided, in the technical message, by the technical parameter 

"First Stabilization Time". 

In the N_CYCLE array, the first stabilization value should be stored in the 

JULD_FIRST_STABILIZATION variable and the JULD_FIRST_STABILIZATION_STATUS set to 

2. If the float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET 

(N_CYCLE) variable so users know it has been applied. 

2.2.14.1.4.3 Park Start Time 

The hours and minutes of the PST are provided, in the technical message, by the technical parameter 

"end of descent time". 

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the 

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.4.4 Park End Time 

There is no easy way to get this time for this PROVOR float, so fill value should be used. 

In the N_CYCLE array, fill value should be stored in the JULD_PARK_END variable and the 

JULD_PARK_END_STATUS set to 9. If the float clock offset has been estimated and applied, make 

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.4.5 Deep Park Start Time 

There is no easy way to get this time for this PROVOR float, so fill value should be used. 

Fill value should be stored in the JULD_DEEP_PARK_START variable and the 

JULD_DEEP_PARK_START_STATUS set to 9. If the float clock offset has been estimated and 

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been 

applied. 

2.2.14.1.4.6 Ascent Start Time 

There is no easy way to get this time for this PROVOR float, so fill value should be used. 

In the N_CYCLE array, fill value should be stored in the JULD_ASCENT_START variable and the 

JULD_ASCENT_START_STATUS set to 9. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.4.7 Ascent End Time 

The AET is deduced from TST by the following relation: AET = TST - 16 minutes 



89 

Argo data management                                      Argo DAC trajectory cookbook 

In the N_CYCLE array, the corresponding sum should be stored in the JULD_ASCENT_END 

variable and the JULD_ASCENT_END_STATUS set to 2. If the float clock offset has been estimated 

and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has 

been applied. 

2.2.14.1.4.8 Transmission Start Time 

The hours and minutes of the TST are provided, in the technical message, by the technical parameter 

"end of resurfacing time". 

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable 

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been 

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know 

it has been applied. 

N_MEASUREMENT Array 

PROVOR floats 100006, 100005, 100004, 100008 and 100003 versions 
MC Float type JULD JULD_STATUS  

100 
DST 

100006, 
100005, 
100004, 
100008, 
100003 

Descent Start Time without 
clock offset applied 
(2.2.14.1.4.1) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Descent Start Time with clock 
offset applied (2.2.14.1.4.1) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

150 
FST 

100006, 
100005, 
100004, 
100008, 
100003 

First Stabilization Time without 
clock offset applied 
(2.2.14.1.4.2) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

First Stabilization Time with 
clock offset applied 
(2.2.14.1.4.2) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

250 
PST 

100006, 
100005, 
100004, 
100008, 
100003 

Park Start Time without clock 
offset applied (2.2.14.1.4.3) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Park Start Time with clock offset 
applied (2.2.14.1.4.3) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

300 
PET 

100006, 
100005, 
100004, 
100008, 
100003 

Fill value (2.2.14.1.4.4) 9: not immediately know, but believe 
value can be estimated later 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Fill value (2.2.14.1.4.4) 9: not immediately know, but believe 
value can be estimated later 

 

MC Float type JULD JULD_STATUS  

450 
DPST 

100006, 
100005, 
100004, 
100008, 
100003 

Fill value (2.2.14.1.4.5) 9: not immediately know, but believe 
value can be estimated later 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Fill value (2.2.14.1.4.5) 9: not immediately know, but believe 
value can be estimated later 

 

MC Float type JULD JULD_STATUS  

500 
AST 

100006, 
100005, 
100004, 
100008, 
100003 

Fill value (2.2.14.1.4.6) 9: not immediately know, but believe 
value can be estimated later 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Fill value (2.2.14.1.4.6) 9: not immediately know, but believe 
value can be estimated later 

 

MC Float type JULD JULD_STATUS  

600 
AET 

100006, 
100005, 
100004, 
100008, 
100003 

Ascent End Time without clock 
offset applied (2.2.14.1.4.7) 

3: value is directly computed from 
relevant, transmitted float information 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Ascent End Time with clock 
offset applied (2.2.14.1.4.7) 

3: value is directly computed from 
relevant, transmitted float information 

 

MC Float type JULD JULD_STATUS  

700 
TST 

100006, 
100005, 
100004, 

Transmission Start Time without 
clock offset applied 
(2.2.14.1.4.8) 

2: value is transmitted by float  



90 

Argo data management                                      Argo DAC trajectory cookbook 

100008, 
100003 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Transmission Start Time with 
clock offset applied 
(2.2.14.1.4.8) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

800 
TET 

100006, 
100005, 
100004, 
100008, 
100003 

Fill value 9: not immediately know, but believe 
value can be estimated later 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Fill value 9: not immediately know, but believe 
value can be estimated later 

 

 

2.2.14.1.5 Timed events for PROVOR 101007 version 

2.2.14.1.5.1 Descent Start Time 

The hours and minutes of the DST are provided, in the technical message, by the technical parameter 

"heure début de plongée". 

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the 

JULD_DESCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.5.2 First Stabilization Time 

The hours and minutes of the FST are provided, in the technical message, by the technical parameter 

"heure de première stabilisation". 

The associated pressure (in bars) is also provided, in the technical message, by the technical 

parameter "pression de première stabilisation". 

In the N_CYCLE array, the stabilization value should be stored in the 

JULD_FIRST_STABILIZATION variable and the JULD_FIRST_STABILIZATION_STATUS set to 

2. If the float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET 

(N_CYCLE) variable so users know it has been applied. 

2.2.14.1.5.3 Park Start Time 

The hours and minutes of the PST are provided, in the technical message, by the technical parameter 

"heure de fin de descente". 

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the 

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.5.4 Park End Time 

The PET is deduced from AST by the following relation: PET = AST - DELAI 

where DELAI is a programmed meta-data parameter that determines the maximum amount of time 

given to the float for diving from PARKING to PROFILE depth. 

In the N_CYCLE array, the value should be stored in the JULD_PARK_END variable and the 

JULD_PARK_END_STATUS set to 2. If the float clock offset has been estimated and applied, make 

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.5.5 Deep Park Start Time 

There is no easy way to get this time for this PROVOR float, so fill value should be used. 



91 

Argo data management                                      Argo DAC trajectory cookbook 

In the N_CYCLE array, fill value should be stored in the JULD_DEEP_PARK_START variable and 

the JULD_DEEP_PARK_START_STATUS set to 9. If the float clock offset has been estimated and 

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been 

applied. 

2.2.14.1.5.6 Ascent Start Time 

The hours and minutes of the AST are provided, in the technical message, by the technical parameter 

"heure de début profil remontée". 

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_START variable and the 

JULD_ASCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.5.7 Ascent End Time 

The AET is deduced from TST by the following relation: AET = TST - 16 minutes 

In the N_CYCLE array, the corresponding sum should be stored in the JULD_ASCENT_END 

variable and the JULD_ASCENT_END_STATUS set to 2. If the float clock offset has been estimated 

and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has 

been applied. 

2.2.14.1.5.8 Transmission Start Time 

The hours and minutes of the TST are provided, in the technical message, by the technical parameter 

"heure de fin de remontée à la surface". 

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable 

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been 

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know 

it has been applied. 

N_MEASUREMENT Array 

PROVOR floats 101007 version 
MC Float type JULD JULD_STATUS  

100 
DST 

101007 

Descent Start Time without 
clock offset applied 
(2.2.14.1.5.1) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Descent Start Time with clock 
offset applied (2.2.14.1.5.1) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

150 
FST 

101007 

First Stabilization Time without 
clock offset applied 
(2.2.14.1.5.2) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

First Stabilization Time with 
clock offset applied 
(2.2.14.1.5.2) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

250 
PST 

101007 

Park Start Time without clock 
offset applied (2.2.14.1.5.3) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Park Start Time with clock offset 
applied (2.2.14.1.5.3) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

300 
PET 

101007 

Park End Time without clock 
offset applied (2.2.14.1.5.4) 

3: value is directly computed from 
relevant, transmitted float information 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Park End Time with clock offset 
applied (2.2.14.1.5.4) 

3: value is directly computed from 
relevant, transmitted float information 

 

MC Float type JULD JULD_STATUS  



92 

Argo data management                                      Argo DAC trajectory cookbook 

450 
DPST 

101007 

Fill value (2.2.14.1.5.5) 9: not immediately know, but believe 
value can be estimated later 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Fill value (2.2.14.1.5.5) 9: not immediately know, but believe 
value can be estimated later 

 

MC Float type JULD JULD_STATUS  

500 
AST 

101007 

Ascent Start Time without clock 
offset applied (2.2.14.1.5.6) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Ascent Start Time with clock 
offset applied (2.2.14.1.5.6) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

600 
AET 

101007 

Ascent End Time without clock 
offset applied (2.2.14.1.5.7) 

3: value is directly computed from 
relevant, transmitted float information 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Ascent End Time with clock 
offset applied (2.2.14.1.5.7) 

3: value is directly computed from 
relevant, transmitted float information 

 

MC Float type JULD JULD_STATUS  

700 
TST 

101007 

Transmission Start Time without 
clock offset applied 
(2.2.14.1.5.8) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Transmission Start Time with 
clock offset applied 
(2.2.14.1.5.8) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

800 
TET 

101007 

Fill value 9: not immediately know, but believe 
value can be estimated later 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Fill value 9: not immediately know, but believe 
value can be estimated later 

 

 

2.2.14.1.6 Timed events for PROVOR 101002, 101005 and 100002 versions 

2.2.14.1.6.1 Descent Start Time 

The hours and minutes of the DST are provided, in the technical message, by the technical parameter 

"heure début de plongée". 

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the 

JULD_DESCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.6.2 First Stabilization Time 

The hours and minutes of the FST are provided, in the technical message, by the technical parameter 

"heure de première stabilisation". 

The associated pressure (in bars) is also provided, in the technical message, by the technical 

parameter "pression de première stabilisation". This pressure should go in the PRES variable with an 

MC of 150. 

In the N_CYCLE array, the stabilization value should be stored in the 

JULD_FIRST_STABILIZATION variable and the JULD_FIRST_STABILIZATION_STATUS set to 

2. If the float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET 

(N_CYCLE) variable so users know it has been applied. 

2.2.14.1.6.3 Park Start Time 

The hours and minutes of the PST are provided, in the technical message, by the technical parameter 

"heure de fin de descente". 



93 

Argo data management                                      Argo DAC trajectory cookbook 

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the 

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.6.4 Park End Time 

The PET is deduced from AST by the following relation: PET = AST - DELAI 

where DELAI is a programmed meta-data parameter that determines the maximum amount of time 

given to the float for diving from PARKING to PROFILE depth. 

In the N_CYCLE array, the value should be stored in the JULD_PARK_END variable and the 

JULD_PARK_END_STATUS set to 2. If the float clock offset has been estimated and applied, make 

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.6.5 Deep Park Start Time 

There is no easy way to get this time for this PROVOR float, so fill value should be used. 

In the N_CYCLE array, fill value should be stored in the JULD_DEEP_PARK_START variable and 

the JULD_DEEP_PARK_START_STATUS set to 9. If the float clock offset has been estimated and 

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been 

applied. 

2.2.14.1.6.6 Ascent Start Time 

The AST is computed from TSD in float time (TSDFT) (i.e. not already corrected from clock offset). 

ASTFT = floor((TSDFT - MinProfDuration)*24)/24 

where: 

• ASTFT is the AST in float time, 

• MinProfDuration is the minimum profile duration, given by the latest CTD measurement time 

of the profile (these times are relative to ASTFT). 

We thus assume that AST is programmed at a given hour (in float time), which is the case. 

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_START variable and the 

JULD_ASCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.6.7 Ascent End Time 

The AET is deduced from TST by the following relation: AET = TST - 16 minutes 

In the N_CYCLE array, the corresponding sum should be stored in the JULD_ASCENT_END 

variable and the JULD_ASCENT_END_STATUS set to 2. If the float clock offset has been estimated 

and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has 

been applied. 

2.2.14.1.6.8 Transmission Start Time 

The hours and minutes of the TST are provided, in the technical message, by the technical parameter 

"heure de fin de remontée à la surface". 

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable 

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been 



94 

Argo data management                                      Argo DAC trajectory cookbook 

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know 

it has been applied. 

N_MEASUREMENT Array 

PROVOR floats 101002, 101005 and 100002 versions 
MC Float type JULD JULD_STATUS  

100 
DST 

101002, 
101005, 
100002 

Descent Start Time without 
clock offset applied 
(2.2.14.1.6.1) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Descent Start Time with clock 
offset applied (2.2.14.1.6.1) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

150 
FST 

101002, 
101005, 
100002 

First Stabilization Time without 
clock offset applied 
(2.2.14.1.6.2) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

First Stabilization Time with 
clock offset applied 
(2.2.14.1.6.2) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

250 
PST 

101002, 
101005, 
100002 

Park Start Time without clock 
offset applied (2.2.14.1.6.3) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Park Start Time with clock offset 
applied (2.2.14.1.6.3) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

300 
PET 

101002, 
101005, 
100002 

Park End Time without clock 
offset applied (2.2.14.1.6.4) 

3: value is directly computed from 
relevant, transmitted float information 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Park End Time with clock offset 
applied (2.2.14.1.6.4) 

3: value is directly computed from 
relevant, transmitted float information 

 

MC Float type JULD JULD_STATUS  

450 
DPST 

101002, 
101005, 
100002 

Fill value (2.2.14.1.6.5) 9: not immediately know, but believe 
value can be estimated later 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Fill value (2.2.14.1.6.5) 9: not immediately know, but believe 
value can be estimated later 

 

MC Float type JULD JULD_STATUS  

500 
AST 

101002, 
101005, 
100002 

Ascent Start Time without clock 
offset applied (2.2.14.1.6.6) 

3: value is directly computed from 
relevant, transmitted float information 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Ascent Start Time with clock 
offset applied (2.2.14.1.6.6) 

3: value is directly computed from 
relevant, transmitted float information 

 

MC Float type JULD JULD_STATUS  

600 
AET 

101002, 
101005, 
100002 

Ascent End Time without clock 
offset applied (2.2.14.1.6.7) 

3: value is directly computed from 
relevant, transmitted float information 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Ascent End Time with clock 
offset applied (2.2.14.1.6.7) 

3: value is directly computed from 
relevant, transmitted float information 

 

MC Float type JULD JULD_STATUS  

700 
TST 

101002, 
101005, 
100002 

Transmission Start Time without 
clock offset applied 
(2.2.14.1.6.8) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Transmission Start Time with 
clock offset applied 
(2.2.14.1.6.8) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

800 
TET 

101002, 
101005, 
100002 

Fill value 9: not immediately know, but believe 
value can be estimated later 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Fill value 9: not immediately know, but believe 
value can be estimated later 

 

 



95 

Argo data management                                      Argo DAC trajectory cookbook 

2.2.14.1.7 Timed events for PROVOR 101003 and 101004 versions 

2.2.14.1.7.1 Descent Start Time 

The hours and minutes of the Buoyancy Reduction Start Time (BRST) are provided, in the technical 

message, by the technical parameter "heure début de plongée". 

The Number of Valve Actions at the Surface (NVAS) is provided, in the technical message, by the 

technical parameter "nombre d'actions EV en surface". 

The DST is computed from BRST and NVAS: 

DST = BRST + NVAS*130 seconds 

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the 

JULD_DESCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.7.2 First Stabilization Time 

The hours and minutes of the FST are provided, in the technical message, by the technical parameter 

"heure de première stabilisation". 

The associated pressure (in bars) is also provided, in the technical message, by the technical 

parameter "pression de première stabilisation". This pressure should be stored in PRES with an MC 

code equal to 150. 

In the N_CYCLE array, the stabilization value should be stored in the 

JULD_FIRST_STABILIZATION variable and the JULD_FIRST_STABILIZATION_STATUS set to 

2. If the float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET 

(N_CYCLE) variable so users know it has been applied. 

2.2.14.1.7.3 Park Start Time 

The hours and minutes of the PST are provided, in the technical message, by the technical parameter 

"heure de fin de descente". 

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the 

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.7.4 Park End Time 

The PET is deduced from AST by the following relation: PET = AST - DELAI 

where DELAI is a programmed meta-data parameter that determines the maximum amount of time 

given to the float for diving from PARKING to PROFILE depth. 

In the N_CYCLE array, the value should be stored in the JULD_PARK_END variable and the 

JULD_PARK_END_STATUS set to 2. If the float clock offset has been estimated and applied, make 

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.7.5 Deep Park Start Time 

There is no easy way to get this time for this PROVOR float, so fill value should be used. 

In the N_CYCLE array, fill value should be stored in the JULD_DEEP_PARK_START variable and 

the JULD_DEEP_PARK_START_STATUS set to 9. If the float clock offset has been estimated and 



96 

Argo data management                                      Argo DAC trajectory cookbook 

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been 

applied. 

2.2.14.1.7.6 Ascent Start Time 

The AST is computed from TSD in float time (TSDFT) (i.e. not already corrected from clock offset). 

ASTFT = floor((TSDFT - MinProfDuration)*24)/24 

where: 

• ASTFT is the AST in float time, 

• MinProfDuration is the minimum profile duration, given by the latest CTD measurement time 

of the profile (these times are relative to ASTFT). 

We thus assume that AST is programmed at a given hour (in float time), which is the case. 

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_START variable and the 

JULD_ASCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied, 

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

2.2.14.1.7.7 Ascent End Time 

The AET is deduced from TST by the following relation: AET = TST - 16 minutes 

In the N_CYCLE array, the corresponding sum should be stored in the JULD_ASCENT_END 

variable and the JULD_ASCENT_END_STATUS set to 2. If the float clock offset has been estimated 

and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has 

been applied. 

2.2.14.1.7.8 Transmission Start Time 

The hours and minutes of the TST are provided, in the technical message, by the technical parameter 

"heure de fin de remontée à la surface". 

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable 

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been 

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know 

it has been applied. 

N_MEASUREMENT Array 

PROVOR floats 101003 and 101004 versions 
MC Float type JULD JULD_STATUS  

100 
DST 

101003 101004 

Descent Start Time without 
clock offset applied 
(2.2.14.1.7.1) 

3: value is directly computed from 
relevant, transmitted float information 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Descent Start Time with clock 
offset applied (2.2.14.1.7.1) 

3: value is directly computed from 
relevant, transmitted float information 

 

MC Float type JULD JULD_STATUS  

150 
FST 

101003 101004 

First Stabilization Time without 
clock offset applied 
(2.2.14.1.7.2) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

First Stabilization Time with 
clock offset applied 
(2.2.14.1.7.2) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

250 
PST 

101003 101004 

Park Start Time without clock 
offset applied (2.2.14.1.7.3) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  



97 

Argo data management                                      Argo DAC trajectory cookbook 

Park Start Time with clock offset 
applied (2.2.14.1.7.3) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

300 
PET 

101003 101004 

Park End Time without clock 
offset applied (2.2.14.1.7.4) 

3: value is directly computed from 
relevant, transmitted float information 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Park End Time with clock offset 
applied (2.2.14.1.7.4) 

3: value is directly computed from 
relevant, transmitted float information 

 

MC Float type JULD JULD_STATUS  

450 
DPST 

101003 101004 

Fill value (2.2.14.1.7.5) 9: not immediately know, but believe 
value can be estimated later 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Fill value (2.2.14.1.7.5) 9: not immediately know, but believe 
value can be estimated later 

 

MC Float type JULD JULD_STATUS  

500 
AST 

101003 101004 

Ascent Start Time without clock 
offset applied (2.2.14.1.7.6) 

3: value is directly computed from 
relevant, transmitted float information 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Ascent Start Time with clock 
offset applied (2.2.14.1.7.6) 

3: value is directly computed from 
relevant, transmitted float information 

 

MC Float type JULD JULD_STATUS  

600 
AET 

101003 101004 

Ascent End Time without clock 
offset applied (2.2.14.1.7.7) 

3: value is directly computed from 
relevant, transmitted float information 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Ascent End Time with clock 
offset applied (2.2.14.1.7.7) 

3: value is directly computed from 
relevant, transmitted float information 

 

MC Float type JULD JULD_STATUS  

700 
TST 

101003 101004 

Transmission Start Time without 
clock offset applied 
(2.2.14.1.7.8) 

2: value is transmitted by float  

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Transmission Start Time with 
clock offset applied 
(2.2.14.1.7.8) 

2: value is transmitted by float  

MC Float type JULD JULD_STATUS  

800 
TET 

101003 101004 

Fill value 9: not immediately know, but believe 
value can be estimated later 

 

JULD_ADJUSTED JULD_ADJUSTED_STATUS  

Fill value 9: not immediately know, but believe 
value can be estimated later 

 

 

2.2.14.1.8 From day, hours and minutes to time 

The hours and minutes of the event times are obtained from technical message information. 

The associated day can be obtained by the following algorithms. 

The day of TST is determined using FMT: 

1. Convert FMT in Float Time (FMTFT = FMT + FloatClockDrift), 

2. Convert the hours and minutes of FMTFT in Technical Message time (in tenths of and our 

after truncation) to obtain FMTFTTM, 

3. Compare the resulting FMTFTTM with TST to determine the day of TST (remembering that 

FMTFTTM ≥ TST). 

The day of AET is determined using TST. 

The day of AST is determined using AET and the assumption that: AET-AST < 24 h. 

The day of DDET is determined using AST and the assumption that: AST- DDET < 24 h. 

The day of PET is determined using DDET and the assumption that: DDET - PET < 24 h. 



98 

Argo data management                                      Argo DAC trajectory cookbook 

The day of DST is determined using a Reference Date (RD) which can be: 

• For cycle #0: the day of the first descent (meta-data parameter needed for data decoding), 

• For a given cycle #N (N > 0): 

o If cycle #N-1 exists: RD is the LMT of the cycle #N-1, 

o Otherwise, RD is computed from the last received Argos CTD message (LMTCTD): 

RD = LMTCTD - CycleDuration. 

The obtained RD is then used to determine the day of DST: 

1. Convert RD in float time (RDFT = RD + FloatClockDrift), 

2. Convert the hours and minutes of RDFT in Technical Message time (in tenths of and our 

after truncation) to obtain RDFTTM, 

3. Compare the resulting RDFTTM with DST to determine the day of DST (remembering that 

RDFTTM ≤ DST). 

The day part of FST is determined using DST and the assumption that: FST-DST < 24 h. 

The day part of DET is determined using FST and the assumption that: FST-DET < 24 h. 

2.2.14.1.9 Technical time resolution 

For PROVOR 102004 version, technical times are given in minutes. 

For all other PROVOR float versions, technical times are given in tenths of an hour; moreover they are 

resulting from a truncation of raw measurements. 

Consequently, for example, an event dated 13:36 by the float occurred in the time interval [13:36 - 

13:42[. 

To take this characteristic into account and to have a statistical mean estimate of the event time, in the 

decoding process we must add 3 minutes to DST, FST, DET, DDET, AET and TST. 

Note however that PET and AST should not be modified because they are resulting from float 

programmed actions (at a specific hour). 

2.2.15 PROVORCTS3 & Arvor Iridium 

The following measurement codes are set by the Coriolis decoder for: 

• Provor CTS3 Iridium floats (Firmware version 5900A04, Coriolis version 5.75, Decoder Id 

214), 

• Arvor Iridium floats (Firmware version 5900A04, Coriolis version 5.46, Decoder Id 217). 

Argo trajectory file measurement codes (MC) for Provor CTS3 Iridium and Arvor Iridium 
floats. 

Code (timing) Name in float data output Description 
and name of 
data file 
where this is 
found 

Units and 
data profile 
number 

JULD_ST
ATUS 

0 (launch position)  Provided by PI (from deployment team). From Coriolis 
Excel deployment 
file provided at 
Coriolis DAC by 

Time, latitude, 
longitude. 
Cycle #-1 
(convention). 

4 (value is 
determined 
by satellite) 



99 

Argo data management                                      Argo DAC trajectory cookbook 

float PI. 

89 = DST-11 
(buoyancy action) 

Cycle start time (buoyancy reduction start time). 
From: 
‘Cycle start gregorian day’ 
‘Cycle start gregorian month’ 
‘Cycle start gregorian year’ 
‘Cycle start time’. 

Tech packet #1. Time. 
Cycle #N. 

2 (value is 
transmitted 
by the 
float) 

100 (DST) Descent to park Start Time. 
From: 
‘Descent start time’ and Cycle start time 
(MC=89). 

Tech packet #1. Time. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

189 = DET-11 
(buoyancy actions) 

Buoyancy action (time and pressure) between 
DST and DET. 

Hydraulic 
packets. 

Time, PRES. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

150 = FST First Stabilization Time during descent to park. 
From: 
‘Float 1st stabilisation time’ and DST 
‘Float 1st stabilisation pressure’. 

Tech packet #1. Time, PRES. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

190 = DET-10 
(relative series of 
measurements) 

Dated levels of the descending profile. 
The first measurement of each packet is dated 
from: transmitted time + day of the first descent 
of the float. 

Descending 
profile packets. 

Time, all 
available 
measurements. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

203 (deepest 
measurement) 

Deepest level of the descending profile. Descending 
profile packets. 

Time (if 
available), all 
available 
measurements. 
Cycle #N. 

2 (when 
time is 
available) 
(value is 
transmitted 
by the float) 

198 = DET-2 Max Pressure sampled during descent to park 
depth. 
From: 
‘Max pressure in descent to parking depth’. 

Tech packet #1. PRES. 
Cycle #N. 

No time 

Start of the drift phase 

250 (PST) Park drift Start Time. 
From: 
‘End of descent time’ and FST 

Tech packet #1. Time. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

289 = PET-11 
(buoyancy actions) 

Buoyancy action (time and pressure) between 
PST and PET. 

Hydraulic 
packets. 

Time, PRES. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

290 = PET-10 
(relative series of 
measurements) 

Measurements sampled during the drift at park 
depth. 
Times are computed: 

- For the first measurement of each 
packet: from transmitted 
measurement date + day of the first 
descent of the float 

- For following measurements: from 
drift sampling period (configuration 
parameter MC9). 

Submerged drift 
packets. 
Parameter data 
packet. 

Time, all 
available 
measurements. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 
for the time 
of the first 
measureme
nt of each 
packet 
1 (value is 
estimated 
using 
information 
not 
transmitted 
by the float 
or by 
procedures 
that rely on 
typical float 
behaviour) 
for the 



100 

Argo data management                                      Argo DAC trajectory cookbook 

following 
measureme
nts 

300 (PET) Park drift End Time. 
From: 
‘Descent to profile depth start time’ and DDET. 

Tech packet #1. Time. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

297 = PET-3 Min Pressure sampled during park drift. 
From: 
‘Min pressure during drift at parking depth’. 

Tech packet #1. PRES. 
Cycle #N. 

No time 

298 = PET-2 Max Pressure sampled during park drift. 
From: 
‘Max pressure during drift at parking depth’. 

Tech packet #1. PRES. 
Cycle #N. 

No time 

301 (representative 
park measurement) 

Averaged values of measurements sampled 
during the [Park start time;Park end time] time 
interval. 
REPRESENTATIVE_PARK_PRESSURE_STATUS = 
1. 

Submerged drift 
packets. 

All available 
measurements. 
Cycle #N. 

No time 

End of drift measurements 

389 = DDET-11 
(buoyancy actions) 

Buoyancy action (time and pressure) between 
PET and DDET. 

Hydraulic 
packets. 

Time, PRES. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

398 = DDET-2 Max Pressure sampled during descent to profile 
depth. 
From: 
‘Max pressure during descent to profile depth’. 

Tech packet #1. PRES. 
Cycle #N. 

No time 

450 (DPST) Deep Park Start Time. 
From: 
‘Descent to profile depth end time’ and AST. 

Tech packet #1. Time. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

489 = AST-11 
(buoyancy actions) 

Buoyancy action (time and pressure) between 
DPST and AST. 

Hydraulic 
packets. 

Time, PRES. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

497 = AST-3 Min Pressure sampled during deep park drift. 
From: 
‘Min Pressure during drift at profile depth’. 

Tech packet #1. PRES. 
Cycle #N. 

No time 

498 = AST-2 Max Pressure sampled during deep park drift. 
From: 
‘Max Pressure during drift at profile depth’. 

Tech packet #1. PRES. 
Cycle #N. 

No time 

Start of profile 

500 (AST) Ascent Start Time. 
From: 
‘Ascent profile start time’ and AET. 

Tech packet #1. Time. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

503 (deepest 
measurement) 

Deepest level of the ascending profile. Ascending profile 
packets. 

Time (if 
available), all 
available 
measurements. 
Cycle #N. 

2 (when 
time is 
available) 
(value is 
transmitted 
by the float) 

589 = AET-11 
(buoyancy actions) 

Buoyancy action (time and pressure) between 
AST and AET. 

Hydraulic 
packets. 

Time, PRES. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 



101 

Argo data management                                      Argo DAC trajectory cookbook 

590 = AET-10 
(relative series of 
measurements) 

Dated levels of the ascending profile. 
The first measurement of each packet is dated 
from: transmitted time + day of the first descent 
of the float. 

Ascending profile 
packets. 

Time, all 
available 
measurements. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

599 = AET-1 
(relative single 
measurement) 

Last pumped CTD measurement sampled during 
ascending profile. 
From: 
‘Sub-Surface pressure’ 
‘Sub-Surface temperature’ 
‘Sub-Surface salinity’ 
‘Sub-Surface C1PHASE’ 
etc… 

Tech packet #2. All available 
measurements. 
Cycle #N. 

No time 

600 (AET) Ascent End Time. 
AET = TST – (10 minutes) – TC4 
for cycles without ‘Near Surface & In Air’ 
sequence 
AET = TST – (10 minutes) – 2*MC31 – TC22 
for cycles with ‘Near Surface & In Air’ sequence 
TC4, TC22 and MC31 are configuration 
parameters reported in parameter data packet. 

Parameter data 
packet. 

Time. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

Float is on the surface 

700 (TST) Transmission Start Time. 
From: 
‘Ascent profile end time’ and time of first GPS 
fix. 

Tech packet #1. Time. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

702 (FMT) Earliest time of current cycle Iridium sessions. Iridium e-mail. Time. 
Cycle #N. 

4 (value is 
determined 
by satellite) 

703 (surface 
location) 

All GPS fixes provided (one for each Iridium 
session). 

Tech packet #1. Time, latitude, 
longitude. 
Cycle #N. 

4 (value is 
determined 
by satellite) 

704 (LMT) Latest time of current cycle Iridium sessions. Iridium e-mail. Time. 
Cycle #N. 

4 (value is 
determined 
by satellite) 

800 (TET) Transmission End Time. 
Set as the cycle start time (MC=89) of the next 
cycle. 

Tech packet #1. Time. 
Cycle #N-1. 

2 (value is 
transmitted 
by the float) 

Miscellaneous 

710 (in-water 
samples, part of 
surface sequence) 

For DO floats only. 
For cycles with ‘Near Surface & In Air’ sequence. 
Measurements sampled during the ‘Near 
Surface’ phase. 
Times are computed: 

- For the first measurement of each 
packet: from transmitted 
measurement date + day of the first 
descent of the float 

- For following measurements: from 
sampling period (configuration 
parameter MC30). 

Near surface 
packets. 
Parameter data 
packet. 

Time, all 
available 
measurements. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 
for the time 
of the first 
measureme
nt of each 
packet 
1 (value is 
estimated 
using 
information 
not 
transmitted 
by the float 
or by 
procedures 
that rely on 
typical float 
behaviour) 
for the 
following 
measureme
nts 



102 

Argo data management                                      Argo DAC trajectory cookbook 

711 (in-air samples, 
part of surface 
sequence) 

For DO floats only. 
For cycles with ‘Near Surface & In Air’ sequence. 
Measurements sampled during the ‘In Air’ 
phase. 
Times are computed: 

- For the first measurement of each 
packet: from transmitted 
measurement date + day of the first 
descent of the float 

- For following measurements: from 
sampling period (configuration 
parameter MC30). 

In air packets. 
Parameter data 
packet. 

Time, all 
available 
measurements. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 
for the time 
of the first 
measureme
nt of each 
packet 
1 (value is 
estimated 
using 
information 
not 
transmitted 
by the float 
or by 
procedures 
that rely on 
typical float 
behaviour) 
for the 
following 
measureme
nts 

901 (grounded 
cycle) 

Grounding information. 
From: 
‘1st grounding day relative to cycle start’ and 
cycle start time (MC=89) 
‘1st grounding hour’ 
‘1st grounding Pressure’ 
‘2nd grounding day relative to cycle start’ 
‘2nd grounding hour’ 
‘2nd grounding Pressure’. 

Tech packet #2. Time, PRES. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

 

2.2.16 Arvor Argos 

The following measurement codes are set by the Coriolis decoder for Arvor Argos floats (Firmware 

version 5605B05, Coriolis version 4.54, Decoder Id 32). 

Argo trajectory file measurement codes (MC) for Arvor Argos floats. 

Code (timing) Name in float data output Description 
and name of 
data file 
where this is 
found 

Units and 
data 
profile 
number 

JULD_ST
ATUS 

0 (launch position)  Provided by PI (from deployment team). From Coriolis 
Excel deployment 
file provided at 
Coriolis DAC by 
float PI. 

Time, latitude, 
longitude. 
Cycle #-1 
(convention). 

4 (value is 
determined 
by satellite) 

89 = DST-11 
(buoyancy action) 

Cycle start time (buoyancy reduction start time). 
From: 
‘Cycle start gregorian day’ 
‘Cycle start gregorian month’ 
 ‘Cycle start hour’ + day of the first descent of the 
float. 

Tech message #2. Time. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

100 (DST) Descent to park Start Time. 
From: 
‘Descent Start Time’ and Cycle start time (MC=89). 

Tech message #2. Time. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

150 = FST First Stabilization Time during descent to park. 
From: 
‘Float Stabilisation Time’ and DST 

Tech message #2. Time, PRES. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 



103 

Argo data management                                      Argo DAC trajectory cookbook 

‘1st Stabilisation Pressure’. 

190 = DET-10 
(relative series of 
measurements) 

Dated levels of the descending profile. 
The first measurement of each message is dated 
from: transmitted time + DST. 

Descent profile 
data message. 

Time, all 
available 
measurements
. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

203 (deepest 
measurement) 

Deepest level of the descending profile. Descent profile 
data message. 

Time (if 
available), all 
available 
measurements
. 
Cycle #N. 

2 (when time 
is available) 
(value is 
transmitted 
by the float) 

198 = DET-2 Max Pressure sampled during descent to park depth. 
From: 
‘Max pressure in descent to Parking Depth’. 

Tech message #2. PRES. 
Cycle #N. 

No time 

Start of the drift phase 

250 (PST) Park drift Start Time. 
From: 
‘End of descent time’ and FST 

Tech message #2. Time. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

290 = PET-10 
(relative series of 
measurements) 

Measurements sampled during the drift at park 
depth. 
Times are computed: 

- For the first measurement of each packet: 
from transmitted measurement date + 
transmitted measurement time + DST 

- For following measurements: from drift 
sampling period (configuration parameter 
MC8). 

Submerged drift 
data message. 

Time, all 
available 
measurements
. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 
for the time 
of the first 
measurement 
of each 
packet 
1 (value is 
estimated 
using 
information 
not 
transmitted 
by the float 
or by 
procedures 
that rely on 
typical float 
behaviour) 
for the 
following 
measurement
s 

300 (PET) Park drift End Time. 
From: 
‘Descent to Profile Depth Start time’ and DDET. 

Tech message #2. Time. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

297 = PET-3 Min Pressure sampled during park drift. 
From: 
‘Min Pressure in Drift’. 

Tech message #2. PRES. 
Cycle #N. 

No time 

298 = PET-2 Max Pressure sampled during park drift. 
From: 
‘Max Pressure in Drift’. 

Tech message #2. PRES. 
Cycle #N. 

No time 

301 (representative 
park measurement) 

Averaged values of measurements sampled during 
the [Park start time;Park end time] time interval. 
REPRESENTATIVE_PARK_PRESSURE_STATUS = 1. 

Submerged drift 
data message. 

All available 
measurements
. 
Cycle #N. 

No time 

End of drift measurements 



104 

Argo data management                                      Argo DAC trajectory cookbook 

398 = DDET-2 Max Pressure sampled during descent to profile 
depth. 
From: 
‘Max Pressure in descent Profile Depth’. 

Tech message #2. PRES. 
Cycle #N. 

No time 

450 (DPST) Deep Park Start Time. 
From: 
‘Descent to Profile Depth Stop time’ and AST. 

Tech message #2. Time. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

497 = AST-3 Min Pressure sampled during deep park drift. 
From: 
‘Min Pressure in Drift at Profile Depth’. 

Tech message #2. PRES. 
Cycle #N. 

No time 

498 = AST-2 Max Pressure sampled during deep park drift. 
From: 
‘Max Pressure in Drift at Profile Depth’. 

Tech message #2. PRES. 
Cycle #N. 

No time 

Start of profile 

500 (AST) Ascent Start Time. 
From: 
‘Ascent Profile Start time’ and AET. 

Tech message #2. Time. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

503 (deepest 
measurement) 

Deepest level of the ascending profile. Ascent profile data 
message. 

Time (if 
available), all 
available 
measurements
. 
Cycle #N. 

2 (when time 
is available) 
(value is 
transmitted 
by the float) 

590 = AET-10 
(relative series of 
measurements) 

Dated levels of the ascending profile. 
The first measurement of each message is dated 
from: transmitted time + AST. 

Ascent profile data 
message. 

Time, all 
available 
measurements
. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

600 (AET) Ascent End Time. 
AET = TST – (14 minutes) for Arvor float 
AET = TST – (16 minutes) for Provor float. 

 Time. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

Float is on the surface 

700 (TST) Transmission Start Time. 
From: 
‘Ascent Profile Stop time’ and time of first Argos 
message. 

Tech message #2. Time. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 

702 (FMT) Earliest time of current cycle Argos messages. CLS information 
(Argos message 
dates). 

Time. 
Cycle #N. 

4 (value is 
determined 
by satellite) 

703 (surface 
location) 

All Argos fixes provided. CLS information 
(Argos fixes 
estimated by 
CLS). 

Time, latitude, 
longitude, 
location class. 
Cycle #N. 

4 (value is 
determined 
by satellite) 

704 (LMT) Latest time of current cycle Argos messages. CLS information 
(Argos message 
dates). 

Time. 
Cycle #N. 

4 (value is 
determined 
by satellite) 

800 (TET) Transmission End Time. 
Set as the cycle start time (MC=89) of the next 
cycle. 

Tech message #2. Time. 
Cycle #N-1. 

2 (value is 
transmitted 
by the float) 

Miscellaneous 

901 (grounded 
cycle) 

Grounding information. 
From: 
‘1st Grounding day relative to cycle start’ and cycle 
start time (MC=89) 
‘1st Grounding Hour’ 

Tech packet #1. Time, PRES. 
Cycle #N. 

2 (value is 
transmitted 
by the float) 



105 

Argo data management                                      Argo DAC trajectory cookbook 

‘1st grounding Pressure’. 

 

2.2.17 SOLO floats 

Real time: 

All cycle times (DST, FST, DET, PST, PET, DDET, DPST, AST, AET, TST, TET) cannot be filled in 

real time for SOLO floats and should be filled with fill value. The corresponding status variables for 

these timing variables should all be a "9" for time unknown. No times should be filled from 

information provided in the meta files. 

Delayed mode: 

The SIO SOLO returns little timing information directly measured by the float.  However, estimation 

of float surfacing and sinking from the surface, as well as most other important timing events can be 

successfully carried out in DMQC.  If the standard amount of data is returned by the float, timing can 

be estimated within 10 minutes for most float events. 

DMQC for timing is best done when all data has been received from the float (the float has stopped 

reporting).  SIO has followed the following procedure for DMQC of SIO Argos float timing 

estimation. 

1) The surface time for the SIO SOLO is FIXED.  This is built into the 

firmware.  Surface time CANNOT vary.  Since the float resets it's clock 

each cycle, it is very unlikely clock drift will be an issue. 

2)  Assume that changes in cycle time are slowly evolving over the life of the 

float.  Here 'slowly varying' is defined as slower than the float’s cycle time. 

3)  Collect each surface interval’s first and last Argos data times.  These times 

will not have a width greater than the floats programmed surface time.  If 

the measured surface interval does exceed the programmed surface time, the 

likely culpret is a 'ghost message', and the Argos dataset will need to be 

edited.  It is best to use the times of all Argos data, and not only position 

times. 

4)  Fit a slowly varying envelope of 'surface time' width to the Argos first/last 

times. 

5) Some 'jumps' may be necessary depending on float behavior. 

6)  To determine other float timing (off the surface), add forwards and 

backwards from the determined AET and DST times, using float 

parameters. 

The exact method of determining the envelope is left to the PI.  

The Dtraj netCDF files from SIO have been filled using the above procedure.  The estimated time of 

AET has been transferred to the DMQC profile netCDF file variable JULD.  When this is done 

JULD_QC has been changed to '8', meaning interpolated. 

 

2.2.18 SOLO-II floats 

Solo-II floats are all newer, Iridium floats and as such, their cycle timing variables follow a different 

chronological order than many of the other floats included in this document. J. Gilson has created a 



106 

Argo data management                                      Argo DAC trajectory cookbook 

table from which one can match all the desired measurement codes with what the SOLO-II float 

measures, referring back to the float's documentation. The documentation is all available on the SIO-

Argo website (http://sio-argo.ucsd.edu/manuals.html). 

With SOLO-II float version 2.0 and later, data is returned which closely labels the data sent by the 

float to the Measurement Code discussed here.  In the below table the code retuned by the float is 

described as 'Variable Code'.  The Variable Code value does not equate to the Measurement Code 

value. 

 

Argo program measurement codes (MC) 

Code (timing) SOLO II Variable Description Units JULD_STATUS 

0 Cy 0: GPS ID=0x00 
(Variable Code=1) 
 

GPS fix from surfacing after short 
~100dbar test dive 

Time,position 1 

100 (DST) Cy>0: Fall ID=0x40 
(Variable Code=1) 

Typically, thefirst T,P pair [taken as 
valve opened to leave surface] 

Time,P(0.04db) 2 

199 
 
 
 
 
 
139/140 
 
 
 
 
150 (FST) 
 
 
189/190 

Cy=0: Eng ID=0xe0 
(Variable Code=7) 
 
 
 
 
Cy>0: Fall ID=0x40 
 
 
 
 
Cy>0: Fall ID=0x40 
(Variable Code=2) 
 
Cy>0:Fall ID=0x40 

P,T,S triplet taken when float 
realizes it is under the surface and 
pumps to return to the surface (Eng 
ID=0xe0 bytes 39-47) 
 
 
All pre-FST T,P Fall pairs not 
assigned to other MC (139 used for 
buoyancy adjustments) 
 
 
T,P Fall pair ~ 100dbar 
 
 
All other pre-DET T,P Fall pairs (189 
used for buoyancy adjustments) 

P(0.04db),T(0.00
1oC), S(0.001psu) 
 
 
 
 
Time,P(0.04db) 
 
 
 
 
Time,P(0.04db) 
 
 
Time,P(0.04db) 

2 
 
 
 
 
 
2 
 
 
 
 
2 
 
 
2 

200 (DET) Cy=0:Rise ID=0x50 
 
Cy>0: Fall ID=0x40 
 

Typically, Deepest T,P pair 
 
Choice of T,P pair that is first within 
3% of pressure at beginning of drift 
(see Eng ID=0xe2 bytes 63-65) 

Time,P(0.04db) 
 
Time,P(0.04db) 

2 
 
2 

n=239/240 Cy>0: Fall ID=0x40 All post DET T,P pairs. MC239 are 
used for buoyancy adjustments. 
If n is the number of stabilizations 
(see Argo ID=0xf0), the T,P n+1 
from end of Fall record is a 
stabilization. Each later T,P pair 
excluding the last will be an 
additional stabilization. Note: for 
some floats there are stabilizations 
during drift. 

Time,P(0.04db) 2 

if there is a drift phase (drift pressure defined) (common to cycles > 1) 

250 (PST) Cy>0: Fall ID=0x40 
(Variable Code=4) 

Last T,P Fall pair Time,P(0.04db) 2 

296 Cy>0: Eng ID=0xe2 Drift broken into two 
averaged halves. Stored in 
Eng ID=0xe2 bytes 63-80; 
Time estimated from the last 
Fall ID=0x40 T,P pair [note: 
not DET] and first Rise 
ID=0x50 T,P pair 

P(0.04db),T(0.001oC), 
S(0.001psu) 

2 

290 Cy>0 with park phase 
Drift ID 0x98 

The SOLOII can return the 
raw drift measurements.  
Time is not returned, but can 
be estimated within a few 

P(0.04db),T(0.001oC), 
S(0.001psu) 

3 

http://sio-argo.ucsd.edu/manuals.html


107 

Argo data management                                      Argo DAC trajectory cookbook 

seconds. 

300 (PET) Cy>0: Rise ID=0x50 First T,P Rise pair [taken as 
valve opened] 

Time,P(0.04db) 2 

301  Best estimate of drift depth 
(average of two averaged 
halves) 

Pressure 1 

Endif 

if there is a deep dive (profile pressure > drift pressure and drift pressure defined) 

389/390 Cy>1: Rise ID=0x50 All pre-DDET T,P Rise pairs 
(389 indicates time of 
buoyancy adjustedment) 

Time,P(0.04db) 2 

400 (DDET) Cy>1: Rise ID=0x50 DDET is determined by a) 2nd 
derivative of Rise pair series 
or b) within 3% of profile 
depth (see Eng ID=0xe2 
bytes 39-41). 

Time,P(0.04db) 2 

489/490 Cy>1: Rise ID=0x50 All post-DDET/pre-AST T,P 
Rise pairs (489 indicates time 
of buoyancy adjustment) 

Time,P(0.04db) 2 

 
500 (AST) 

Cy>1: Rise ID=0x50; 
Eng ID=0xe2 
(Typically Variable Code 
=7) 

AST is determined by 2nd 
derivative of Rise pair series.  

Time,P(0.04db); 
P(0.04db),T(0.001oC), 
S(0.001psu) 

2 

Else 

500 (AST) Cy=0: Rise ID=0x50; 
(Variable Code=7) 
 
 
Cy=1 Eng ID=0xe2 
(Typically Variable Code 
=7) 

First T,P Rise pair [taken as 
valve opened] 
 
 
 AST is determined by 2nd 
derivative of Rise pair series 

Time,P(0.04db); 
 
 
 
P(0.04db),T(0.001oC), 
S(0.001psu) 

2 
 
 
 
2 

Endif 

589/590 Cy>=0: Rise ID=0x50 All T,P Rise pairs post AST 
excluding  last or last two. 
589 indicates buoyancy 
adjustment. 

Time,P(0.04db) 2 
 

599 Cy=0: Eng ID=0xe0 
 
 
 
Cy>0: Eng ID=0xe2 

last P,T,S triplet taken before 
turning off CTD (Eng ID=0xe0 
bytes 48-56) 
 
last P,T,S triplet taken before 
turning off CTD (Eng ID=0xe2 
bytes 45-50) 

P(0.04db),T(0.001oC), 
S(0.001psu) 
 
 
P(0.04db),T(0.001oC), 
S(0.001psu) 

2 
 
 
2 

600 (AET) Cy>-1: Rise ID=0x50 
(Variable Code=8) 

Last or 2nd to last T,P Rise pair Time,P(0.04db) 2 

703 Cy=0: GPS ID=0x00 
 
Cy>0: GPS ID=0x02 

GPS Fix 
 
GPS Fix 

Time, Position 
 
Time, Position 

2 
 
2 
 

700 (TST) 
 
 
 
702 (FMT) 

 
 
 
 
Time in SBD email 

TST is not recorded by the 
float, but it is within a minute 
of the first message 
 
Time of first SBD message 

Time 
 
 
 
Time 

1 
 
 
 
4 

704 (LMT) 
 
800 (TET) 

Time in SBD email Time of last SBD message 
 
TET is not recorded by the 
float, but it is within a few 
seconds of the last message 

Time 
 
Time 

4 
 
3 

703 Cy>0: GPS ID=0x01 GPS Fix: May be multiple GPS 
fixes, depending on float 

Time, Position 2 



108 

Argo data management                                      Argo DAC trajectory cookbook 

settings 

 

  



109 

Argo data management                                      Argo DAC trajectory cookbook 

2.3 Guidelines for Argos message selection 

2.3.1 Argos float message selection 

Ideally, every DAC should use the same method for Argos message selection for each float type. 

Some floats are transmitting a CRC (Cyclic Redundancy Check ) done on board the float and others 

are not. Additionally, not all CRC have the same reliability. Recommendations were issued at ADMT 

10, but inconsistencies still exist between DACs. 

Each float types message selection strategy will be listed below: 

Argos message selection done at Coriolis for PROVOR/ARVOR 

Technical message selection 

1. If only one technical message is received with a good CRC, use it, 

2. If more than one technical message is received, all with good CRCs, use the"first received 

one" 

3. If no technical message is received with a good CRC, no technical message is used. In this 

case, times provided by the float are missing and, consequently, the order of the drift CTD 

measurements cannot be determined. 

CTD data message selection 

Received messages are processed by type (type 4: "descent profile CTD message", type 5: "submerged 

drift CTD message" and type 6: "ascent profile CTD message"). 

For each type, the Id of the received message is computed. 

• For type 4 or type 6 messages, the Id is defined by the date and the pressure of the first CTD 

measurement of the message, 

• For type 5 messages, the Id is defined by the date and the time of the first CTD measurement 

of the message. 

The selection process must lead to (at most) one message for a given Id. 

For a given type, all messages of a given Id are processed: 

1. If only one message is received with a good CRC, use it, 

2. If more than one message is received all with good CRCs, use the "first received one", 

3. If no message is received with a good CRC: 

a. If 1 or 2 copies of the message has been received, no message is used for this Id, 

b. If more than 2 copies of the message have been received: 

i. If an even number of copies of the message have been received, reject the 

"first received one", 

ii. The possibly emitted message is computed from received copies (each bit of 

the message is defined by selecting the "most redundant" received one), 

iii. A CRC check is done on this "reconstructed" message: 

1. If it succeeds, use this "reconstructed" message, 

2. If it fails, no message is used for this Id. 

  



110 

Argo data management                                      Argo DAC trajectory cookbook 

2.4 Sensor measurements 

2.4.1 Sensor measurements sampled during the drift phase at parking depth 

2.4.1.1 APEX and Navis floats 

2.4.1.1.1 CTD measurement sampled at the end of the drift phase at parking depth 

APEX and Navis float versions provide a CTD measurement (P, T and S) sampled at the end of the 

drift phase at parking depth, generally called park (or bottom) measurement. The corresponding time 

of the measurement is provided by Iridium float versions only. 

This measurement should be associated to PET (MC 300) or AST (MC 500) if theoretical PARKING 

and PROFILE depths are equal for the corresponding cycle (see §2.2.4.5). 

2.4.1.1.2 CTD measurements regularly sampled during the drift phase at parking depth 

Some APEX and Navis float versions provide CTD measurements (only P and T generally) regularly 

sampled during the drift phase at parking depth. The corresponding times of the measurements are 

provided by Iridium float versions only. 

For regularly sampled CTD measurements, use MC minus 10. Usually this will be 290 because the 

float is transitioning towards PET which is 300. If the float is transitioning towards a different MC, 

subtract four from that MC. 

For averaged sampled CTD measurements, use MC minus 4. Usually this will be 296 because the float 

is transitioning towards PET which is 300. If the float is transitioning towards a different MC, subtract 

four from that MC. 

For Argos float versions these measurements need to be dated in a post-processing procedure. For that 

we need to know additional meta-data parameters. 

The following six sampled strategies can be encountered. 

2.4.1.1.2.1 Normal float behavior 

For many of the APEX and Navis floats, the first drift measurement is sampled sometime between  4-8 

hours after DST  and the following ones with a programmed theoretical period. 

Thus, for these floats, to compute the CTD measurement times we must first know: 

• The DST (see §2.2.4.2), 

• The theoretical period of the drift measurements. 

2.4.1.1.2.2 Floats with daily CTD measurements 

Some APEX floats provide a daily measurement, the first one sampled 24 hours after DST. 

2.4.1.1.2.3 Floats providing only averaged values 

Some floats provide N averages of hourly sampled CTD measurements. N is a programmed meta-data 

parameter. 

The times of the averaged value should be computed to be regularly set between DET and PET. 

The time of the average #i should be: time(i) = DET + (2*i - 1)*(PET - DET)/(2*N) 



111 

Argo data management                                      Argo DAC trajectory cookbook 

2.4.1.1.2.4 Isopycnal floats behavior 

Isopycnal APEX floats generally provide two sets of CTD measurements. 

The first one corresponds to the stabilization at the target sigma-theta value. 

The first CTD measurement is sampled 6 hours after DST and the following ones with a 1.5 hour 

period. 

See §2.4.3.3 for the storage of these data. 

The second set of CTD measurements corresponds to the drift at the target sigma-theta value. 

The first CTD measurement is sampled 6 hours after the last measurement of the first set and the 

following ones with a 6 hour period. 

These are series of measurements, so the MC should be MC-10. 

2.4.1.1.2.5 Old versions of isopycnal floats 

Some (old) versions of isopycnal floats provide CTD measurement sampled at isopycnal depth but we 

do not know how to compute their corresponding times. 

2.4.1.1.2.6 RAFOS floats behavior 

RAFOS floats generally provide a daily CTD measurement sampled at the end of the last listening 

window of the day. 

Thus, for these floats, to compute the CTD measurement times we must first know: 

• The hour of the last listening window, 

• The length of the listening windows. 

The decoded and dated (if possible) CTD measurements should be stored in the N_MEASUREMENT 

arrays with: 

• JULD set to the computed times, 

• JULD_QC: set to 0, 

• JULD_STATUS set to 3 (computed directly from information sent by the float) 

• CYCLE_NUMBER set to corresponding cycle number, 

• MEASUREMENT_CODE set to 290, 

• <PARAM> set to decoded CTD values, 

• <PARAM>_QCs set to 0, 

• All other variables set to _FillValue. 

For Iridium floats, the decoded times should be corrected for clock offset and stored in the 

JULD_ADJUSTED variable. CLOCK_OFFSET should also be filled in the N_CYCLE array. 

For Argos floats, the times are computed from DST, thus clock offset is already taken into account. 

The times should still be stored in JULD_ADJUSTED since clock offset has been taken into account. 

For Argos floats, we must consider missing Argos messages to correctly set CTD measurement dates 

(i.e. we must take into account the missing CTD measurements, due to not received data, to correctly 

apply the periodicity of the dates). 



112 

Argo data management                                      Argo DAC trajectory cookbook 

2.4.1.1.3 Minimum and maximum values of pressure during drift 

Some APEX floats, provide the minimum and maximum values of the pressure regularly sampled 

during the drift at PARKING depth. 

These values should be stored in the N_MEASUREMENT arrays with a MEASUREMENT_CODE 

set to 297 or 298. 

2.4.1.1.4 PARAM at min/max of another PARAM 

Some APEX float versions record the pressure at max temperature during drift and pressure at 

minimum temperature during drift.  In order to not assign too many float specific MCs, new relative 

specific MCs were added to address this general situation.  There are: 

MC minus 12 Any supporting measurements for the maximum value (MC minus 2) 

MC minus 13 Any supporting measurements for the minimum value (MC minus 3) 

MC minus 14 Any supporting measurements for the averaged value (MC minus 4) 

MC minus 15 Any supporting measurements for the median value (MC minus 5) 

 

So, for the pressure at the maximum temperature during drift, use MC 288.  For pressure at the 

minimum temperature during drift, use MC 287. 

2.4.1.1.5 BGC measurements regularly sampled during the drift phase at parking depth 

A growing subset of APEX and Navis BGC-Argo floats are now sampling various biogeocemical 

parameters during the drift phase along with PRES and TEMP.  For APEX Apf11 floats, this can 

include bio-optical measurements taken from the FLBB sensor (ie CHLA and BBP700).  For Navis 

BGC-Argo floats, those equipped with oxygen and pH sensors can sample DOXY and 

PH_IN_SITU_TOTAL during drift (as well as PSAL).  Additionally, a smaller number of older BGC 

Navis have drift sampling turned on for CHLA, BBP700 and CDOM from the MCOMS sensor.  

Considering the potential science applications for bio-optical data sampled during the drift phase (ie 

particle export studies), the sampling of bio-optical measurements at the park depth may become more 

prominent in the future. 

Similar to CTD measurements taken during drift, the appropriate measurement code for these types of 

examples is usually 290 (MC minus 10) because the float is transitioning towards PET which is 300.  

Sample frequency can vary during the drift phase, but most APEX sample at an hourly rate during 

drift (for both core and BGC measurements), while many Navis sample every six hours during drift. 

 

 

 

  



113 

Argo data management                                      Argo DAC trajectory cookbook 

2.4.1.2 PROVOR floats 

2.4.1.2.1 CTD measurements regularly sampled during the drift phase at parking depth 

All PROVOR floats have the capability to achieve and provide CTD measurements (P, T and S) 

regularly sampled during the drift phase at parking depth but this capability must be enabled by the 

operator in the programmed float mission. Regularly sampled CTD measurements are represented by 

the MC towards which the float is transitioning - 10. Usually, the float is transitioning towards PET or 

300, making the MC code 290. 

For PROVOR 100001 version, we have no information, in the transmitted data, about the drift 

measurement times. 

For PROVOR 100006, 100005, 100004, 100008 and 100003 versions, the time of the first drift 

measurement is provided in the technical message as well as the drift data sampling period. 

For all other float versions, the time of the first drift measurement of each Argos message (or Iridium 

packet) is transmitted in the data message. The day number of this time is relative to the day of the 

first descent (cycle #0). 

Moreover, for some float versions, to minimize the impact of the loss of a drift CTD message, drift 

measurements are transmitted using an interleaving scheme: 

• Measurements #1, #3, #5, #7, … are transmitted in a first message, 

• Measurements #2, #4, #6, #8, … are transmitted in a second message. 

In this case, it is very important to determine the theoretical time of the first drift measurement 

(particularly when this measurement is not received from the float). 

This time depends on float version. 

2.4.1.2.1.1 Drift measurement times determination for PROVOR 101011, 102002, 101012, 
101014, 101015, 102003, 101013 and 100001 versions 

For these float versions, measurements are done at round hours. 

The theoretical First Drift Measurement Time (FDMT) is relative to the hour of the DET (which must 

be rounded down). 

If DET is given as a Julian day. 

If DSP is the Drift Sampling Period (in hours). 

Then FDMT = floor(DET*24)/24 + DSP/24. 

For PROVOR 101011, 101012, 101014, 101015 and 101013 versions, drift measurements are 

transmitted using an interleaving scheme. 

This is not the case for PROVOR 102002, 102003 and 100001 versions. 

2.4.1.2.1.2 Drift measurement times determination for PROVOR 101009, 101006, 101008, 
101007, 101010, 101002, 101005, 101003, 101004 and 100002 versions 

For these float versions, the theoretical First Drift Measurement Time (FDMT) is relative to the day of 

DET. 

If DET is given in Gregorian time as "MM/DD/YYYY hh:mm:ss". 



114 

Argo data management                                      Argo DAC trajectory cookbook 

If DSP is the Drift Sampling Period (in hours). 

Then FDMT = "MM/DD/YYYY 00:00:00" + N*DSP/24 

where N is the minimum integer value for which 

"MM/DD/YYYY 00:00:00" + N*DSP/24 > "MM/DD/YYYY hh:mm:ss" 

For PROVOR 101009, 101006, 101008, 101007, 101010, 101002, 101005 and 100002 versions, drift 

measurements are transmitted using an interleaving scheme. 

This is not the case for PROVOR 101003 and 101004 versions. 

2.4.1.2.2 Minimum and maximum values of pressure during drift 

Some PROVOR float versions provide the minimum and maximum values of the pressure regularly 

sampled during the drift at PARKING depth. 

These values should be stored in the N_MEASUREMENT arrays with a MEASUREMENT_CODE 

set to 297 or 298. 

For PROVOR floats these values are given in bars, the pressure resolution should be set accordingly 

(see §1.2.2). 

 

  



115 

Argo data management                                      Argo DAC trajectory cookbook 

2.4.1.3 NINJA floats 

2.4.1.3.1 CTD measurements for NINJA 300001, 300002 and 300003 versions 

2.4.1.3.1.1 CTD measurement sampled at the beginning and end of the drift phase at parking 
depth 

These NINJA versions provide a pressure measurement sampled at the beginning and at the end of the 

parking phase. 

The first pressure should be stored in the N_MEASUREMENT array in association with PST (thus 

with a MEASUREMENT_CODE set to 250). 

The second pressure should be stored in the N_MEASUREMENT with a MEASUREMENT_CODE 

set to 300 for PET. 

The time associated with these pressure measurements cannot be estimated, so JULD should be fill 

value and JULD_STATUS should be ‘9’. 

2.4.1.3.1.2 CTD measurements regularly sampled during the drift phase at parking depth 

These NINJA versions provide pressure measurements daily sampled during the drift phase at parking 

depth. 

These pressure measurements should be stored in the N_MEASUREMENT with a 

MEASUREMENT_CODE set to 290 if the float is transitioning towards PET. Even though we don't 

know how to compute the time for these measurements, they can be included in the 

N_MEASUREMENT array with the appropriate MC code. 

The time associated with these pressure measurements cannot be estimated, so JULD should be fill 

value and JULD_STATUS should be ‘9’. 

2.4.1.3.1.3. CTD measurements for NINJA 300004 version 

These NINJA versions provide CTD measurements (P, T and S) sampled during the drift phase at 

parking depth. 

These CTD measurements should be stored in the N_MEASUREMENT with a 

MEASUREMENT_CODE set to 290 if transitioning towards PET. 

The time associated with these pressure measurements cannot be estimated, so JULD should be fill 

value and JULD_STATUS should be ‘9’. 

  



116 

Argo data management                                      Argo DAC trajectory cookbook 

2.4.1.4 SOLO-II and SOLO floats 

Measurement 
code 

SOLO II 
Variable 

Description Units  

296 Cy>0: Eng 
ID=0xe2 

The drift is broken into two averaged halves. Stored in Eng 
ID=0xe2 bytes 67-78; Time estimated from the last Fall 
ID=0x40 T,P pair [note: not DET] and first Rise ID=0x50 T,P 
pair 

P(0.04db),T(0.001oC), 
S(0.001psu) 

 

SOLO floats perform the same drift measurements as SOLO-II floats. Use MC=296 for the two drift 

measurements reported by the SOLO. 

 

2.4.1.5 NOVA floats 

Measurement 
code 

NOVA Variable Description Units  

290 Series of pressure 
Series of 
temperature 
Series of salinity 

A series of CTD measurements taken 
during drift at user specified times 

Pressure 
Temp 
Salinity 

297 Minimum pressure Minimum pressure recorded during 
drift phase 

Pressure 

298 Maximum pressure Maximum pressure recorded during 
drift phase 

Pressure 

 

NOVA has PARAMETER 5 PARKING SAMPLING PERIOD which ranges from 0 – 24 hours and is 

user configurable.  It comes set to 24, which means a CTD measurement is recorded and transmitted 

per time period per cycle (normally 9 measurements).   

 

2.4.2 REPRESENTATIVE_PARK_PRESSURE 

The REPRESENTATIVE_PARK_PRESSURE and 

REPRESENTATIVE_PARK_PRESSURE_STATUS variables in the N_CYCLE array are to include 

one pressure value for the drift period of the current cycle. These values can be filled in real time, but 

should be confirmed/updated in delayed mode. The STATUS flags are clear as to how the value is 

calculated and should be done for each float. Flag '1' involves finding a weighted average of regularly 

sampled pressures during drift (MC = 290). Flag '2' is the mean value directly provided by the floats of 

pressure measurements regularly sampled during drift (MC = 296). Flag '3' is the median value, 

directly provided by the float of pressure measurement regularly sampled during drift. Flag '4' is the 



117 

Argo data management                                      Argo DAC trajectory cookbook 

pressure measured at PET. Flag '5' is the average of the min and max pressure measurements sampled 

during drift (MCs = 297 and 298). Flag '6' and '7' is the PARKING_PRESSURE meta-data value for 

floats that for some reason either missed the pressure measurement ('6') or do not make pressure 

measurements ('7') during drift. Flag '8' is the value estimated in Delayed Mode from float 

behavior/data. This may include profile limits, data from other cycles, temperature at drift, etc. 

 

As an example here is the algorithm used to compute the RPP for ANDRO files: 

The RPP is computed for each cycle and depends on the measurements sampled during the drift phase 

at parking depth. We start from the most reliable RPP (STEP #1) and, if the needed data are not 

present, we try the next step and so on until the last step (STEP #). 

STEP #1: 

If we have isopycnal pre-stabilization CTD measurements and CTD measurement regularly sampled 

during the drift phase at parking depth: the RPP is the average value weighted by the time (thus with a 

weight of 1.5 for the pre-stabilization CTD measurements and 6 for the other ones). 

STEP #2: 

If we have CTD measurement regularly sampled during the drift phase at parking depth: the RPP is the 

average value of these measurements (note that the measurement done at PET which is generally also 

present is not used in this case). 

STEP #3: 

If we directly have the mean value of (generally hourly) regularly sampled CTD measurements: the 

RPP is this mean value (note that the measurement done at PET which is generally also present is not 

used in this case). 

STEP #4: 

If we directly have the median value of regularly sampled CTD measurements: the RPP is this median 

value. 

STEP #5: 

If we have a CTD measurement done at PET: the RPP is this measurement. 

STEP #6: 

If we have the Min and Max pressure values of the measurements done during the drift phase at 

parking depth: the RPP is the mean of this two values. 

STEP #7: 

If we have multiple profiles during the cycle: the RPP is the average of mean and max profile values, 

weighted by the time spent in profile and in drift between profiles (this case is specific to APEX 

BOUNCE cycles). 

STEP #8: 

If we have the PARKING_PRESSURE meta-data value: the RPP is this value. 



118 

Argo data management                                      Argo DAC trajectory cookbook 

2.4.3 Ascending and descending measurements 

2.4.3.1 Stabilization CTD measurements 

2.4.3.1.1 PROVOR floats 

All PROVOR versions provide the First Stabilization Time but only some of them provide the 

associated pressure (in bars). 

Detailed information can be found in paragraphs 2.2.14.1.1.2, 2.2.14.1.2.2, 2.2.14.1.3.2, 2.2.14.1.4.2, 

2.2.14.1.5.2, 2.2.14.1.6.2 and 2.2.14.1.7.2. 

2.4.3.1.2 NINJA floats 

Some NINJA versions provide three First Stabilization Times with the associated pressures (see 

§2.2.11.1.1.2). 

The three First Stabilization Times and pressures should be stored in the N_MEASUREMENT arrays 

with the MEASUREMENT_CODE set to 150 for the first stabilization and 189 for the second and 

third stabilizations. 

2.4.3.2 APEX descending pressure marks 

Some APEX float versions (see ANNEX H: Cookbook entry point) provide pressure marks hourly 

sampled during descent from the surface to the PARKING depth. These can be assigned MC = 190. 

2.4.3.2.1 APEX Argos floats 

For APEX Argos floats, these descending pressure marks are provided in the Auxiliary Engineering 

Data. 

The first measurement is done at the end of the piston retraction, thus at DST, the following are done 

with a 1 hour period. 

Note also that the descending pressure marks are in bars. 

For APF9 APEX floats, it appears to be DST plus one hour. Here is a real example: 

(Jun 12 2012 22:19:36,      15 sec) DescentInit()        Surface pressure: -0.1dbar.  IER: 0x00 

(Jun 12 2012 22:19:41,      20 sec) PistonMoveAbsWTO()    226->066 225 224 223 222 221 220 219 

218 217 216 215 214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196 

195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 

172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 

149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 

126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 

103 102 101 100 099 098 097 096 095 094 093 092 091 090 089 088 087 086 085 084 083 082 081 

080 079 078 077 076 075 074 073 072 071 070 069 068 067 066 [873sec, 13.4Volts, 0.314Amps, 

CPT:873sec] 

(Jun 12 2012 22:34:16,     895 sec) Descent()            Pressure: 3.5 

(Jun 12 2012 22:34:17,     896 sec) SetAlarm()           Success: itimer=896 sec, ialarm=3600 sec 

(Jun 12 2012 23:19:23,    3602 sec) Apf9Init()           Wake-up initiated by interval-timer alarm signal. 

(Jun 12 2012 23:19:26,    3604 sec) Descent()            Pressure: 282.1 



119 

Argo data management                                      Argo DAC trajectory cookbook 

The pressure mark times are computed from DST (already corrected for clock offset); thus they do not 

need to be corrected for clock offset but the information should be set. 

The descending pressure marks are not always transmitted (depending on the remaining space in the 

last Argos message) but if received, the decoded and dated pressures should be stored in the 

N_MEASUREMENT arrays with: 

• JULD or JULD_ADJUSTED, if clock offset has been applied, set to the computed times, 

• JULD_QC: set to 0, 

• JULD_STATUS set to 2 

• CYCLE_NUMBER set to corresponding cycle number, 

• MEASUREMENT_CODE set to 190, 

• PRES set to decoded pressure mark values, 

• PRES:resolution should be deleted (see §1.2.2) 

• PRES_QCs set to 0, 

• All other variables set to _FillValue. 

2.4.3.2.2 APEX Iridium floats 

For APEX Iridium floats, the descending pressure marks and the associated times can be retrieved 

from log file as the pressure values and the times of the events: 

Descent()            Pressure: XX.X 

Descent()            Pressure: YYY.Y 

… 

Descent()            Pressure: ZZZ.Z 

associated with the concerned cycle. 

The pressure mark times should be first corrected from clock offset, then stored in the 

N_MEASUREMENT arrays with: 

• JULD set to the retrieved dates or JULD_ADJUSTED if clock offset has been applied, 

• JULD_QC/JULD_ADJUSTED_QC: set to 0, 

• JULD_STATUS/JULD_ADJUSTED_STATUS set to 2, 

• CYCLE_NUMBER set to corresponding cycle number, 

• MEASUREMENT_CODE set to 190, 

• PRES set to retrieved pressure mark values, 

• PRES:resolution should be deleted (see §1.2.2) 

• PRES_QCs set to 0, 

• All other variables set to _FillValue. 

2.4.3.3 APEX isopycnal pre-stabilization measurements 

Isopycnal APEX floats generally provide a set of CTD measurements sampled just before the 

stabilization at the target sigma-theta value. 

The first CTD measurement is sampled 6 hours after DST and the following ones with a 1.5 hour 

period. 

The decoded and dated CTD measurements should be stored in the N_MEASUREMENT arrays with: 



120 

Argo data management                                      Argo DAC trajectory cookbook 

• JULD set to the computed times of JULD_ADJUSTED if clock offset has been applied, 

• JULD_QC/JULD_ADJUSTED_QC: set to 0, 

• JULD_STATUS/JULD_ADJUSTED_STATUS set to 2, 

• CYCLE_NUMBER set to corresponding cycle number, 

• MEASUREMENT_CODE set to 189, 

• <PARAM> set to decoded CTD values, 

• <PARAM>_QCs set to 0, 

• All other variables set to _FillValue. 

For Iridium floats, the decoded times should be corrected for clock offset. 

For Argos floats, the dates are computed from DST, thus clock offset is already taken into account. 

For Argos floats, we must consider missing Argos messages to correctly set CTD measurement times 

(i.e. we must take into account the missing CTD measurements, due to not received data, to correctly 

apply the periodicity of the times). 

2.4.3.4 Dated bins of descending/ascending profiles 

2.4.3.4.1 PROVOR floats 

PROVOR float transmits profile data through specific Argos messages (or Iridium packets). Only the 

first CTD measurement of each Argos message is transmitted with its associated time. Thus, after 

decoding, because of the interleaving scheme used to pack the profile bin measurements, some profiles 

bins (around one over four or five, depending of the PROVOR version) are dated. 

The dated bins of the descending (or ascending) profiles should be stored in the N_MEASUREMENT 

arrays (CTD measurements and associated times) with a MEASUREMENT_CODE set to 190 or 590. 

2.4.3.4.2 NINJA floats 

Some NINJA versions provide time information recorded during the ascent phase. 

The transmitted data consist of the elapsed time for each vertical slice of ascent (from the max 

pressure to 2000 dbar for the first slice; and for each 100 dbar thick other slices until the surface). 

These times can be used to (roughly) compute the time of one bin each 100 dbar. 

The obtained dated bins of the ascending profiles should be stored in the N_MEASUREMENT arrays 

(CTD measurements and associated time) with a MEASUREMENT_CODE set to 590. 

2.4.3.4.3 SOLO-II floats 

SOLO-II floats provide timed pressure measurements on descent and ascent. The dated pressures of 

both the descending and ascending profiles should be stored in the N_MEASUREMENT arrays (CTD 

measurements and associated times) with a measurement code set to 190 for descending and 590 for 

ascending. 

2.4.3.5 Deepest descending/ascending CTD measurements 

The profile CTD measurements are stored in the PROF file. However, a copy of the deepest bin CTD 

measurements should be stored in the TRAJ file. 

The deepest bin CTD measurements of a descending profile should be stored in the 

N_MEASUREMENT arrays with a MEASUREMENT_CODE set to 203. 



121 

Argo data management                                      Argo DAC trajectory cookbook 

The deepest bin CTD measurements of an ascending profile should be stored in the 

N_MEASUREMENT arrays with a MEASUREMENT_CODE set to 503. 

2.4.3.6 Max pressure during descent to PARKING depth 

Some PROVOR float versions provide the maximum pressure experienced by the float during the 

descent to PARKING depth. This value is given in bars, the pressure resolution should be set 

accordingly (see §1.2.2). 

This pressure should be stored in the N_MEASUREMENT arrays with the MEASUREMENT_CODE 

set to 198. 

2.4.3.7 Min/max pressure during drift at PROFILE depth 

Some PROVOR float versions provide the minimum and maximum values of the pressure regularly 

sampled during the drift at PROFILE depth. 

These values should be stored in the N_MEASUREMENT arrays with a MEASUREMENT_CODE 

set to 497 and 498. 

These values are given in bars, the pressure resolution should be set accordingly (see §1.2.2). 

2.4.3.8 Max pressure during descent to PROFILE depth 

Some PROVOR float versions provide the maximum pressure experienced by the float during the 

descent to PROFILE depth. This value is given in bars, the pressure resolution should be set 

accordingly (see §1.2.2). 

This pressure should be stored in the N_MEASUREMENT arrays with the MEASUREMENT_CODE 

set to 398. 

2.4.3.9 Max pressure of the cycle 

Some NINJA float versions provide the maximum pressure experienced by the float during the cycle. 

This pressure should be stored in the N_MEASUREMENT arrays with the MEASUREMENT_CODE 

set to 498. 

2.4.3.10 PROVOR Iridium spy data 

Some PROVOR Iridium versions provide pressure values (in bars) versus time sampled during the 

three vertical phases of the cycle (from surface to PARKING depth, from PARKING depth to 

PROFILE depth and from PROFILE depth to surface). 

These dated pressure measurements should be stored in the N_MEASUREMENT arrays with a 

MEASUREMENT_CODE set to 189 or 389 or 589 depending on the phase. 

 

2.4.4 Surface measurements 

Some floats carry sensors that can take samples during the surface interval. These surface 

measurements should be recorded in the trajectory file. In general, there are two types of surface 

measurements. 

 



122 

Argo data management                                      Argo DAC trajectory cookbook 

(a). Discrete surface samples. These are denoted by MC = X − 1, where X is the primary 

measurement code that the float cycle is transitioning towards. For example, if the discrete surface 

samples are taken during the transmission period before TET (MC800), then these measurements are 

stored with MC = 800 − 1 = 799. Note that there can be multiple discrete samples during a 

transmission period. 

 

(b). Oxygen AirCal Sequence. For dissolved oxygen sensors, the SCOR Working Group 142 

recommends that a sequence of measurements be taken at the surface just before and just after bladder 

inflation. The samples collected just before bladder inflation are intended to collect samples in-water 

very near the surface. The samples collected just after bladder inflation are intended to represent 

samples collected in-air. Together, they should provide sufficient quality control data for calibration of 

the dissolved oxygen sensors. For this purpose, measurements from the AirCal Sequence are stored 

together in the trajectory file with two distinct MCs. Measurements from the in-water portion of the 

AirCal Sequence are stored with MC = X + 10, while measurements from the in-air portion are stored 

with MC = X + 11, where X is the primary measurement code that the float cycle is transitioning 

towards. For example, if the AirCal Sequence occurs after AET(MC600) and before TST(MC700), 

then the measurements from the AirCal Sequence are stored with MC = 700 + 10 = 710 for the in-

water portion, and 700 + 11 = 711 for the in-air portion. 

Note: 

• X is always the primary measurement code that the float cycle is transitioning towards. For 

surface measurements, X can be 600 (AET), 700 (TST), or 800 (TET). 

• The surface measurements in (a) and (b) are stored in the trajectory file with different MCs 

because they are two different events, and can represent different information or quality level. 

 

The following are some examples of floats managed by the AOML and Coriolis DACs. 

2.4.4.1 NKE floats 

2.4.4.1.1 NKE Oxygen only floats without the “Near Surface & In Air” feature 

For these floats no additional information is stored in the TRAJ file. 

2.4.4.1.2 NKE Oxygen only floats with the “Near Surface & In Air” feature 

The “Near Surface & In Air” feature is activated on some cycles (which repetition rate is set by the 

CONFIG_InAirMeasurementPeriodicity_NUMBER configuration parameter). 

When this feature is not activated, no additional information is stored in the TRAJ file. 

When this feature is activated, additional information is stored in the TRAJ file: 

• Concerning “Near surface” data set: 

o PPOX_DOXY parameter is computed and added to the data (with oxygen 

intermediated parameters); 

o As these measurements are sampled after Ascent End Time (10 dbar)  (associated 

MC=600) and before Transmission Start Time (associated MC=700), the reference 

MC used is MC=700 and they are stored in the TRAJ file with the MC=700+10=710. 

• Concerning “In air” data set: 

o PPOX_DOXY parameter is computed and added to the data (with oxygen 

intermediated parameters); 



123 

Argo data management                                      Argo DAC trajectory cookbook 

o As these measurements are sampled after Ascent End Time (10 dbar)  (associated 

MC=600) and before Transmission Start Time (associated MC=700), the reference 

MC used is MC=700 and they are stored in the TRAJ file with the MC=700+11=711. 

  



124 

Argo data management                                      Argo DAC trajectory cookbook 

2.4.4.1.3 NKE BGC floats 

2.4.4.1.3.1 For Provor CTS4 floats 

Provor CTS4 floats do not have any specific “Near surface” or “In air” measurement phase. However, 

as they have the ability to sample “raw data” (i.e. data transmitted without any post-processing 

decimation or averaging), we can select the “Near surface” and “In air” measurements from pressure 

values. 

The algorithm has been specified by Henry BITTIG (henry.bittig@io-warnemuende.de) and it is the 

following: 

1. The “In air” DO measurements are selected as  

PRES(_ADJUSTED) + CONFIG_OptodeVerticalPressureOffset_dbar ≤ -0.1 dbar 

2. If “In air” DO measurements have been sampled, a “Near surface” DO measurement of the 

descending (resp. ascending) profile is selected as the “last DO measurement” (resp. ”first DO 

measurement”) for witch 

PRES(_ADJUSTED) + CONFIG_OptodeVerticalPressureOffset_dbar ≥ 0.3 dbar 

CONFIG_OptodeVerticalPressureOffset_dbar is the configuration parameter that stores the vertical 

offset between the CTD and the Optode. 

When “In air” measurements have been sampled, additional information is stored in the TRAJ file: 

• Concerning “Near surface” measurement: 

o PPOX_DOXY parameter is computed and added to the data (with oxygen 

intermediated parameters); 

o It is stored in the TRAJ file with the MC = 100+10 = 110 for descending profile and 

with the MC = 700+10 = 710 for ascending profile. 

• Concerning “In air” data set: 

o PPOX_DOXY parameter is computed and added to the data (with oxygen 

intermediated parameters); 

o They are stored in the TRAJ file with the MC = 100+11 = 111 for descending profile 

and with the MC = 700+11 = 711 for ascending profile. 

2.4.4.1.3.2 For Provor CTS5 floats 

Provor CTS5 floats provide “In air” measurements. 

For these data, additional information is stored in the TRAJ file: 

• PPOX_DOXY parameter is computed and added to these measurements (with oxygen 

intermediated parameters); 

• As these measurements are sampled after Ascent End Time (10 dbar)  (associated MC=600) 

and before Transmission Start Time (associated MC=700), the reference MC used is MC=700 

and they are stored in the TRAJ file with the MC=700+11=711. 

Provor CTS5 floats also provide temperature measurements sampled during the transmission phase. 

They are stored in the TRAJ file with the MC=800-1=799. 

mailto:henry.bittig@io-warnemuende.de


125 

Argo data management                                      Argo DAC trajectory cookbook 

2.4.4.2 Apex floats 

2.4.4.2.1 For Apex Argos floats 

Some Apex APF9 Argos float versions provide surface measurements sampled by DO, FLNTU or 

FLBB sensors. 

In some of the concerned float manuals we can read that "A new optode/FLNTU surface measurement 

is made each time a new message block is transmitted." (extract from float version 082807 manual).  

Thus in that case the reference MC to use is Transmission End Time (MC=800). 

For these floats, additional information is stored in the TRAJ file: 

• PPOX_DOXY parameter is computed and added to these measurements (with oxygen 

intermediated parameters); 

• The reference MC used is MC=800 and they are stored in the TRAJ file with the MC=800-

1=799. 

2.4.4.2.2 For Apex Iridium floats 

2.4.4.2.2.1 Apex APF9 floats 

Some Apex Iridium float versions provide surface measurements sampled by DO or FLBB sensors. 

In these float version manuals, one can find the following information: 

"Usually, only one telemetry cycle is required to upload the data to the remote host computer. 

However, sometimes the iridium connection is broken or the quality of the connection is so poor that 

the float will abort the telemetry attempt, wait a few minutes, and then try again. Data blocks 4 and 5 

will be repeated for each telemetry cycle of a given profile."  

Please note that surface measurements are in Data block 4. 

In the .log files we also learn that the surface measurement is done just before GPS location 

determination and could be repeated when something failed during the transmission phase. 

Thus, in that case the reference MC to use is Transmission Start Time (MC=700). 

For these floats, the following information is stored in the TRAJ file: 

• PPOX_DOXY parameter is computed and added to these measurements (with oxygen 

intermediated parameters); 

• The reference MC used is MC=700 and they are stored in the TRAJ file with the MC=700-

1=699. 

2.4.4.2.2.2 Apex APF11 floats 

Apex APF11 Iridium float versions, equipped with an oxygen sensor provide a series of DO surface 

measurements in addition to the single sample measurements taken just before GPS determination as 

described above for Apex APF9 floats. 

Implementation of the surface series of oxygen measurements was based on the SCOR Working 

Group 142 recommendation.  As described by Hugh FARGHER (from TWRC), float operation during 

this measurement phase is typically as follows:  



126 

Argo data management                                      Argo DAC trajectory cookbook 

“… on surfacing, 10 oxygen measurements are taken at 15-second intervals before & after inflating 

the air bladder. The resulting data (recorded in the science_log file) should provide enough quality 

control data to ensure high long-term accuracy for oxygen readings.” 

Thus, for these floats, this additional information is stored in the TRAJ file: 

• Concerning measurement series sampled before bladder inflation: 

o PPOX_DOXY parameter is computed and added to these measurements; 

o Some floats make measurements that are sampled after Ascent End Time (associated 

MC=600) and before Transmission Start Time (associated MC=700), the reference 

MC used is MC=700 and they are stored in the TRAJ file with MC=700+10=710. 

o Some floats make measurements that are sampled after Transmission Start Time 

(associated MC=700) and before Transmission End Time (associated MC=800), the 

reference MC used is MC=800 and they are stored in the TRAJ file with 

MC=800+10=810. 

• Concerning measurement series sampled after bladder inflation: 

o PPOX_DOXY parameter is computed and added to these measurements; 

o Some floats make measurements that are sampled after Ascent End Time (associated 

MC=600) and before Transmission Start Time (associated MC=700), the reference 

MC used is MC=700 and they are stored in the TRAJ file with MC=700+11=711. 

o Some floats make measurements that are sampled after Transmission Start Time 

(associated MC=700) and before Transmission End Time (associated MC=800), the 

reference MC used is MC=800 and they are stored in the TRAJ file with 

MC=800+11=811. 

•  

• Concerning single measurements sampled after bladder inflation: 

o PPOX_DOXY parameter is computed and added to these measurements; 

o As these measurements are sampled after the in-air series and before the end of 

transmission, the reference MC is 800 and they are stored in the TRAJ file with 

MC=800-1=799. 

2.4.4.3 Navis floats 

Some older Navis floats provide 3 distinct sets of “Near surface” or “In air” measurements: 

• One set of “Near surface” samples; 

• Two sets of “Surface” samples: one sampled with the bladder deflated, the second sampled 

with the bladder inflated. 

For these data, additional information is stored in the TRAJ file: 

• Concerning “Near Surface” samples (provided by the Aanderaa 4330 optode): 

o DOXY and PPOX_DOXY parameters are computed and added to these 

measurements and stored in the TRAJ file; 

o DOXY parameter is computed and added to these measurements and stored in the 

PROF file, in the same profile as the remaining DOXY data (i.e. not in a dedicated 

“Near-surface sampling: []” profile). 

o As these measurements are sampled after Ascent End Time (associated MC=600) and 

before Transmission Start Time (associated MC=700), the reference MC used is 

MC=700 and they are stored in the TRAJ file with the MC=700-10=690. 

• Concerning “Surface Bladder deflated” samples: 

o PPOX_DOXY parameter is computed and added to these measurements; 

o As these measurements are sampled after Ascent End Time (associated MC=600) and 

before Transmission Start Time (associated MC=700), the reference MC used is 

MC=700 and they are stored in the TRAJ file with the MC=700+10=710. 



127 

Argo data management                                      Argo DAC trajectory cookbook 

• Concerning “Surface Bladder inflated” samples: 

o PPOX_DOXY parameter is computed and added to these measurements; 

o As these measurements are sampled after Ascent End Time (associated MC=600) and 

before Transmission Start Time (associated MC=700), the reference MC used is 

MC=700 and they are stored in the TRAJ file with the MC=700+11=711. 

Note that many Navis floats available are outfitted with pumped SBE63 oxygen sensors that are not 

capable of sampling in air. 

  



128 

Argo data management                                      Argo DAC trajectory cookbook 

 

2.5 GROUNDED Flags 

The updated GROUNDED flags can be found in Reference table 20 in the Users Manual and on the 

NVS (nvs-vocabs/R20: Argo GROUNDED flags (github.com)). The table has been updated in an 

effort to make the grounded flags more useful when making velocity estimates during the drift period. 

There are two different ways to determine grounding:  1) based on float performance and technical 

data or 2) based on checks with bathymetry.  Each of these methods now allows for DACs and/or DM 

operators to indicate if the float grounded during drift which would affect velocity estimates or if it 

grounded elsewhere in the mission which likely would not affect a velocity estimate.  Please choose 

your flag conservatively; if unsure if grounded affected the drift, use ‘Y’ or ‘B’. 

 

Grounded 
flag 

 Meaning 

Y Yes, the float touched the ground and the programmed free-drift period was affected. If 

it is uncertain what mission phase the grounding took place, use ‘Y’. 

P Yes, the float touched the ground during a part of the mission that did not affect the 

free-drift period. 

B Yes, the float touched the ground as determined by an external bathymetry database 

and the programmed free-drift period was affected. If it is uncertain what mission 

phase the grounding took place, use ‘B’. 

C Yes, the float touched the ground as determined by an external bathymetry database 

during a part of the mission that did not affect the free-drift period. 

N No, the float did not touch the ground 

S Float is known to be drifting at a shallower depth than originally programmed.  

Warning: this is not a "grounded" situation. The “S” flag should probably be declared 

obsolete. 

U Unknown  

Warning: U and FillValue " " have a close meaning. The “U” flag should probably be 

declared obsolete 

https://github.com/nvs-vocabs/R20


129 

Argo data management                                      Argo DAC trajectory cookbook 

 



130 

Argo data management                                      Argo DAC trajectory cookbook 

ANNEX A: Some definitions 

Here are some definitions about elements mentioned in this document, if some of them remain unclear, 

please ask for a new or updated definition (argo@ucsd.edu, support@argo.net). 

2.6 Definitions of Argos raw data contents 

The following definitions can be found in the Argos User's manual (http://www.argos-

system.org/manual/). 

Let us consider Argos raw data provided in a PRV/DS command output format. 

Argos float messages are collected by a given satellite during a satellite pass. A header of the satellite 

pass (in underlined bold in the two following examples) is added to the data by CLS. 

In this header, one can find: 

• The number of lines of data relative to the satellite pass header (including the header line), 

• The name of the satellite, 

• If a location has been computed from the data collected during the satellite pass (example 2): 

o The location class of the location, 

o The date of the location, 

o The latitude and longitude of the location. 

The Argos float messages, collected during the satellite pass, follow the header. 

For each we find: 

• The Argos message date (time of reception of the message by the satellite), 

• The Argos message redundancy, 

• The Argos message content. 

Example 1: A satellite pass without Argos location. 

02412 63706 17 31 L 

2007-04-24 02:40:16 2 64 A2 56 BA 

B2 3C 8D 7C 

AF 9F 85 AD 

72 ED D5 4E 

65 09 F7 5D 

5C 1E B9 52 

D0 CE AA 61 

9A 30 00 

2007-04-24 02:40:58 1 67 09 D5 CB 

5F 31 75 7C 

23 8D 3D 82 

73 AA 30 8E 

5C 46 A1 C7 

68 D0 F9 91 

D9 60 B9 7E 

EB 38 00 

 

Example 2: A satellite pass with Argos location. 

02412 63706 33 31 D 2 2007-04-24 05:30:15 -32.189 11.405 0.000 401651871 

2007-04-24 05:27:35 1 51 C9 1B A6 

F4 0B 5B 5F 

2E 83 F4 7F 

DF E0 E4 06 

1F 99 80 1E 

94 6A 80 FD 

mailto:argo@ucsd.edu
mailto:support@argo.net
http://www.argos-system.org/manual/
http://www.argos-system.org/manual/


131 

Argo data management                                      Argo DAC trajectory cookbook 

FE 10 39 1E 

A7 F4 00 

2007-04-24 05:30:15 1 05 08 16 92 

0F 83 AE 18 

40 20 90 0A 

20 00 19 9E 

04 15 A6 00 

0C 39 05 85 

89 01 8E 04 

C9 68 20 

2007-04-24 05:30:52 1 58 A3 7D 66 

F4 8B 16 DF 

33 00 00 00 

00 00 00 00 

00 00 00 00 

00 00 00 00 

00 00 00 00 

00 00 00 

2007-04-24 05:32:55 1 69 F5 58 B9 

28 72 27 88 

72 A5 59 91 

54 B5 B4 2A 

95 02 43 52 

A8 49 2A 5C 

E9 DD 4C F7 

62 00 00 

2.7 Cyclic Redundancy Check 

All Argos floats (except SIO SOLO) have an error detection code embedded in their Argos messages. 

Checking this code, called Cyclic Redundancy Check (CRC), can theoretically enhance the reliability 

of the data by rejecting messages possibly corrupted by transmission error. 

2.8 Float clock drift and clock offset 

Some Argo float versions provide times for dated events or dated measurements. Over time, the float's 

clock may drift. Clock drift can be defined as the drift of the clock in hours/ minutes/ seconds per year. 

To correct for this, we must apply a clock offset where clock offset is defined as a measurement, done 

at a given time, of the offset of the clock due to clock drift. Thus a clock offset should be estimated for 

each of these float times. 

Note that, in this document, float clock offset can also embrace a clock that has not been correctly set 

or a clock that has been set in local time. Of course, in these cases clock offset is not only revealing a 

drift of the float clock... 

Float clock offset is defined as: Float clock offset = Float time - UTC time. 

A good estimate of the clock offset can be obtained when the float transmits its Real Time Clock 

(RTC) time in the technical data. It can then be compared to the time from Argos of the corresponding 

message to compute a clock offset for all the float times of the concerned cycle. 

Unfortunately this is not always the case, some floats do not transmit their RTC time and even if they 

do, this RTC time is not always received. 

2.9 APEX Argos test/data messages 

APEX Argos test messages are transmitted by an APEX float during the six hours period spent at the 

surface prior to its first dive. The test message contains programmed mission parameters and technical 

data. 

After each deep cycle, APEX floats transmit the collected data in the ARGOS data messages. 



132 

Argo data management                                      Argo DAC trajectory cookbook 

2.10 APEX Deep Profile First floats 

Some APEX floats are programmed to achieve their first profile shortly after deployment (for 

comparison to conventional CTD cast from the ship). 

In the Deep Profile First (DPF) cycle the firmware is set to complete the first profile within 24 hours 

of deployment. The float descends to park, parks then descends to profiling depth. Then the profile 

commences. The duration of park is 5 minutes for Iridium floats and 60 minutes for ARGOS floats. 

The DPF also ignores any time of day setting. It is unclear how long the two descents are. Experience 

has shown that both the descent time out configuration settings are activated when the float fails to 

reach target depths. 

2.11 APEX Time Of Day feature 

Some APEX floats have the capability to schedule profiles so that the float surfaces at a particular 

Time Of Day (TOD). 

When the TOD feature is enabled, the float RTC is used to dynamically set the end of the DOWN 

TIME period to a (user programmed) number of minutes after midnight. 

The time of day feature is ignored by Deep Profile First floats. 

2.12 APEX Auxiliary Engineering Data 

For some APEX floats, the remaining space of the last Argos data message is filled with Auxiliary 

Engineering Data (AED). 

The AED are considered to be of lower priority and will never cause an additional Argos data message 

to be generated. 



133 

Argo data management                                      Argo DAC trajectory cookbook 

3 ANNEX B: Transmission End Time estimation for an APEX 
Argos float 

The methods used to estimate TET for an Apex Argos float are all based on the float's theoretical 

functioning. 

3.1 Apex float theoretical functioning 

The core cycle of an APEX float is based on four main parameters as illustrated in Figure 2: 

1. DOWN TIME: The time period including the descent and the drift at depth, 

2. UP TIME: The time period including the ascent and the drift at surface, 

3. PARKING PRESSURE: The aimed depth for the drift phase, 

4. DEEPEST PRESSURE: The aimed depth for the start of the profile (also called PROFILE 

PRESSURE in the document). 

 

  

The float can also be programmed to achieve a deep profile once over N cycles (in this case, N is 

called the Park and Profile parameter). 

 

  

Finally, the float can also be programmed to achieve its first profile shortly after deployment (for 

comparison to conventional CTD cast from the ship). 

During its first cycle, this Deep Profile First (DPF) float directly descends to the PROFILE 

PRESSURE and immediately achieves its first profile. 

DOWN TIME UP TIME 

Surface 

PROFILE PRESSURE 

PARKING PRESSURE 

Figure 2: Main parameters of an APEX cycle 

Figure 3: Example of programmed mission with a PnP parameter of 2 (deep profile every 
second cycle) 



134 

Argo data management                                      Argo DAC trajectory cookbook 

3.2 The Park et al. method 

The Park et al. method is based on the assumption that the Apex Argos float always starts to profile at 

the end of the DOWN TIME. Unfortunately, this is only the case for floats when PARKING and 

PROFILE pressures are equal. 

The float starts its descent to PROFILE PRESSURE  hours before the end of the DOWN TIME.  The 

length of time to descend from the drift pressure to the profile pressure varies. It is user specified for 

APF9 floats.  Often users choose somewhere between 4 and 6 hours.  Six hours is shown in the 

diagram below.   

 

  

The float then starts to profile when one of the following conditions is met: 

• If the PROFILE PRESSURE depth is reached, 

• If the end of the DOWN TIME period is reached. 

Note that the second assumption is only true for floats without Time Of Day (TOD) capability or with 

the TOD feature disabled. 

In the first case, the PROFILE depth can be reached before the end of the DOWN TIME period 

implying an arrival at the surface earlier than for the theoretical case (under the assumption of a 

constant ascent rate), see next figure. 

After such a cycle, if it reached the surface before the end of the DOWN TIME period, the float 

increases the value of its profile piston position count to decrease its descent rate from PARKING 

depth to PROFILE depth for the next cycle. 

DOWN TIME UP TIME 

6 hours 

Figure 4: Schematics of a cycle where PARKING and PROFILE pressures differ 



135 

Argo data management                                      Argo DAC trajectory cookbook 

 

  

In the second case, at the end of the DOWN TIME, the float has not necessarily reached the PROFILE 

depth implying an arrival at the surface earlier than for the theoretical case but later than for the first 

case (under the assumption of a constant ascent rate), see next Figure. 

After such a cycle, the float decreases the value of its profile piston position count to increase its 

descent rate from PARKING depth to PROFILE depth for the next cycle. 

 

  

This behavior produces continual variation of AETs; 2 main values can roughly be distinguished as 

illustrated in the next figure. 

DOWN TIME UP TIME 

6 hours 

DOWN TIME UP TIME 

6 hours 

Figure 5: First case, PROFILE depth reached before end of the DOWN TIME period 

Figure 6: Second case, PROFILE depth not reached before end of DOWN TIME period 



136 

Argo data management                                      Argo DAC trajectory cookbook 

 

Figure 7: Example of behaviour of a float which drift and profile at different depths 

In this figure, we can see on the left part the times and on the right part the pressures of the CTD 

measurements. 

The times are drawn in reference to cycle #0. For a given cycle, we can find, in chronological order: 

the AET (pink circle), the TST (light blue dot), the FMT (red dot), the location times (blue dots), the 

LMT (red dot) and the TET (light blue dot). 

We clearly see 2 sets of AETs: the first one around 21/08/2007 14:16:00 and the second one around 

21/08/2007 18:14:00 (in reference to cycle #0). 

The pressures of the CTD measurements are drawn in blue dots for the profile measured pressures 

and in red dots for the Representative Parking Pressure (RPP) pressures. The black dots represent the 

local bathymetry provided by the ETOPO2 atlas. 

We see that this float (WMO #7900177) has drift around 1000 dbar and profiled from 1300 dbar. 

More detailed information can be found in the Kobayashi and Nakajima paper. 

In the DEP data set, only 22.5% (i.e. 806 floats) of the 3622 APEX Argos floats drift and profile at the 

same depth and are then eligible for the Park et al. method. 

Consequently, we decided to forget this method and to specify another one applicable to all APEX 

Argos floats. 

3.3 The proposed method 

The proposed method is based on two algorithms that can be alternatively used, depending of the 

number of cycles available for a given float. 



137 

Argo data management                                      Argo DAC trajectory cookbook 

The first algorithm uses half of the Park et al. method to determine the maximum envelope of the 

LMTs. 

The second algorithm also estimates TETs but takes into account the drift of the float clock. 

These algorithms are based on the duration of the APEX Argos cycles which are always known 

CYCLE TIME = DOWN TIME + UP TIME. 

We cannot say that these durations are constant but we can say that their theoretical values are known 

(i.e. predictable). 

In the ANDRO data set, these cycle durations vary only for two float versions: 

• For APEX bounce floats: bounce cycle (even numbered cycles) duration is smaller than usual 

cycle (odd numbered cycles) duration (but both theoretical values are known), 

• For APEX "seasonal" floats: the cycle duration is two (known) values depending of the day in 

the year (concerned versions are 001046 and 001055). 

3.3.1 First algorithm: Transmission End Times estimated from the maximum envelope 
of the Last Message Times 

The maximum envelope of the LMTs is a lower bound of the TET as illustrated in the following 

figure. 

The first algorithm is the following: 

1. Identify the reference cycle (number N). 

The reference cycle is the first received cycle. 

For DPF floats however the reference cycle can't be cycle #0 it is then the first received 

cycle with a number > 0. 

2. Compute the reference value of the LMT of each cycle (LMTRV). 

For cycle #i: 

LMTRV(i) = LMT(i) - duration(N, i) 

Where duration(N, i) is the theoretical duration between cycle #N and cycle #i. 

If the cycle theoretical duration is constant and equal to CYCLE TIME (all floats except 

bounce and "seasonal" ones) duration(N, i) = (i - N)*CYCLE TIME and then 

LMTRV(i) = LMT(i) - (i - N)*CYCLE TIME 

3. Find the maximum value of the obtained LMTRV(i) values. 

4. Compute the TET of each cycle. 

TET(i) = max(LMTRV) + duration(N, i) 

Here again if the cycle theoretical duration is constant we obtain 

TET(i) = max(LMTRV) + (i - N)*CYCLE TIME 

Note that for DPF floats we can choose to set TET equal to LMT for cycle #0 (i.e. for DPF floats: 

TET(0) = LMT(0)). 



138 

Argo data management                                      Argo DAC trajectory cookbook 

 

Figure 9 and Figure 10 show the TETs of float #6900740 estimated by the maximum envelope of the  

LMT of the current 

cycle 

Estimated value of the 

TET 
DOWN TIME + UP TIME 

Cycle #1 

DOWN TIME + UP TIME 

Cycle #2 

DOWN TIME + UP TIME 

Cycle #3 

Real value of the TET 

DOWN TIME + UP TIME 

Cycle #4 

Maximum envelope of 

the LMTs 

Figure 8: Estimation of the TETs from the maximum envelope of the LMTs 



139 

Argo data management                                      Argo DAC trajectory cookbook 

 

Figure 9: Example of estimation of TETs with the maximum envelope of the LMTs 

 

Figure 10: A zoom of the previous figure shows that estimated TETs are defined by the LMT of 
cycle #13 



140 

Argo data management                                      Argo DAC trajectory cookbook 

3.3.2 Second algorithm: Transmission End Times estimated by a method that takes the 
float clock offset into account 

The TETs obtained so far have been estimated under the assumption that the theoretical CYCLE 

TIME value is the real duration of the cycles. 

However, the on board float clock can drift during float life implying variations of the cycle durations. 

 

Figure 11: Example of a rather important negative clock drift (estimated to - 00:13:59 per year 
which implies a maximum difference of 00:58:34 between TETs estimated with or without 
taking the clock drift into account). We clearly see a regular decrease of cycle duration. 

 

Figure 12: Example of a rather important positive clock drift (estimated to + 00:17:15 per year 
which implies a maximum difference of 00:58:56 between TETs estimated with or without 
taking the clock drift into account). We clearly see a regular increase of cycle duration. 

The proposed algorithm can also take into account erroneous theoretical CYCLE TIME values. 



141 

Argo data management                                      Argo DAC trajectory cookbook 

 

Figure 13: Example of an erroneous theoretical cycle time (DOWN TIME + UP TIME = 228 + 22 = 
240 hours whereas the cycle time is around 244 hours) seen as a very important positive clock 
drift (estimated to + 147:44:36 per year which implies a maximum difference of 209:26:54 
between TETs estimated with or without taking the clock drift into account). 

In the second algorithm we linearly estimate the float clock offset to take it into account in the TETs 

estimation. 

The algorithm stands in six steps illustrated in the following paragraphs. 

 

Figure 14: Example of TETs estimated with the maximum envelope of the LMTs (first 
algorithm), we want to estimate the TETs taking into account the float clock offset. 



142 

Argo data management                                      Argo DAC trajectory cookbook 

3.3.2.1 Step #1 

First determine the convex envelope of the LMTs. 

This can be done by various algorithms; the one we used is in section 5.3.2.7. 

Next, obtain a subset of the LMTs (the base points) that define the convex envelope of all the LMTs as 

illustrated in the next figure. 

 

Figure 15: The convex envelope of the LMTs (green line) defined by the base points (green 
circles) 

3.3.2.2 Step #2 

The second step consists in setting a point on the convex envelope for all received cycles. 

We thus obtain a set of points on the convex envelope. 

 

Figure 16: The 111 received cycles are set on the convex envelope (blue circles) 



143 

Argo data management                                      Argo DAC trajectory cookbook 

3.3.2.3 Step #3 

The third step consists in deleting some first and last points on the convex envelope. 

2/5 of the points on the convex envelope are deleted: the first 1/5 of the point and the last 1/5 of the 

points. 

 

Figure 17: The first and last 22 points are ignored (only the 67 central points are preserved) 

3.3.2.4 Step #4 

The fourth step consists in linearly fitting the points on the convex envelope (in a least squares sense). 

We used the "polyfit" Matlab function to do that. 

The slope of the resulting line is our estimated clock offset. 

 

Figure 18: The blue circles are linearly fitted (red line) 



144 

Argo data management                                      Argo DAC trajectory cookbook 

3.3.2.5 Step #5 

The fifth step consists of adjusting the estimated clock offset on the convex envelope. 

Obviously, the contact point(s) is(are) base point(s), thus we try each base point of the convex 

envelope. 

 

Figure 19: The red line is adjusted on the convex envelope 

3.3.2.6 Step #6 

For each received cycle, we compute the estimated TETs situated on the adjusted line of estimated 

clock offset. 

 

Figure 20: Estimated TETs with (red points on the red line) or without (light blue points on the 
light blue line) taking float clock drift into account. In this example, clock drift is estimated to - 
00:00:55 per year which implies a maximum difference of 00:03:19 between the red and the 
light blue lines 



145 

Argo data management                                      Argo DAC trajectory cookbook 

3.3.2.7 Example of implementation of the second algorithm 

% Extract of the "dep_add_apx_descent_start_with_clock_drift.m" program used in 

% the ANDRO toolbox. 

% AUTHORS  : Jean-Philippe Rannou (Altran)(jean-philippe.rannou@altran.com) 

 

% Inputs: 

% cycles: cycle numbers 

% cycleTime : cycle durations 

% tabLastPosDate: date of the last Argos location for each cycle 

% tabLastMsgDate: date of the last received Argos message for each cycle 

 

% Due to possible anomalies in cycle duration (DPF floats, clock jumps, etc), 

% the cycles have to be processed by slices. 

% A slice is defined by a number of consecutive cycles. 

% For each slice we can define the following parameters: 

%    - tabFirstId/tabLastId: first/last Id of the cycles that define the slice 

%    - tabNbMinPts: minimum number of cycles needed to estimate the clock drift 

%      for a given slice (set to 33 by default) 

 

% Outputs: 

% tabArgosStopFinal: the max envelope of the LMTs 

% tabSavEstClockDrift: the estimated clock drift for each slice 

 

 

% max envelope of the LMTs 

tabArgosStopFinal = ones(max(cycles)+1, 1)*g_dateDef; 

 

% estimated clock drifts 

tabSavEstClockDrift = ones(length(tabFirstId), 1)*g_dateDef; 

 

% processing of each slice 

tabIdSlice = []; 

tabCoef = []; 

tabNbPts = []; 

tabCycleTime = []; 

for idSlice = 1:length(tabFirstId) 

    

   firstId = tabFirstId(idSlice); 

   lastId = tabLastId(idSlice); 

   fprintf('   Slice #%d: cycles %d to %d\n', ... 

      idSlice, firstId-1, lastId-1); 

   cycleSlice = cycles(firstId:lastId); 

   nbMinPts = tabNbMinPts(idSlice); 

    

   % last Argos message date (or last location date) of each cycle 

   convexEnv = tabLastMsgDate(firstId:lastId); 

   argosLastLoc = tabLastPosDate(firstId:lastId); 

   idNotDated = find(convexEnv == g_dateDef); 

   convexEnv(idNotDated) = argosLastLoc(idNotDated); 

   oriDates = convexEnv; 

    

   % maximum envelope without clock drift estimation 

   maxEnv = convexEnv; 

   idDated = find(maxEnv ~= g_dateDef); 



146 

Argo data management                                      Argo DAC trajectory cookbook 

   maxEnvDates = maxEnv(idDated); 

   maxEnvCycles = cycleSlice(idDated); 

   if (~isempty(maxEnvCycles)) 

      maxEnvDates = maxEnvDates - compute_duration(maxEnvCycles, maxEnvCycles(1), 

cycleTime); 

      maxDate = max(maxEnvDates); 

      maxEnv(idDated) = maxDate + compute_duration(maxEnvCycles, maxEnvCycles(1), cycleTime); 

       

      tabArgosStopFinal(firstId:lastId) = maxEnv; 

   end 

    

   % compute the convex envelope of the LMTs 

   oneMore = 1; 

   while (oneMore) 

      oneMore = 0; 

      idDated = find(convexEnv ~= g_dateDef); 

      if (~isempty(idDated)) 

         idStart = idDated(1); 

         stop = 0; 

         while (~stop) 

            stop = 1; 

            idIdDated = find(idDated > idStart); 

            for id = 1:length(idIdDated)-1 

               idFirst = idStart; 

               xFirst = compute_duration(cycleSlice(idStart), cycleSlice(1), cycleTime); 

               yFirst = convexEnv(idFirst); 

               idCheck = idDated(idIdDated(id)); 

               xCheck = compute_duration(cycleSlice(idCheck), cycleSlice(1), cycleTime); 

               yCheck = convexEnv(idCheck); 

               idLast = idDated(idIdDated(id+1)); 

               xLast = compute_duration(cycleSlice(idLast), cycleSlice(1), cycleTime); 

               yLast = convexEnv(idLast); 

                

               coefA = (yFirst - yLast)/(xFirst - xLast); 

               coefB = yFirst - coefA*xFirst; 

                

               expValue = coefA*xCheck + coefB; 

               if (yCheck <= expValue) 

                  % this point is not part of the convex envelope 

                  convexEnv(idCheck) = g_dateDef; 

                  % one point has been excluded, a new iteration is needed 

                  oneMore = 1; 

               else 

                  % we must start from this base point (possibly in the convex 

                  % envelope) 

                  idStart = idCheck; 

                  stop = 0; 

                  break; 

               end 

            end 

         end 

      end 

   end 

    

   % the dates of the excluded points are set on the convex envelope 



147 

Argo data management                                      Argo DAC trajectory cookbook 

   convexEnvAll = convexEnv; 

   idDated = find(convexEnv ~= g_dateDef); 

   for id = 1:length(idDated)-1 

      idFirst = idDated(id); 

      xFirst = compute_duration(cycleSlice(idFirst), cycleSlice(1), cycleTime); 

      yFirst = convexEnv(idFirst); 

      idLast = idDated(id+1); 

      xLast = compute_duration(cycleSlice(idLast), cycleSlice(1), cycleTime); 

      yLast = convexEnv(idLast); 

       

      polyCoef = polyfit([xFirst xLast], [yFirst yLast], 1); 

       

      idNew = [idFirst+1:idLast-1]; 

      idNew(find(oriDates(idNew) == g_dateDef)) = []; 

       

      convexEnvAll(idNew) = polyval(polyCoef, compute_duration(cycleSlice(idNew), cycleSlice(1), 

cycleTime)); 

   end 

    

   % clock drift estimation 

   idDated = find(convexEnvAll ~= g_dateDef); 

   if (length(idDated) < nbMinPts) 

      fprintf('      Not enough points (%d) => no clock drift estimation\n', ... 

         length(idDated)); 

   else 

       

      % delete the first and last 1/5 of the points 

      nbTotal = length(idDated); 

      nbToDel = fix(length(idDated)/5); 

      fprintf('      Number of points total:del/used/del %d:%d/%d/%d\n', ... 

         length(idDated), nbToDel, length(idDated)-2*nbToDel, nbToDel); 

      convexEnvAll(idDated(1:nbToDel)) = g_dateDef; 

      convexEnvAll(idDated(end-(nbToDel-1):end)) = g_dateDef; 

       

      % linear estimation of the clock drift with the remaining points 

      idDated = find(convexEnvAll ~= g_dateDef); 

      xVal = compute_duration(cycleSlice(idDated), cycleSlice(1), cycleTime); 

      yVal = convexEnvAll(idDated); 

       

      polyCoef = polyfit(xVal, yVal, 1); 

       

      if (length(unique(cycleTime(cycleSlice+1))) == 1) 

         tabIdSlice = [tabIdSlice; idSlice]; 

         tabCoef = [tabCoef; polyCoef(1)]; 

         tabNbPts = [tabNbPts; length(idDated)]; 

         tabCycleTime = [tabCycleTime; unique(cycleTime(cycleSlice+1))]; 

      end 

 

      % set the estimate on the convex envelope (it is a base point of the 

      % envelope) 

      basePoint = []; 

      idDated = find(convexEnv ~= g_dateDef); 

      for id = 1:length(idDated) 

         idPoint = idDated(id); 

         xPoint = compute_duration(cycleSlice(idPoint), cycleSlice(1), cycleTime); 



148 

Argo data management                                      Argo DAC trajectory cookbook 

         yPoint = convexEnv(idPoint); 

          

         coefB = yPoint - polyCoef(1)*xPoint; 

         curPolyCoefCur = [polyCoef(1) coefB]; 

          

         yAll = polyval(curPolyCoefCur, compute_duration(cycleSlice(idDated), cycleSlice(1), 

cycleTime)); 

          

         idKo = find(convexEnv(idDated) > yAll); 

         if (isempty(idKo) || ((length(idKo) == 1) && (idKo == id))) 

            basePoint = [basePoint; idPoint]; 

         end 

      end 

       

      if (length(basePoint) > 1) 

         comment = sprintf(' %d', cycleSlice(basePoint)); 

         fprintf('      WARNING : %d base points (cycles %s)\n', ... 

            length(basePoint), comment); 

         basePoint = basePoint(1); 

      end 

       

      if (isempty(basePoint)) 

         fprintf('      ERROR : no base point => nothing done\n'); 

      else 

         % compute the clock drift 

          

         idPoint = basePoint; 

         xPoint = compute_duration(cycleSlice(idPoint), cycleSlice(1), cycleTime); 

         yPoint = convexEnv(idPoint); 

          

         coefB = yPoint - polyCoef(1)*xPoint; 

         polyCoefFinal = [polyCoef(1) coefB]; 

          

         clockDrift = polyval(polyCoefFinal, compute_duration(cycleSlice, cycleSlice(1), cycleTime)); 

         clockDrift(find(oriDates == g_dateDef)) = g_dateDef; 

          

         idDated = find(clockDrift ~= g_dateDef); 

         totalClockDrift = clockDrift(idDated(end)) - ... 

            (clockDrift(idDated(1)) + compute_duration(cycleSlice(idDated(end)), cycleSlice(idDated(1)), 

cycleTime)); 

         yearClockDrift = totalClockDrift*365/(compute_duration(cycleSlice(idDated(end)), 

cycleSlice(idDated(1)), cycleTime)); 

         fprintf('      Clock drift (per year): %s\n', ... 

            format_time(yearClockDrift*24)); 

          

         if (~isnan(yearClockDrift)) 

            tabClockDrift = [tabClockDrift; yearClockDrift]; 

            tabSavEstClockDrift(idSlice) = yearClockDrift; 

         end 

          

         idDated = find((maxEnv ~= g_dateDef) & (clockDrift ~= g_dateDef)); 

         fprintf('      Max diff: %s\n', ... 

            format_time(max(abs(maxEnv(idDated) - clockDrift(idDated)))*24)); 

          

         tabArgosStopFinal(firstId:lastId) = clockDrift; 



149 

Argo data management                                      Argo DAC trajectory cookbook 

      end 

   end 

end 

 

% same processing for slices where clock drift estimation has not been done (we 

% use a weighted average of the already computed estimates) 

if ((length(tabIdSlice) ~= length(tabFirstId)) && ~isempty(tabIdSlice)) 

    

   for idSlice = 1:length(tabFirstId) 

      if (isempty(find(tabIdSlice == idSlice, 1))) 

          

         firstId = tabFirstId(idSlice); 

         lastId = tabLastId(idSlice); 

         fprintf('   Phase2, slice #%d: cycles %d à %d\n', ... 

            idSlice, firstId-1, lastId-1); 

         cycleSlice = cycles(firstId:lastId); 

          

         if (length(cycleSlice) == 1) 

            continue; 

         end 

          

         % compute the mean coefficient (weighted average) 

         % be careful, we must use only the coefficients available for this cycle 

         % time (case of the seasonal APEXs) 

         if (length(unique(cycleTime(cycleSlice+1))) == 1) 

            cycTime = unique(cycleTime(cycleSlice+1)); 

            idMead = find(tabCycleTime == cycTime); 

            if (~isempty(idMead)) 

               meanCoef = sum(tabCoef(idMead).*tabNbPts(idMead))/sum(tabNbPts(idMead)); 

            else 

               continue; 

            end 

         end 

          

         % last Argos message date (or last location date) of each cycle 

         convexEnv = tabLastMsgDate(firstId:lastId); 

         argosLastLoc = tabLastPosDate(firstId:lastId); 

         idNotDated = find(convexEnv == g_dateDef); 

         convexEnv(idNotDated) = argosLastLoc(idNotDated); 

         oriDates = convexEnv; 

          

         % maximum envelope without clock drift estimation 

         maxEnv = convexEnv; 

         idDated = find(maxEnv ~= g_dateDef); 

         maxEnvDates = maxEnv(idDated); 

         maxEnvCycles = cycleSlice(idDated); 

         if (~isempty(maxEnvCycles)) 

            maxEnvDates = maxEnvDates - compute_duration(maxEnvCycles, maxEnvCycles(1), 

cycleTime); 

            maxDate = max(maxEnvDates); 

            maxEnv(idDated) = maxDate + compute_duration(maxEnvCycles, maxEnvCycles(1), 

cycleTime); 

         end 

          

         % compute the convex envelope of the LMTs 



150 

Argo data management                                      Argo DAC trajectory cookbook 

         oneMore = 1; 

         while (oneMore) 

            oneMore = 0; 

            idDated = find(convexEnv ~= g_dateDef); 

            if (~isempty(idDated)) 

               idStart = idDated(1); 

               stop = 0; 

               while (~stop) 

                  stop = 1; 

                  idIdDated = find(idDated > idStart); 

                  for id = 1:length(idIdDated)-1 

                     idFirst = idStart; 

                     xFirst = compute_duration(cycleSlice(idStart), cycleSlice(1), cycleTime); 

                     yFirst = convexEnv(idFirst); 

                     idCheck = idDated(idIdDated(id)); 

                     xCheck = compute_duration(cycleSlice(idCheck), cycleSlice(1), cycleTime); 

                     yCheck = convexEnv(idCheck); 

                     idLast = idDated(idIdDated(id+1)); 

                     xLast = compute_duration(cycleSlice(idLast), cycleSlice(1), cycleTime); 

                     yLast = convexEnv(idLast); 

                      

                     coefA = (yFirst - yLast)/(xFirst - xLast); 

                     coefB = yFirst - coefA*xFirst; 

                      

                     expValue = coefA*xCheck + coefB; 

                     if (yCheck <= expValue) 

                        % this point is not part of the convex envelope 

                        convexEnv(idCheck) = g_dateDef; 

                        % one point has been excluded, a new iteration is needed 

                        oneMore = 1; 

                     else 

                        % we must start from this base point (possibly in the 

                        % convex envelope) 

                        idStart = idCheck; 

                        stop = 0; 

                        break; 

                     end 

                  end 

               end 

            end 

         end 

          

         % the dates of the excluded points are set on the convex envelope 

         convexEnvAll = convexEnv; 

         idDated = find(convexEnv ~= g_dateDef); 

         for id = 1:length(idDated)-1 

            idFirst = idDated(id); 

            xFirst = compute_duration(cycleSlice(idFirst), cycleSlice(1), cycleTime); 

            yFirst = convexEnv(idFirst); 

            idLast = idDated(id+1); 

            xLast = compute_duration(cycleSlice(idLast), cycleSlice(1), cycleTime); 

            yLast = convexEnv(idLast); 

             

            polyCoef = polyfit([xFirst xLast], [yFirst yLast], 1); 

             



151 

Argo data management                                      Argo DAC trajectory cookbook 

            idNew = [idFirst+1:idLast-1]; 

            idNew(find(oriDates(idNew) == g_dateDef)) = []; 

             

            convexEnvAll(idNew) = polyval(polyCoef, compute_duration(cycleSlice(idNew), 

cycleSlice(1), cycleTime)); 

         end 

          

         % use the mean coefficient 

         basePoint = []; 

         idDated = find(convexEnv ~= g_dateDef); 

         for id = 1:length(idDated) 

            idPoint = idDated(id); 

            xPoint = compute_duration(cycleSlice(idPoint), cycleSlice(1), cycleTime); 

            yPoint = convexEnv(idPoint); 

             

            coefB = yPoint - meanCoef*xPoint; 

            curPolyCoefCur = [meanCoef coefB]; 

             

            yAll = polyval(curPolyCoefCur, compute_duration(cycleSlice(idDated), cycleSlice(1), 

cycleTime)); 

             

            idKo = find(convexEnv(idDated) > yAll); 

            if (isempty(idKo) || ((length(idKo) == 1) && (idKo == id))) 

               basePoint = [basePoint; idPoint]; 

            end 

         end 

          

         if (length(basePoint) > 1) 

            comment = sprintf(' %d', cycleSlice(basePoint)); 

            fprintf('      WARNING : %d base points (cycles %s)\n', ... 

               length(basePoint), comment); 

            basePoint = basePoint(1); 

         end 

          

         if (isempty(basePoint)) 

            fprintf('      ERROR : no base point => nothing done\n'); 

         else 

            % compute the clock drift 

             

            idPoint = basePoint; 

            xPoint = compute_duration(cycleSlice(idPoint), cycleSlice(1), cycleTime); 

            yPoint = convexEnv(idPoint); 

             

            coefB = yPoint - meanCoef*xPoint; 

            polyCoefFinal = [meanCoef coefB]; 

             

            clockDrift = polyval(polyCoefFinal, compute_duration(cycleSlice, cycleSlice(1), cycleTime)); 

            clockDrift(find(oriDates == g_dateDef)) = g_dateDef; 

             

            idDated = find(clockDrift ~= g_dateDef); 

            totalClockDrift = clockDrift(idDated(end)) - ... 

               (clockDrift(idDated(1)) + compute_duration(cycleSlice(idDated(end)), 

cycleSlice(idDated(1)), cycleTime)); 

            yearClockDrift = totalClockDrift*365/(compute_duration(cycleSlice(idDated(end)), 

cycleSlice(idDated(1)), cycleTime)); 



152 

Argo data management                                      Argo DAC trajectory cookbook 

            fprintf('      Clock drift (per year): %s\n', ... 

               format_time(yearClockDrift*24)); 

             

            idDated = find((maxEnv ~= g_dateDef) & (clockDrift ~= g_dateDef)); 

            fprintf('      Max diff: %s\n', ... 

               format_time(max(abs(maxEnv(idDated) - clockDrift(idDated)))*24)); 

             

            tabArgosStopFinal(firstId:lastId) = clockDrift; 

         end 

      end 

   end 

end 

 

% ------------------------------------------------------------------------------ 

% Compute the duration between 2 cycles. 

% 

% SYNTAX : 

%  [o_duration] = compute_duration(a_tabEndCyNum, a_startCyNum, a_cycleTime) 

% 

% INPUT PARAMETERS : 

%   a_tabEndCyNum : final cycle numbers 

%   a_startCyNum  : first cycle number 

%   a_cycleTime   : cycle durations 

% 

% OUTPUT PARAMETERS : 

%   o_duration : computed durations 

% 

% EXAMPLES : 

% 

% SEE ALSO : 

% AUTHORS  : Jean-Philippe Rannou (Altran)(jean-philippe.rannou@altran.com) 

% ------------------------------------------------------------------------------ 

% RELEASES : 

%   27/10/2009 - RNU - creation 

% ------------------------------------------------------------------------------ 

function [o_duration] = compute_duration(a_tabEndCyNum, a_startCyNum, a_cycleTime) 

 

global g_durationDef; 

 

% default values initialization 

init_valdef; 

 

o_duration = ones(length(a_tabEndCyNum), 1)*g_durationDef; 

 

for id = 1:length(a_tabEndCyNum) 

   % number of the cycles for which the duration is wanted 

   cyNum = [a_startCyNum+1:a_tabEndCyNum(id)]; 

   if (~isempty(cyNum)) 

      % duration computation 

      o_duration(id) = sum(a_cycleTime(cyNum+1)); 

   else 

      o_duration(id) = 0; 

   end 

end 

 



153 

Argo data management                                      Argo DAC trajectory cookbook 

o_duration = o_duration/24; 

 

return; 

3.3.3 Final improvement: taking the cycle duration anomalies into account 

Some Apex floats have experienced anomalies in their cycle duration, an example is provided in next 

figure. 

These floats have been processed by slices. 

A new slice is defined for each set of cycles with a constant cycle duration. Each slice is then 

processed with the proposed method. 

This is also the way we have processed DPF floats. We created a first slice with cycle #0 and a second 

one with all the other cycles (see Figure 22). 

Within the 3622 APEX Argos floats of the ANDRO data set, 777 floats have been processed by slices: 

717 floats only because they are DPF floats and 60 floats because they have cycle duration anomalies. 

 

Figure 21: Example of a cycle duration anomaly (cycle #100 duration is 250 hours whereas 
others cycles have the expected duration i.e. 240 hours) 



154 

Argo data management                                      Argo DAC trajectory cookbook 

 

Figure 22: Example of DPF float, the first profile is a deep profile (whereas with a PnP 
parameter of 4, it should otherwise be a shallow profile) and the first cycle is shorter than the 
other ones 

3.3.4 Results obtained in the ANDRO data set 

For the processing of the ANDRO data set we have chosen to estimate the float clock offset only if we 

have more than 20 points to fit in step #4; thus only if we have received at least 33 cycles for the float. 

The estimated TETs of the 3622 floats have then been visually checked and the following parameter 

modifications done: 

• The estimation using the second algorithm has been canceled for 53 floats (i.e. we use the first 

algorithm results even if more than 33 cycles has been received). In most of these cases, bad 

results are due to too few cycles used in the estimate of the clock offset (between 21 and ~40), 

• For 191 floats, the process needed additional customization (modification of the number of 

deleted points in step #3). 

Thus we are convinced that the proposed method is robust enough to be implemented in real time 

(except for cycle duration anomalies which can only be detected by visual inspection). 

Some Apex float versions provide the time of the end of the DOWN TIME period. We have estimated 

the float clock offset from these times and successfully compared it with the one obtained by the 

second algorithm. 

Thus we are convinced that the second algorithm method is reliable for TETs estimation. 

Most of the estimated clock offsets are in the [-00:10:00; +00:10:00] interval (the [-00:2:30; 

+00:00:30] interval for new floats) and they imply corrections of less than 80 minutes. 



155 

Argo data management                                      Argo DAC trajectory cookbook 

3.3.5 Recommended method for real time processing 

To estimate the TETs of an APEX Argos float you need to know: 

• Its theoretical CYCLE TIME duration(s), 

• If the float is a DPF float. 

If we think that clock offset can be neglected for real time processing, we recommend using only 

the first algorithm. 

If not, we recommend using both algorithms: 

• First algorithm when we have received less than 33 cycles from the float, 

• Second algorithm when we have received at least 33 cycles from the float. 

When using the second algorithm, if the absolute value of the estimated clock offset is greater than 

00:20:00 per year, we must be sure that the float is not a DPF one; otherwise the float has probably 

experienced a cycle duration anomaly and the TETs should not be estimated in real time (neither by 

the first nor by the second algorithm). 

The value 33 should be discussed. 

  



156 

Argo data management                                      Argo DAC trajectory cookbook 

4 ANNEX C: Computing Transmission Start Time for and APEX 
Argos float 

The number of Argos messages needed to transmit the data collected at depth can vary between cycles 

(it mainly depends on profile length). 

Starting when the float arrives at the surface, these M Argos messages are transmitted sequentially 

(from #1 to #M) and repeatedly until the end of the UP TIME period. 

If a complete set of the M message is called a block of data, thus B blocks of M messages are 

transmitted. 

Note however that the last block is not necessarily complete (because the transmission stops at the end 

of the UP TIME, not at the end of a block). 

All Argos messages are numbered. Moreover, message #1 gives the block number. 

Since all messages received by the ARGOS satellite are dated, we get the times of transmission of the 

messages received and their numbers. 

From messages #1, we get also the block numbers to which they belong. 

4.1 Teledyne Webb Research proposed method 

This method is explained in the APEX user's manual and illustrated in the following figure. 

 

  

If at least one message #1 is received, its corresponding block number (BN) can be determined. 

The number of transmitted messages since TST is then: (BN-1)*M and 

Beginning of Argos 

transmission (TST) 

UP TIME 

message #3 

of bloc #4 

bloc #2 

Transmitted messages 

Received messages 

message #1 

of bloc #5 

TST = (date of message #1 bloc #5) – [(5-1) * M * RepRate] 

RepRate : Argos PTT period 

Figure 23: Teledyne Webb Research method to compute TST for an APEX Argos float 



157 

Argo data management                                      Argo DAC trajectory cookbook 

TST = (Argos time of received message #1) - [(BN-1)*M*RepRate] 

where RepRate is the period of the float Argos PTT. 

This method thus implies: 

• To receive at least one message #1, 

• To know the period of the Argos PTT (RepRate), 

• To know the total number of transmitted Argos messages (M). 

The RepRate parameter is a meta-data variable, thus possibly erroneous (it can however be checked 

from received message times). 

The M value can sometimes be difficult to compute. Each float format must be carefully studied; M 

can be computed from the variable parts of the Argos messages (i.e. profile length but also to the 

number of PTS measurement sampled during the drift phase). 

4.2 An improved proposed method 

To get rid of the M value determination, a second method can be used, as illustrated in the following 

figure. 

 

  

If at least two messages #1 (dated T1 and T2 respectively) belonging to two different blocks (BN1 

and BN2 respectively) are received, the transmission duration of a block can be determined: 

Transmission Duration of one Block =BTD = (T2 - T1)/(BN2 - BN1) 

But BTD = M*RepRate, then 

Beginning of Argos 

transmission (TST) 

UP TIME 

message #3 

of bloc #4 

bloc #2 

Transmitted messages 

message #1 

of bloc #5 

BTD = Block Transmission Duration = [(date of message #1 bloc #5) – (date of message #1 bloc #2)]/(5-2) 

message #1 

of bloc #2 

3 BTD 

1 BTD 

Received messages 

Figure 24: An improved method to compute TST for an APEX Argos float 



158 

Argo data management                                      Argo DAC trajectory cookbook 

TST = T1 - [(BN1-1)*BTD] or TST = T2 - [(BN2-1)*BTD] 

The following strategy is then suggested: 

1. If at least two messages belonging to two different blocks are received, use the improved 

method. 

In this case all (in fact at most 100) values of TST are computed (from all combinations of 

Ti and Tj messages #1 received) and the most redundant result is chosen for TST. 

At the beginning of our work, we started to compute all the values of TST but in case of 

shallow profiles (or no profile at all when the float stays at the surface) i.e. when the M 

value is only 1 or 2 and then B value is very important, the method doesn't work (the 

histogram of TST computed values has many redundant values and the most redundant 

one can be inconsistent). We have not understood why (it can be an interesting question 

for TWR) but we think this is due to inconsistencies in the transmitted data, we thus 

decided to compute "only" 100 values of the TST and to choose the most redundant value. 

2. If only one message #1 is received, the TWR method is used with the assumption 

(sometimes erroneous) that M is equal to the maximal number of the received Argos 

messages (i.e. that the last Argos message has been received). 

  



159 

Argo data management                                      Argo DAC trajectory cookbook 

5 ANNEX D: Apex float vertical velocities 

5.1 APEX float descending velocity 

To estimate the descending APEX Argos velocity, 463 APEX floats which provide pressure marks 

hourly sampled during the descent to PARKING depth were analyzed. 

At most 7 pressure marks are transmitted by the floats. Thus, at most 6 averaged hourly descent rates 

were computed (remember that the first pressure mark is sampled at the end of the piston retraction, 

thus it is not dated and useless for this estimation), and a global averaged descent rate for the 6 first 

hours of the descent. 

The mean descent rate depends on the float PARKING pressure; the averages for 5 parking depths 

(250 dbar, 500 dbar, 1000 dbar, 1500 dbar and 2000 dbar) were computed. The RPP has been used to 

associate a descent rate to the corresponding depth. 

 

Figure 25: Mean hourly descent rates of APEX Argos floats. For each PARKING pressure the 6 
mean hourly descent rates (dots) and the global mean descent rate of the 6 first hours of the 
descent (triangle) are shown. 

  



160 

Argo data management                                      Argo DAC trajectory cookbook 

The following table gives the number of samples used to compute the averages. 

 1st hour 2nd hour 3rd hour 4th hour 5th hour 6th hour Global 

250 dbar 373 333 250 208 155 86 1 405 

500 dbar 580 549 526 471 345 197 2 668 

1000 dbar 15 010 14 852 14 762 14 646 8 762 3 827 71 859 

1500 dbar 389 144 141 119 91 52 936 

2000 dbar 2 114 2 105 2 091 2 059 2 040 1 981 12 390 

Table 2: Number of samples used to compute mean descent rates 

The global mean descent rate values are provided in the following table. 

PARKING depth 250 dbar 500 dbar 1000 dbar 1500 dbar 2000 dbar 

Mean descent rate (cm*s-1) 2.64 3.55 5.91 12.37 8.95 

Associated standard 
deviation 

1.87 2.54 1.23 3.02 1.25 

Table 3: Global mean descent rate values 

5.2 APEX float ascending velocity 

To estimate the ascending APEX Argos velocity, the two following data samples were used: 

• The 298 APEX floats which provide the ASTfloat and TSTfloat (thus AETfloat) (see §2.2.4.9 and 

2.2.4.13), 

• The 1497 APEX floats for which the following are available: 

o The AST, estimated as TET - UP TIME for cycles where PARKING and PROFILE 

pressure are equal (see §2.2.4.8) 

o The AET, computed from TST obtained with the method explained in Annex C (see 

§4.2)  

The data of the first set are more reliable because they are measured and transmitted by the floats 

(whereas the data of the second set come from estimations). 

To compute a mean ascent rate, a reliable deepest profile pressure value is needed. For that, it is 

important that the Argos message of the first (deepest) profile bin PTS measurement has been 

received. This information can be provided by the APEX Argos decoders. 

As this information was not stored in the DEP data set, only profiles for which the following is true 

could be used: 

| deepest bin pressure - PROFILE pressure | < 150 dbar. 

(these data are in green in the following figures). 

If | deepest bin pressure - PROFILE pressure | > 150 dbar, the cycle can be flagged "grounded" (blue 

stars) or not (red stars). 



161 

Argo data management                                      Argo DAC trajectory cookbook 

 

Figure 26: Ascent rates computed from measured data 

 

Figure 27: Ascent rates computed from estimated data 

In the first figure, the green stars can be linearly fitted by the Y = 0.00017*X + 9.3 function. 



162 

Argo data management                                      Argo DAC trajectory cookbook 

In the second figure, the green stars can be linearly fitted by the Y = 0.00081*X + 8.3 function. 

Thus the mean ascent rate is around 9.5 cm/s in the first case and between 9.0 and 10 cm/s in the 

second case. 

Therefore, it is recommended to use a mean ascent rate of 9.5 cm/s for APEX Argos floats. 

  



163 

Argo data management                                      Argo DAC trajectory cookbook 

6 ANNEX E: Input parameters 

Most of the specifications given in this document need input parameters. These parameters are part of 

the values used to program the float mission. 

Unfortunately these values can be difficult to collect; some of them are transmitted by the instrument 

(in APEX float test message or PROVOR/APEX Iridium technical message) but the others can only 

be found in float operator notes. 

It is thus important to ask each float PI to collect the programmed float parameters and to send them to 

the concerned DAC. 

Some input parameters, gathered in the framework of the ANDRO project, are joined in electronic 

form to this document. 

In the Excel file CorrectedMetadata.xlsx you can find, for the 5967 ANDRO floats, the corrected 

meta-data values for: 

• Float PTT, 

• All existing float missions: 

A mission is defined by: 

o Its repetition rate, 

o Its duration, given by: 

▪ The UP_TIME and DOWN_TIME period for APEX floats, 

▪ The CYLE_TIME for other floats. 

o Its parking pressure, 

o Its profile pressure, 

• The float launch time and position, 

• The startup time of the float. 

In the Excel file _provor_floats_information.xls, you can find the corrected meta-data values used to 

decode the PROVOR Argos floats. 

You can find in particular: 

• The DELAI parameter values (maximum amount of time given to the float for diving from 

PARKING to PROFILE depth), 

• The reference day ("day of the first descent") used to decode the transmitted times. 

In the Excel file DPDP_values.xlsx, you can find the decoded values of the "Deep profile descent 

period" transmitted in the test message by some version of APEX floats. 

  



164 

Argo data management                                      Argo DAC trajectory cookbook 

7 ANNEX F: Measurement code table 

7.1 General Measurement Code Table Key 

Measurement code type Definition 
Any code evenly divisible by 100 (e.g. 
100, 200, 300, etc.) 

Primary Measurement Codes (MC). Each marks a mandatory-to-fill cycle 
timing variable. These are very important for determining trajectory 
estimates. All are found in both the N_MEASUREMENT and N_CYCLE data 
arrays. 

Any code evenly divisible by 50 but not 
evenly divisible by 100 (e.g. 150, 250, 
450, et) 

Secondary Measurement Codes (MC). Each marks a suggested-to-fill 
cycle timing variable. Secondary MC are not always applicable to all floats, but 
are very useful in determining trajectory estimates. 

Any code that falls in between any 
Primary or Secondary Measurement 
Code (span of 50 values). These codes 
describe data that are important cycle 
timing information but are not as 
important as the primary or secondary 
timing variables. 
 
The value span is subdivided into two 
halves. Measurement codes in this 
section will be described relative to the 
values of the Primary and Secondary 
codes. 

Relative Generic Codes. Values spanning from MC minus 24 to MC minus 
1: Measurement codes that have lower value and within 24 of a Primary or 
Secondary Measurement Code. These code definitions are phrased generally, 
so can be attached to data from many different floats. These code values (MC 
minus 24 to MC minus 1) are assigned when a float records a measurement 
while transitioning TOWARDS the MC. The definitions of the MC from MC 
minus 24 to MC minus 1 are repeated for all Primary and Secondary MC. An 
example, most floats record pressure/temperature/salinity during drift. The 
float is transitioning towards PET (MC=300) during this period. Thus the 
pressure/temperature/salinity measurements will have an MC between MC 
minus 24 and MC minus 1 where MC=300 (thus between MC=276 and 
MC=299). Which value is chosen is determined by the measurement itself 
(See table below). 
 
Relative Specific Codes. Values spanning from MC plus 1 to MC plus 25: 
These are specific measurements that are generally NOT recorded by multiple 
float types. They are believed to be valuable enough in trajectory estimation 
that they are defined here, and not within the generically defined MC minus 
24 to MC minus 1 span. MC codes in this span will be specific to the MC code, 
and will NOT be repeated for other Primary and Secondary MCs. An example, 
APEX floats report the “Down-time end date”, which is important in 
determining the start of ascent (MC=500). The MC for “Down-time end date” 
is recorded with MC plus 1 (MC=501). 

 

7.2 Relative Generic Code Table Key (from MC minus 24 to MC minus 1) 

This table pertains to any measurement code that has lower value and within 24 of a Primary or 

Secondary Measurement Code (see below). These definitions apply relative to every Primary and 

Secondary code. For example, AST (time of ascent start, MC=500) and AET (time of ascent end, 

MC=600) are both Primary MCs. There exists a measurement code MC minus 4 for both AST and 

AET which is assigned to any averaged measurement that is taken while transitioning towards the MC. 

If an averaged measurement is recorded while transitioning towards AST, the correct MC=496. If an 

averaged measurement is recorded while transitioning towards AET, the correct MC=596. 

Relative 
Measurement 
code 

Meaning 

MC minus 1 Any single measurement transitioning towards MC (see MC-10 for a 'series' of 
measurements) 

MC minus 2 Maximum value while float is transitioning towards an MC (e.g. pressure) 

MC minus 3 Minimum value while float is transitioning towards an MC (e.g. pressure) 

MC minus 4 Any averaged measurements made during transition to MC 

MC minus 5 Median value while float is transitioning towards an MC 

MC minus 6 Standard deviation of measurements taken during transition towards an MC 

MC minus 7 to MC minus 
9 

currently unassigned 

MC minus 10 Any “series” of measurements recorded while transitioning towards MC. (e.g. Provor 'spy' 
measurements, SOLOII pressure-time pairs, etc). 

MC minus 11 Active adjustment to buoyancy made at this time 

MC minus 12 Any supporting measurements for the maximum value (MC minus 2) 



165 

Argo data management                                      Argo DAC trajectory cookbook 

MC minus 13 Any supporting measurements for the minimum value (MC minus 3) 

MC minus 14 Any supporting measurements for the averaged value (MC minus 4) 

MC minus 15 Any supporting measurements for the median value (MC minus 5) 

MC minus 16 to MC 
minus 24 

currently unassigned 

MC 600, 700 or 800 plus 
10 

Any in-water samples taken as part of a surface sequence while transitioning towards an 
MC.  (e.g. O2 samples taken prior to air-bladder inflation or max buoyancy as part of in-air 
measurement sequence) 

MC 600, 700, or 800 plus 
11 

Any in-air samples taken as part of a surface sequence while transitioning towards an MC.  
(e.g. O2 samples taken after in air-bladder inflation or max buoyancy as part of in-air 
measurement sequence) 

 

7.3 Measurement Code Table 

Measure-
ment 
code 

Variable Meaning Transmitted by listed 
float type. Value can be 
estimated in other floats 

0  Launch time and location of the float All float types 

76-99 see above 
table 

Any measurement recorded during transition 
towards DST 

 

100 DST All measurements made when float leaves 
the surface, beginning descent. 
Time (JULD_DESCENT_START) 
 

Time: PROVOR, ARVOR, SOLO-
II,WHOI SOLOIR, NEMO, 
NEMOIR,APEX APF9, APEXIR 
APF9, Deep NINJA, NAVIS 

101 DM Traj file 
only 

This MC is used in the DM Traj file when new 
cycles have been recovered during DM 
operations ( the TECH file, where surface 
pressure measurements usually belong, is not 
updated during TRAJ DM).   
The PRES variable should contain the 
measurement provided by the float (after 5dbar 
subtraction when needed).  For APEX floats, 
this measurement is used to compute (see 
procedure 3.2.1 of Argo QC manual) a pressure 
offset applied to all pressure measurements.  
This offset should be stored in the 
PRES_ADJUSTED variable.   
 
No information should be stored with this MC in 
Real Time. 

 

102-125 unassigned Reserved for specific timing events around DST.  

 

126-149 see above 
table 

Any measurement recorded during transition 
towards FST 

 

150 FST All measurements made at time when a 
float first becomes water-neutral. 
Time (JULD_FIRST_STABILIZATION) 

PROVOR, ARVOR 

151-175 unassigned Reserved for specific timing events around FST.  

 

176-199 see above 
table 

Any measurement recorded during transition 
towards DET 

 

200 DET All measurements made at time when 
float first approaches within 3% of the 
eventual drift pressure. Float may be 
transitioning from the surface or from a deep 
profile. This variable is based on measured or 
estimated pressure only In the case of a float 
that overshoots the drift pressure on descent, 
DET is the time of the overshoot. 
Time (JULD_DESCENT_END) 

Time: 
PROVOR, ARVOR, SOLO-II, 
NEMO, NEMOIR, DeepNINJA 
  

201-202 & 204-
225 

unassigned Reserved for specific timing events around DET.  

203  Deepest bin reached during descending profile  

 

226-249 see above 
table 

Any measurement recorded during transition 
towards PST 

 



166 

Argo data management                                      Argo DAC trajectory cookbook 

250 PST All measurements made at time when 
float transitions to its Park or Drift 
mission. This variable is based on float logic 
based on a descent timer (i.e. SOLO), or be 
based on measurements of pressure (i.e. 
Provor). 
Time(JULD_PARK_START) 

APEX non APF9, APEX APF9, 
APEX APF9i, SIO SOLO, SOLO-
II, NEMO, NEMOIR, NAVIS 
 
CTD: 
WHOI SOLO 
NINJA 

251-274 unassigned Reserved for specific timing events around PST.  

 

275 RAFOS RAFOS positions and times determined during 
drift 

All float types with RAFOS 
capabilities 

276-299 see above 
table 

Any measurement recorded during transition 
towards PET 

 

300 PET All measurements made at time when 
float exits from its Park or Drift mission. It 
may next rise to the surface (AST) or sink to 
profile depth 
Time (JULD_PARK_END) 

Time: 
PROVOR (excluding PROVOR 
MT), ARVOR, SOLO-II, NEMO, 
NEMOIR, POPS, NAVIS 
CTD: 
WHOI SOLO 

301  Representative Park <PARAM> found either 
from measurements taken during drift or from 
metafile information 

 

302-325 unassigned Reserved for specific timing events around PET.  

 

376-399 see above 
table 

Any measurement recorded during transition 
towards DDET 

 

400 DDET All measurements made at time when 
float first approaches within 3% of the 
eventual deep drift/profile pressure. This 
variable is based on pressure only and can be 
measured or estimated. 
Time (JULD_DEEP_DESCENT_END) 

Time: APEX APF9a or APF9t, 
APF9i, PROVOR CTS3, ARVOR, 
SOLO-II, POPSm , DeepNINJA, 
NAVIS 

401-425 unassigned Reserved for specific timing events around 
DDET. 

 

 

426-449 see above 
table 

Any measurement recorded during transition 
towards DPST 

 

450 DPST All measurements made at time when 
float transitions to a deep park drift 
mission. This variable is only defined if the 
float enters a deep drift phase (i.e. DPST not 
defined in cases of constant deep pressure due 
to bottom hits, or buoyancy issues). 

 

451-475 unassigned Reserved for specific timing events around 
DPST. 

 

 

476-499 see above 
table 

Any measurement recorded during transition 
towards AST 

 

500 AST All measurements made at the start of 
the float's ascent to the surface 
Time (JULD_ASCENT_START) 

Time: 
APEX APF9, PROVOR, ARVOR, 
SOLO-II, NEMO, NEMOIR, POPS, 
DeepNINJA, NAVIS 

501  Down-time end time: end date of the down-
time parameter reported by APEX floats 

APEX 

502  Ascent start time directly provided by old APEX 
Argos floats.  See 2.2.4.9 

APEX 

503  Deepest bin reached during ascending profile  

504-525 unassigned Reserved for specific timing events around AST.  

 

526-549 see above 
table 

Any measurement recorded during transition 
towards DAST 

 

550 DAST All measurements made at the start of 
the float's ascent from profile pressure to 
drift pressure. Used for floats that profile on 
descent and then move back up to drift 
pressure. Time (JULD_DEEP_ASCENT_START) 

Time: 
 Deep SOLO-II 

551-575 unassigned Reserved for specific timing events around 
DAST. 

 

 

576-599 see above Any measurement recorded during transition  



167 

Argo data management                                      Argo DAC trajectory cookbook 

table towards AET 

600 AET All measurements made at the end of 
ascent. 
Time (JULD_ASCENT_END) 

PROVOR, ARVOR, SOLO-II, 
NEMO, NEMOIR, POPS, 
DeepNINJA, NAVIS 

601-625 unassigned Reserved for specific timing events around AET.  

 

676-699 see above 
table 

Any measurement recorded during transition 
towards TST 

 

700 TST Time of the start of transmission for the 
float. 
Time (JULD_TRANSMISSION_START) 

APEX APF9, APEXIR APF9, 
PROVOR, ARVOR, SOLO-II, 
NEMO, NEMOIR, POPS, 
DeepNINJA, NAVIS 

701  Transmission start time directly transmitted by 
APEX float 

APEX 

702 FMT Earliest time of all messages received by 
telecommunications system – may or may 
not have a location fix. 
Time (JULD_FIRST_MESSAGE) 

All Argos floats. Iridium floats 
that send timing of messages.  
This includes SBD Iridium floats.  

703 FLT First location available  All floats 

703  Surface times and locations (if available) during 
surface drift. Should be listed in chronological 
order. 

All floats 

703 LLT Last location available All floats 

704 LMT Latest time of all messages received by 
telecommunications system – may or may 
not have a location fix. 
Time (JULD_LAST_MESSAGE) 

All Argos floats. Iridium floats 
that send timing of messages.  
This includes SBD Iridium floats. 

705-725 unassigned Reserved for specific timing events around TST  

    

776-799 see above 
table 

Any measurement recorded during transition 
towards TET 

 

800 TET Time and location of the end of 
transmission for the float. 
Time (JULD_TRANSMISSION_END) 

PROVOR, ARVOR, SOLO-II,, 
DeepNINJA 
Time only:  APF9i and APF11 

801-825 unassigned Reserved for specific timing events around TET  

 

901  Grounded flag 
 

 

902  Last time before float recovery. For floats that 
have been recovered, it is important to know 
when this occurred. This time in the JULD array 
will be the last time before the float was 
recovered. Determined by inspection of data 

 

903  Pressure offset used to correct APEX pressure 
measurements 

APEX 

 

 

 

 

 

 

 

 

 



168 

Argo data management                                      Argo DAC trajectory cookbook 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 ANNEX G: Implementation of the JAMSTEC trajectory quality 
control method 

The JAMSTEC trajectory quality control method is described in Nakamura et al (2008), "Quality 

control method of Argo float position data", JAMSTEC Report of Research and Development, Vol. 7, 

11-18 (http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/JAM_RandD07_02.pdf). 

This method checks the surface trajectory of an Argos float by considering the speeds induced by the 

successive Argos fixes. The test can flag the surface position as '3' or '4'. 

In the following, we propose a detailed description of the algorithm to implement. 

8.1 Inputs 

The inputs of the algorithm are: 

• The surface trajectory to be checked (N Argos location dates, latitudes, longitudes and 

classes), 

• The last good (flagged as '1') surface location of the (already checked) previous (received) 

cycle. 

8.2 Algorithm 

Assuming that the location dates have not been flagged as bad by the test #2 "Impossible date test", we 

first chronologically sort the surface positions.  

The whole surface trajectory is used to initialize the (checked) current trajectory. 



169 

Argo data management                                      Argo DAC trajectory cookbook 

The current trajectory is processed in an infinite loop in which the following steps are performed: 

8.2.1 Step 1 

The subsurface drift speed is computed between the last good surface position of the previous cycle 

and the first position of the current trajectory. 

If this speed is greater than 3 m/s, the first position of the current trajectory is flagged as '4', this 

position is then excluded from the current trajectory and a new iteration of the infinite loop starts. 

8.2.2 Step 2 

Speeds are computed for the second position to the last position of the current trajectory. Each speed is 

computed between position #i-1 and position #i and affected to position #i. 

In case of duplicated positions (i.e. if position #i-1 and position #i have the same latitude, longitude 

and date): the position #i is flagged as '4', it is then excluded from the current trajectory and a new 

iteration of the infinite loop starts. 

In case of an erroneous cycle number of the position #i (i.e. if the times difference between position #i 

and position #i-1 is greater than one day): the position #i is flagged as '4', it is then excluded from the 

current trajectory and a new iteration of the infinite loop starts. 

8.2.3 Step 3 

The position #iMax is found as the position with the maximum speed. 

If this maximum speed is greater than 3 m/s, the position #iMax is 'questionable' and the speed test 

(see §8.3) is performed on it over the current trajectory. 

The speed test should lead to define position #iMax or/and position #iMax-1 as 'abnormal'. 

8.2.4 Step 4 

If the distance test (see §8.4) between position #iMax and position #iMax-1 is verified, the 'abnormal' 

position(s) is (are) flagged as '3'. 

The 'abnormal' position(s) is(are) then deleted from the current trajectory (even when the distance test 

is not verified) and a new iteration of the infinite loop starts. 

 

The infinite loop ends when no 'abnormal' position has been detected or when the current trajectory 

has less than 2 positions. 

8.3 Speed test 

The speed test is performed on a 'questionable' position over a given trajectory. 

The 'questionable' position (called B in the following) can be all but the first position of the trajectory. 

The position which precedes B on the trajectory is called A in the following. 



170 

Argo data management                                      Argo DAC trajectory cookbook 

8.3.1 Case of different Argos classes 

If positions A and B have different Argos classes, the position with the less accurate Argos class is 

defined as 'abnormal' by the speed test. 

Remember that the accuracy of the Argos location classes is the following: 

more accurate <= 3, 2, 1, 0, A, B, Z => less accurate 

8.3.2 Case of identical Argos classes 

If positions A and B have the same Argos classes: 

• If the trajectory only comprises the two positions A and B, both positions are defined as 

'abnormal' by the speed test, 

• Otherwise the speed test depends on the position of the location B on the trajectory, 3 cases 

are possible. 

Case 1: If B is the second position of the trajectory  

In this case: A is the first position, B the second one and there is a position Y following the position B 

on the trajectory. 

 

Speeds on the segments A-Y (orange) and B-Y (blue) are computed: if speedA-Y is greater than speedB-

Y, the position A is defined as 'abnormal' by the speed test otherwise B is defined as 'abnormal' by the 

speed test. 

Case 2: If B is the last position of the trajectory  

In this case: A is the last but one position, B is the last position and there is a position X preceding the 

position A on the trajectory. 

 

Speeds on the segments X-A (orange) and X-B (blue) are computed: if speedX-A is greater than speedX-

B, the position A is defined as 'abnormal' by the speed test otherwise B is defined as 'abnormal' by the 

speed test. 

Case 3: we are not in case 1 or 2 

In this case: there is a position X preceding the position A on the trajectory and a position Y following 

the position B on the trajectory. 

A(1) 

B(2) 

Y(3) 

X(end-2)

  

A(end-1) 

B(end) 



171 

Argo data management                                      Argo DAC trajectory cookbook 

 

Speeds on the segments X-A-Y (orange trajectory) and X-B-Y (blue trajectory) are computed. If 

speedX-A-Y is greater than speedX-B-Y, the position A is defined as 'abnormal' by the speed test otherwise 

B is defined as 'abnormal' by the speed test. 

8.4 Distance test 

The distance test is performed on two Argos locations A and B. 

The distance test is verified if the distance between locations A and B is greater or equal to  

1.0 × √𝐸𝑟𝐴
2 + 𝐸𝑟𝐵

2 where 𝐸𝑟𝐴 and 𝐸𝑟𝐵 are the radii of position error for locations A and B 

respectively. 

These position errors, deduced from the position classes, are 150 m, 350 m and 1000 m for Argos 

class 3, 2 and 1 respectively. Moreover we have associated a position error of 1500 m, 1501 m, 1502 

m and 1503 m for Argos classes 0, A, B and Z respectively. 

8.5 Distance computation 

As far as distance and speed are concerned in this trajectory QC method, we must specify an algorithm 

to compute distance between positions of the surface trajectory. This algorithm must be common to all 

the DACs so that the trajectory QC results will not depend on DAC's distance computation method. 

We propose to use the distance algorithm from the Laboratoire de Physiques des Océans (LPO) at 

IFREMER. 

This algorithm computes distance between points on the earth using the WGS 1984 ellipsoid, its 

Matlab implementation and some test points are provided below. 

8.5.1 Matlab implementation of the LPO distance algorithm 

function [range, A12, A21] = distance_lpo(lat, long) 

% 

% Computes distance and bearing between points on the earth using WGS 1984 

% ellipsoid 

% 

% [range, A12, A21] = distance_lpo(lat, long) computes the ranges RANGE between 

% points specified in the LAT and LONG vectors (decimal degrees with positive 

% indicating north/east). Forward and reverse bearings (degrees) are returned 

% in AF, AR. 

% 

% Ellipsoid formulas are recommended for distance d<2000 km, 

% but can be used for longer distances. 

% 

% GIVEN THE LATITUDES AND LONGITUDES (IN DEG.) IT ASSUMES THE IAU SPHERO 

% DEFINED IN THE NOTES ON PAGE 523 OF THE EXPLANATORY SUPPLEMENT TO THE 

% AMERICAN EPHEMERIS. 

% 

% THIS PROGRAM COMPUTES THE DISTANCE ALONG THE NORMAL 

% SECTION (IN M.) OF A SPECIFIED REFERENCE SPHEROID GIVEN 

X(i-2)

  

A(i-1) 

B(i) 

Y(i+1

) 



172 

Argo data management                                      Argo DAC trajectory cookbook 

% THE GEODETIC LATITUDES AND LONGITUDES OF THE END POINTS 

% *** IN DECIMAL DEGREES *** 

% 

% IT USES ROBBIN'S FORMULA, AS GIVEN BY BOMFORD, GEODESY, 

% FOURTH EDITION, P. 122.  CORRECT TO ONE PART IN 10**8 

% AT 1600 KM.  ERRORS OF 20 M AT 5000 KM. 

% 

% CHECK:  SMITHSONIAN METEOROLOGICAL TABLES, PP. 483 AND 484, 

% GIVES LENGTHS OF ONE DEGREE OF LATITUDE AND LONGITUDE 

% AS A FUNCTION OF LATITUDE. (SO DOES THE EPHEMERIS ABOVE) 

% 

% PETER WORCESTER, AS TOLD TO BRUCE CORNUELLE...1983 MAY 27 

% 

  

% On 09/11/1988, Peter Worcester gave me the constants for the 

% WGS84 spheroid, and he gave A (semi-major axis), F = (A-B)/A 

% (flattening) (where B is the semi-minor axis), and E is the 

% eccentricity, E = ( (A**2 - B**2)**.5 )/ A 

% the numbers from peter are: A=6378137.; 1/F = 298.257223563 

% E = 0.081819191 

A = 6378137.; 

E = 0.081819191; 

B = sqrt(A.^2 - (A*E).^2); 

EPS = E*E/(1.-E*E); 

  

NN = max(size(lat)); 

if (NN ~= max(size(long))), 

   error('dist: Lat, Long vectors of different sizes!'); 

end 

  

if (NN == size(lat)) 

   rowvec = 0;  % it is easier if things are column vectors, 

else 

   rowvec = 1; % but we have to fix things before returning! 

end;  

  

% convert to radians 

lat = lat(:)*pi/180;      

long = long(:)*pi/180; 

  

% fixes some nasty 0/0 cases in the geodesics stuff 

lat(lat == 0) = eps*ones(sum(lat == 0), 1);   

  

% endpoints of each segment 

PHI1 = lat(1:NN-1);     

XLAM1 = long(1:NN-1); 

PHI2 = lat(2:NN); 

XLAM2 = long(2:NN); 

  

% wiggle lines of constant lat to prevent numerical problems. 

if (any(PHI1 == PHI2)) 

   for ii = 1:NN-1 

      if (PHI1(ii) == PHI2(ii)) 

         PHI2(ii) = PHI2(ii) + 1e-14; 

      end 

   end 

end 

% wiggle lines of constant long to prevent numerical problems. 

if (any(XLAM1 == XLAM2)) 

   for ii = 1:NN-1 

      if (XLAM1(ii) == XLAM2(ii)) 

         XLAM2(ii) = XLAM2(ii) + 1e-14; 

      end 

   end 

end 

  

% COMPUTE THE RADIUS OF CURVATURE IN THE PRIME VERTICAL FOR EACH POINT 

xnu = A./sqrt(1.0-(E*sin(lat)).^2); 

xnu1 = xnu(1:NN-1); 

xnu2 = xnu(2:NN); 

  

% COMPUTE THE AZIMUTHS. 

% A12 (A21) IS THE AZIMUTH AT POINT 1 (2) OF THE NORMAL SECTION CONTAINING THE POINT 2 (1) 

TPSI2 = (1.-E*E)*tan(PHI2) + E*E*xnu1.*sin(PHI1)./(xnu2.*cos(PHI2)); 

PSI2 = atan(TPSI2); 

  

% SOME FORM OF ANGLE DIFFERENCE COMPUTED HERE?? 



173 

Argo data management                                      Argo DAC trajectory cookbook 

DPHI2 = PHI2-PSI2; 

DLAM = XLAM2-XLAM1; 

CTA12 = (cos(PHI1).*TPSI2 - sin(PHI1).*cos(DLAM))./sin(DLAM); 

A12 = atan((1.)./CTA12); 

CTA21P = (sin(PSI2).*cos(DLAM) - cos(PSI2).*tan(PHI1))./sin(DLAM); 

A21P = atan((1.)./CTA21P); 

  

% GET THE QUADRANT RIGHT 

DLAM2 = (abs(DLAM)<pi).*DLAM + (DLAM>=pi).*(-2*pi+DLAM) + (DLAM<=-pi).*(2*pi+DLAM); 

A12 = A12 + (A12<-pi)*2*pi-(A12>=pi)*2*pi; 

A12 = A12 + pi*sign(-A12).*(sign(A12) ~= sign(DLAM2)); 

A21P = A21P + (A21P<-pi)*2*pi - (A21P>=pi)*2*pi; 

A21P = A21P + pi*sign(-A21P).*(sign(A21P) ~= sign(-DLAM2)); 

% A12*180/pi 

% A21P*180/pi 

  

SSIG = sin(DLAM).*cos(PSI2)./sin(A12); 

  

% At this point we are OK if the angle < 90 but otherwise 

% we get the wrong branch of asin! 

% This fudge will correct every case on a sphere, and *almost* 

% every case on an ellipsoid (wrong handling will be when 

% angle is almost exactly 90 degrees) 

dd2 = [cos(long).*cos(lat) sin(long).*cos(lat) sin(lat)]; 

dd2 = sum((diff(dd2).*diff(dd2))')'; 

if (any(abs(dd2-2) < 2*((B-A)/A))^2), 

   disp('dist: Warning...point(s) too close to 90 degrees apart'); 

end 

bigbrnch = dd2>2; 

  

SIG = asin(SSIG).*(bigbrnch==0) + (pi-asin(SSIG)).*bigbrnch; 

A21 = A21P - DPHI2.*sin(A21P).*tan(SIG/2.0); 

  

% COMPUTE RANGE 

G2 = EPS*(sin(PHI1)).^2; 

G = sqrt(G2); 

H2 = EPS*(cos(PHI1).*cos(A12)).^2; 

H = sqrt(H2); 

TERM1 = -SIG.*SIG.*H2.*(1.0-H2)/6.0; 

TERM2 = (SIG.^3).*G.*H.*(1.0-2.0*H2)/8.0; 

TERM3 = (SIG.^4).*(H2.*(4.0-7.0*H2)-3.0*G2.*(1.0-7.0*H2))/120.0; 

TERM4 = -(SIG.^5).*G.*H/48.0; 

  

range = xnu1.*SIG.*(1.0 + TERM1 + TERM2 + TERM3 + TERM4); 

  

% CONVERT TO DECIMAL DEGREES 

A12 = A12*180/pi; 

A21 = A21*180/pi; 

if (rowvec), 

   range = range'; 

   A12 = A12'; 

   A21 = A21'; 

end 

8.5.2 Test points 

The following table provides results of calculation distances from the LPO distance algorithm. 

Test # 
Longitude point 

#1 
Latitude point 

#1 
Longitude point 

#2 
Latitude point 

#2 
Distance (m) 

1 59.137 81.450 132.862 -71.971 17452769.38 

2 245.057 -75.309 331.764 -77.086 2110391.35 

3 185.622 87.327 183.692 -17.999 11689986.02 

4 182.640 20.009 49.196 5.048 14227739.39 

5 150.579 41.603 208.973 39.188 4868529.07 

6 0.000 0.000 332.341 19.629 3717195.47 

7 356.228 79.610 254.896 -47.763 15364005.55 

8 199.871 88.917 70.224 52.035 4312751.18 



174 

Argo data management                                      Argo DAC trajectory cookbook 

9 287.193 -35.107 200.803 52.926 12831368.01 

10 102.486 -83.242 312.077 75.131 18753227.55 

11 69.797 88.120 207.543 18.708 8087967.56 

12 93.492 -16.942 304.265 20.978 16765984.94 

13 199.115 -39.885 182.679 60.574 11263499.39 

14 303.234 77.720 332.681 -0.149 8830419.21 

15 152.391 -4.042 179.072 -21.859 3490115.84 

16 38.772 -90.000 252.147 9.952 11097348.67 

17 170.518 85.414 311.396 -28.009 13474193.18 

18 83.708 44.039 273.558 48.297 9728568.10 

19 325.393 4.457 60.402 -18.541 10702629.73 

20 201.680 15.173 142.753 -29.194 8013018.54 

 

 

 

 

 

9 ANNEX H: Cookbook entry point 

Given the large amount of information included in this cookbook and the way it changes for all the 

different float types, there needs to be an easy way for DACs to use this cookbook to make 

calculations for the trajectory file. This Annex has been created to make it easy for DACs to find out 

what calculations are needed based on float version. The Annex consists of tables including all float 

versions versus all measurement codes which are needed to fill the trajectory files. This should prevent 

against forgetting anything. 

In the final version of the cookbook, the cells should be filled: 

• By N/A (for Not Applicable) if the concerned data cannot (float capability) be produced from 

the given float version, 

• Otherwise, the list of paragraphs in the cookbook that explain how to process. 

These tables thus provide an overview of all the data expected to be in the TRAJ file for a given float 

version and a direct access (through the ability to jump to linked paragraphs (CTRL+Click)) to the 

concerned specifications. 

 

These table are updated through 2014 for PROVOR, ARVOR, NINJA and SOLO floats. 

All other tables are not updated or usable at this time.   

 



175 

Argo data management                                      Argo DAC trajectory cookbook 

9.1 PROVOR floats 

Format 
Id 

Code 0 
Launch 

Code 100 
DST 

Code 150 
FST 

Code 200 
DET 

Code 250 
PST 

Code 300 
PET 

Code 400 
DDET 

101001        

101002 2.1.1 2.2.14.1.6.1 2.2.14.1.6.2 FillValue 2.2.14.1.6.3 2.2.14.1.6.4 FillValue 

101003 2.1.1 2.2.14.1.7.1 2.2.14.1.7.2 FillValue 2.2.14.1.7.3 2.2.14.1.7.4 FillValue 

101004 2.1.1 2.2.14.1.7.1 2.2.14.1.7.2 FillValue 2.2.14.1.7.3 2.2.14.1.7.4 FillValue 

101005 2.1.1 2.2.14.1.6.1 2.2.14.1.6.2 FillValue 2.2.14.1.6.3 2.2.14.1.6.4 FillValue 

101006 2.1.1 2.2.14.1.3.1 2.2.14.1.3.2 FillValue 2.2.14.1.3.3 2.2.14.1.3.4 FillValue 

101007 2.1.1 2.2.14.1.5.1 2.2.14.1.5.2 FillValue 2.2.14.1.5.3 2.2.14.1.5.4 FillValue 

101008 - 
101010 

2.1.1 2.2.14.1.3.1 2.2.14.1.3.2 FillValue 2.2.14.1.3.3 2.2.14.1.3.4 FillValue 

101011 - 
101015 

2.1.1 2.2.14.1.1.1 2.2.14.1.1.2 FillValue 2.2.14.1.1.3 2.2.14.1.1.4 FillValue 

101016        

101017 - 
101019 

2.1.1 2.2.14.1.1.1 2.2.14.1.1.2 FillValue 2.2.14.1.1.3 2.2.14.1.1.4 FillValue 

101020        

 

Format 
Id 

Code 450 
DPST 

Code 500 
AST 

Code 550 
DAST 

Code 600 
AET 

Code 700 
TST 

Codes 
702-704 
FMT, LMT 

Code 800 
TET 

101001        

101002 2.2.14.1.6.5 2.2.14.1.6.6 FillValue 2.2.14.1.6.7 2.2.14.1.6.8 2.2.1.1.1 FillValue 

101003 2.2.14.1.7.5 2.2.14.1.7.6 FillValue 2.2.14.1.7.7 2.2.14.1.7.8 2.2.1.1.1 FillValue 

101004 2.2.14.1.7.5 2.2.14.1.7.6 FillValue 2.2.14.1.7.7 2.2.14.1.7.8 2.2.1.1.1 FillValue 

101005 2.2.14.1.6.5 2.2.14.1.6.6 FillValue 2.2.14.1.6.7 2.2.14.1.6.8 2.2.1.1.1 FillValue 

101006 2.2.14.1.3.5 2.2.14.1.3.6 FillValue 2.2.14.1.3.7 2.2.14.1.3.8 2.2.1.1.1 FillValue 

101007 2.2.14.1.5.5 2.2.14.1.5.6 FillValue 2.2.14.1.5.7 2.2.14.1.5.8 2.2.1.1.1 FillValue 

101008 - 
101010 

2.2.14.1.3.5 2.2.14.1.3.6 FillValue 2.2.14.1.3.7 2.2.14.1.3.8 2.2.1.1.1 FillValue 

101011 - 
101015 

2.2.14.1.1.5 2.2.14.1.1.6 FillValue 2.2.14.1.1.7 2.2.14.1.1.8 2.2.1.1.1 FillValue 

101016        

101017 - 
101019 

2.2.14.1.1.5 2.2.14.1.1.6 FillValue 2.2.14.1.1.7 2.2.14.1.1.8 2.2.1.2.1 FillValue 

101020        

 

  



176 

Argo data management                                      Argo DAC trajectory cookbook 

Format 
Id 

Code 189 Code 190 Code 198 Code 203 Code 290 Code 297 Code 298 

101001        

101002 - 
101005 

 2.4.3.4.1  2.4.3.5 2.4.1.2.1   

101006 - 
101010 

 2.4.3.4.1  2.4.3.5 2.4.1.2.1 

Erreur ! 
Source du 
renvoi 
introuvable. 

Erreur ! 
Source du 
renvoi 
introuvable. 

101011  2.4.3.4.1 2.4.3.6 2.4.3.5 2.4.1.2.1 

Erreur ! 
Source du 
renvoi 
introuvable. 

Erreur ! 
Source du 
renvoi 
introuvable. 

101012  2.4.3.4.1 2.4.3.6 2.4.3.5 2.4.1.2.1 

Erreur ! 
Source du 
renvoi 
introuvable. 

Erreur ! 
Source du 
renvoi 
introuvable. 

101013  2.4.3.4.1  2.4.3.5 2.4.1.2.1   

101014  2.4.3.4.1 2.4.3.6 2.4.3.5 2.4.1.2.1 

Erreur ! 
Source du 
renvoi 
introuvable. 

Erreur ! 
Source du 
renvoi 
introuvable. 

101015  2.4.3.4.1 2.4.3.6 2.4.3.5 2.4.1.2.1 

Erreur ! 
Source du 
renvoi 
introuvable. 

Erreur ! 
Source du 
renvoi 
introuvable. 

101016        

101017 - 
101019 

2.4.3.10 2.4.3.4.1 2.4.3.6 2.4.3.5 2.4.1.2.1 

Erreur ! 
Source du 
renvoi 
introuvable. 

Erreur ! 
Source du 
renvoi 
introuvable. 

101020        

 

Format 
Id 

Code 301 
RPP 

Code 389 Code 398 Code 503 Code 589 Code 590 
Code 901 
GRND 

101001        

101002 - 
101015 

2.4.2   2.4.3.5  2.4.3.4.1 2.4.4 

101016        

101017 - 
101019 

2.4.2 2.4.3.10 2.4.3.8 2.4.3.5 2.4.3.10 2.4.3.4.1 2.4.4 

101020        

 

  



177 

Argo data management                                      Argo DAC trajectory cookbook 

9.2 PROVOR-MT floats 

Format 
Id 

Code 0 
Launch 

Code 100 
DST 

Code 150 
FST 

Code 200 
DET 

Code 250 
PST 

Code 300 
PET 

Code 400 
DDET 

??????        

100001 2.1.1 2.2.14.1.1.1 2.2.14.1.1.2 FillValue 2.2.14.1.1.3 2.2.14.1.1.4 FillValue 

100002 2.1.1 2.2.14.1.6.1 2.2.14.1.6.2 FillValue 2.2.14.1.6.3 2.2.14.1.6.4 FillValue 

100003 - 
100006 

2.1.1 2.2.14.1.4.1 2.2.14.1.4.2 FillValue 2.2.14.1.4.3 2.2.14.1.4.4 FillValue 

100007        

100008 2.1.1 2.2.14.1.4.1 2.2.14.1.4.2 FillValue 2.2.14.1.4.3 2.2.14.1.4.4 FillValue 

100009        

 

Format 
Id 

Code 450 
DPST 

Code 500 
AST 

Code 550 
DAST 

Code 600 
AET 

Code 700 
TST 

Codes 
702-704 
FMT, LMT 

Code 800 
TET 

??????        

100001 2.2.14.1.1.5 2.2.14.1.1.6 FillValue 2.2.14.1.1.7 2.2.14.1.1.8 2.2.1.1.1 FillValue 

100002 2.2.14.1.6.5 2.2.14.1.6.6 FillValue 2.2.14.1.6.7 2.2.14.1.6.8 2.2.1.1.1 FillValue 

100003 - 
100006 

2.2.14.1.4.5 2.2.14.1.4.6 FillValue 2.2.14.1.4.7 2.2.14.1.4.8 2.2.1.1.1 FillValue 

100007        

100008 2.2.14.1.4.5 2.2.14.1.4.6 FillValue 2.2.14.1.4.7 2.2.14.1.4.8 2.2.1.1.1 FillValue 

100009        

 

Format 
Id 

Code 198 Code 203 Code 290 Code 297 Code 298 
Code 301 
RPP 

??????       

100001 2.4.3.6 2.4.3.5 2.4.1.2.1 

Erreur ! 
Source du 
renvoi 
introuvable. 

Erreur ! 
Source du 
renvoi 
introuvable. 

2.4.2 

100002 - 
100006 

 2.4.3.5 2.4.1.2.1   2.4.2 

100007       

100008  2.4.3.5 2.4.1.2.1   2.4.2 

100009   2.4.1.2.1    

 

Format 
Id 

Code 390 Code 398 Code 497 Code 498 Code 503 Code 590 
Code 901 
GRND 

??????        

100001 - 
100006 

    2.4.3.5  2.4.4 

100007        

100008     2.4.3.5  2.4.4 

100009        

 



178 

Argo data management                                      Argo DAC trajectory cookbook 

9.3 ARVOR floats 

Format 
Id 

Code 0 
Launch 

Code 100 
DST 

Code 150 
FST 

Code 200 
DET 

Code 250 
PST 

Code 300 
PET 

Code 400 
DDET 

102001        

102002 - 
102004 

2.1.1 2.2.14.1.2.1 2.2.14.1.2.2 FillValue 2.2.14.1.2.3 2.2.14.1.2.4 FillValue 

 

Format 
Id 

Code 450 
DPST 

Code 500 
AST 

Code 550 
DAST 

Code 600 
AET 

Code 700 
TST 

Codes 
702-704 
FMT, LMT 

Code 800 
TET 

102001        

102002  2.2.14.1.2.5 2.2.14.1.2.6 FillValue 2.2.14.1.2.7 2.2.14.1.2.8 2.2.1.1.1 FillValue 

102003 2.2.14.1.2.5 2.2.14.1.2.6 FillValue 2.2.14.1.2.7 2.2.14.1.2.8 2.2.1.1.1 FillValue 

102004 2.2.14.1.2.5 2.2.14.1.2.6 FillValue 2.2.14.1.2.7 2.2.14.1.2.8 2.2.1.2.1 FillValue 

 

Format 
Id 

Code 190 Code 198 Code 203 Code 290 Code 297 Code 298 
Code 301 
RPP 

102001        

102002 - 
102004 

2.4.3.4.1 2.4.3.6 2.4.3.5 2.4.1.2.1 

Erreur ! 
Source du 
renvoi 
introuvable. 

Erreur ! 
Source du 
renvoi 
introuvable. 

2.4.2 

 

Format 
Id 

Code 390 Code 398 Code 497 Code 498 Code 503 Code 590 
Code 901 
GRND 

102001        

102002     2.4.3.5 2.4.3.4.1 2.4.4 

102003     2.4.3.5 2.4.3.4.1 2.4.4 

102004  2.4.3.8   2.4.3.5 2.4.3.4.1 2.4.4 

 

9.4 NINJA floats 

Format 
Id 

Code 0 
Launch 

Code 100 
DST 

Code 150 
FST 

Code 200 
DET 

Code 250 
PST 

Code 300 
PET 

Code 400 
DDET 

300001 - 
300003 

2.1.1 2.2.11.1.1.1 2.2.11.1.1.2 FillValue 2.2.11.1.1.3 2.2.11.1.1.4 2.2.11.1.1.5 

300004 2.1.1 2.2.11.1.2 2.2.11.1.2 FillValue 2.2.11.1.2 2.2.11.1.2 2.2.11.1.2 

 

Format 
Id 

Code 450 
DPST 

Code 500 
AST 

Code 550 
DAST 

Code 600 
AET 

Code 700 
TST 

Code  
702-704 
FMT, LMT 

Code 800 
TET 

300001 - 
300003 

FillValue 2.2.11.1.1.6 FillValue 2.2.11.1.1.7 2.2.11.1.1.8 2.2.1.1.1 2.2.11.1.1.9 

300004 FillValue 2.2.11.1.2 FillValue 2.2.11.1.2 2.2.11.1.2 2.2.1.1.1 2.2.11.1.2 

 

Format 
Id 

Code 290 
Code 301 
RPP 

Code 498 Code 503 Code 590 
Code 901 
GRND 



179 

Argo data management                                      Argo DAC trajectory cookbook 

300001 - 
300003 

2.4.1.3.1.2 2.4.2 2.4.3.9 2.4.3.5 2.4.3.4.2 2.4.4 

300004 2.4.1.3.1.2 2.4.2  2.4.3.5  2.4.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



180 

Argo data management                                      Argo DAC trajectory cookbook 

10 ANNEX I: APEX APF8 Estimation methods for PST, PET, AST 

10.1  Park Start Time (PST) 

The mean descent rate to use depends on the PARKING depth, the recommended values are provided 

in the following table (see also §5.1). 

PARKING depth 250 dbar 500 dbar 1000 dbar 1500 dbar 2000 dbar 

Mean descent rate (cm/s) 2.6 3.6 5.9 12.4 9.0 

Table 4: Recommended descent rates 

Thus for cycle #i: 

PST(i) = DST(i) + (PARKING_PRESSURE(i) * 100 * 36)/(mean descent rate * 864) 

where PARKING_PRESSURE(i) is the theoretical PARKING_PRESSURE of cycle #i. 

The PST value (MC=250) should be stored in the N_MEASUREMENT arrays only in the 

JULD_ADJUSTED variable since the time is estimated based on float behavior. The STATUS should 

be set to 1: value is estimated using information not transmitted by the float or by procedures that rely 

on typical float behaviour. Float clock offset corrections can also be applied. 

The JULD variables should be fill value. 

The PST value should be stored in the JULD_PARK_START variable and the 

JULD_PARK_START_STATUS set to 1 (estimated using procedures that rely on typical float 

behavior). 

If float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET 

(N_CYCLE) variable so users know it has been applied. 

If no estimate is made, fill value should be stored in the JULD variable in the N_MEASUREMENT 

array with the measurement code set to 250 and the STATUS set to 9. 

N_CYCLE arrays: fill value should be stored in the JULD_PARK_START variable and the 

JULD_PARK_START_STATUS set to 9. 

10.2 Park End Time (PET) 

We must check first that, for the corresponding cycle, the theoretical PARKING and PROFILE depths 

differ (be careful with PnP floats, see §3.1). 

If not, there is no PET, do not include it in the N_MEASUREMENT array and put fill value in the 

N_CYCLE array JULD_PARK_END and JULD_PARK_END_STATUS variables. 

Otherwise PET = TET - UP_TIME - DPDP hours. 

Where DPDP is the value of the Deep Profile Descent Period, a programmed meta-data parameter that 

determines the maximum amount of time given to the float for diving from PARKING to PROFILE 

depth. In older floats without this metadata, DPDP is often between 4 and 6 hours.  For the newer 

APF9 firmware, this time period is user-specified.   



181 

Argo data management                                      Argo DAC trajectory cookbook 

If the float clock offset has been estimated during the TET determination, the CLOCK_OFFSET 

(N_CYCLE) variable should also be filled. Place PET in the JULD_ADJUSTED 

(N_MEASUREMENT) variables with MC=300 and a STATUS of 1: value is estimated using 

information not transmitted by the float or by procedures that rely on typical float behaviour. 

For the N_CYCLE array, PET value should be stored in the JULD_PARK_END variable and the 

JULD_PARK_END_STATUS set to. If float clock offset has been estimated and applied, make sure 

to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied. 

10.3 Ascent Start Time (AST) 

If the PARKING and PROFILE depths are equal for cycle #i, then: 

(1) : AST(i) = TET(i) - UP TIME 

If not, we can however roughly estimate AST using AET and the profile duration. 

(2) : AST(i) = AET(i) - duration of profile #i 

The duration of profile #i can be estimated with the profile deepest pressure (ProfMaxPres(i)) and a 

mean ascent rate. 

ProfMaxPres(i)) is the maximum pressure of the profile if the Argos message of the first profile 

measurement has been received (otherwise, AST(i) should not be estimated). 

The mean Ascent rate to use can be 9.5 cm/s (see §5.2). 

Thus AST(i) = AET(i) - (PARKING_ ProfMaxPres (i) * 100 * 36)/(9.5 * 864) 

We can also verify that AST(i) is in the interval 

[TET(i) - UP TIME - DPDP hours; TET(i) - UP TIME]. 

Note that AST estimated in (1) is much more reliable than AST estimated in (2), associated JULD_QC 

should reflect it. 

The AST value should also be stored in the JULD_ADJUSTED variables with an MC = 500 and 

STATUS set to 1: value is estimated using information not transmitted by the float or by procedures 

that rely on typical float behaviour. Apply clock offset if it has been determined. 

For the N_CYCLE array, the AST value should be stored in the JULD_ASCENT_START variable 

and the JULD_ASCENT_START_STATUS set to 1. If float clock offset has been estimated and 

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been 

applied. 

If the AST value is not estimated, fill value should be stored in the JULD variable with an MC=500 

and STATUS set to 9.   

N_CYCLE arrays: fill value should be stored in the JULD_ASCENT_START variable and the 

JULD_ASCENT_START_STATUS set to 9. 

Ascent Start Time provided by the float 

Some float versions (see ANNEX H: Cookbook entry point) directly provide the time at the end of 

DOWN TIME period (DTETFL). 



182 

Argo data management                                      Argo DAC trajectory cookbook 

These float versions also provide, in the Auxiliary Engineering Data (AED), the "Time of profile 

initiation". This information is defined as the time difference, in minutes, between profile start and end 

of DOWN TIME (negative for start before expiration and positive for start after expiration, thus in this 

latter case, necessarily when TOD feature has been set). 

The AED are not always transmitted (depending on the remaining space in the last Argos message) but 

if received, this "Time of profile initiation" (TPI) can be used to compute a second value of AST 

provided by the float (ASTFL). 

ASTFL = DTETFL + TPI minutes 

ASTFL value computed from DTETFL (corrected from clock offset) does not need to be corrected from 

clock offset but the information should be set in the ASTFL storage. 

ASTFL is stored in the JULD_ADJUSTED N_MEASUREMENT arrays with the MC = 502 and the 

STATUS equal to 3: value is computed from information transmitted by the float. Clock offset has 

been applied in the DTETFL variable. 

 

Argo program measurement codes (MC) for APEX APF8 floats in REAL TIME 

Code (timing) APF8  Variable Description Units JULD_STATUS 

0 Float does not know 
when it is launched.  If 
the launch time and 
location are available 
from the ship, enter 
that time and location If 
the launch time and 
location are not 
available, use fill value.  

Launch time and 
location 

Time, position 0:  value is estimated from pre-
deployment information found in 
the metafile  
Or 
9:  value is not immediately 
known, but believe it can be 
estimated later 

100 (DST) TET from previous cycle 
OR 
Fill Value 

If TET is estimated in 
real time, use the TET 
from previous cycle.   
OR 
If TET is not estimated 
in real time, use 
FillValue 

Time 1: value is estimated using 
information not transmitted by 
the float or by procedures that 
rely on typical float behaviour  
OR 
9:  value is not immediately 
known, but believe it can be 
estimated later 

200 (DET) Not available, so use Fill 
Value 
 

  9: value is not immediately 
known, but believe it can be 
estimated later 

250 (PST) Not available, so use Fill 
Value 
 
 
OR 
 
Park Start Time 
estimated in 11.1 
 

  9: value is not immediately 
known, but believe it can be 
estimated later 
 
OR 
 
1: value is estimated using 
information not transmitted by 
the float or by procedures that 
rely on typical float behaviour  

During the drift phase, the APF8 makes drift measurements.  Common codes are listed below.  See 3.4.1.1 for CTD 
measurements during drift for APEX floats   

296 Average pressure 
Average temperature 

Any averaged 
measurements made 
during drift 

Pressure 
Temp 

2: value is transmitted by the 
float 

297 Minimum pressure 
Minimum temperature 

Minimum value taken 
during drift 

Pressure 
Temp 

2: value is transmitted by the 
float 

298 Maximum pressure Maximum value taken Pressure 2: value is transmitted by the 



183 

Argo data management                                      Argo DAC trajectory cookbook 

Maximum temperature during drift Temp float 

End of drift measurements 

300 (PET) Not available, so use Fill 
Value 
 
 
OR 
 
Park End Time estimated 
using 11.1 
 
 
 
CTD performed at end of 
drift 

 Time 
 
 
 
 
 
Time 
 
 
 
 
 
P, T, S 

9: value is not immediately 
known, but believe it can be 
estimated later 
 
OR 
 
1: value is estimated using 
information not transmitted by 
the float or by procedures that 
rely on typical float behaviour  
 
 

301 Average pressure during 
drift 

Best estimate of drift 
depth.  See section 
3.4.3 for more details 

Pressure 3: value is directly computed 
from relevant, transmitted float 
information 

400 (DDET) Not available, so use Fill 
Value 
 

  9: value is not immediately 
known, but believe it can be 
estimated later 

500 (AST) If PARK and PROFILE 
depths are equal and TET 
is estimated in real time: 
AST(i)=TET(i) – UP TIME 
 
OR 
 
Ascent Start Time 
estimated in 11.1 
 
 
 
OR  
 
FillValue  

See 3.2.2.1.7 Time 1: value is estimated using 
information not transmitted by 
the float or by procedures that 
rely on typical float behaviour  
 
OR 
 
1: value is estimated using 
information not transmitted by 
the float or by procedures that 
rely on typical float behaviour  
 
OR 
 
9:  value is not immediately 
known, but believe it can be 
estimated later 

501  DownTimeEpoch/UNIX 
epoch when the down-
time expired 

Down-time end time – 
time out 

Time 2: value is transmitted by the 
float  

600 (AET) Float does not know 
when it reaches the 
surface, so Fill Value 

 Time 9:  value is not immediately 
known, but believe it can be 
estimated later 

700 (TST) See section 3.2.2.1.9 & 
6.2 

Based on Argos 
messages 

Time 3: value is directly computed 
from relevant, transmitted float 
information  

701 TST sent by 
APEX floats 

TSTFL = DTETFL + TOTPI 
minutes 

See 3.2.2.1.9.2 Time 3: value is directly computed 
from relevant, transmitted float 
information 

702 (FMT) Earliest time of all Argos 
messages received 

Time Time 4:  value is determined by 
satellite 

703 (ST) All Argos times and 
locations 

 Time, Position 4:  value is determined by 
satellite 

704 (LMT) Latest time of all Argos 
messages received 

 Time 4:  value is determined by 
satellite 

800 (TET) 3.2.2.1.1 and Annex B 
(5.3)  
OR 
FillValue 

DACs can choose to 
make this estimate in 
real time or not.  
Annex B explains how 
to make the estimate.  
3.2.2.1.1 gives 
guidance how to 
implement the 

Time 3: value is directly computed 
from relevant, transmitted float 
information 
OR 
9:  value is not immediately 
known, but believe it can be 
estimated later 



184 

Argo data management                                      Argo DAC trajectory cookbook 

method in Annex B 

 

 

 

 


	Table of contents
	History of the document
	1 Introduction
	1.1 Cook book usage and update
	1.2 Real time TRAJ file expected contents
	1.2.1 Duplicated times
	1.2.2 Data resolution
	1.2.3 N_CYCLE Array
	1.2.4 Cycle number management in RT TRAJ
	1.2.5 Clock offset
	1.2.5.1 How to put clock offset into trajectory file in real time
	1.2.5.2 How to put clock offset in trajectory file in delayed mode



	2 Trajectory files
	2.1 Surface fixes
	2.1.1 Launch position and time
	2.1.2 For Argos APEX floats
	2.1.3 Other surface location fixes
	2.1.3.1  Argos surface locations
	2.1.3.2 GPS surface locations
	2.1.3.3 Iridium surface locations
	2.1.3.4 Estimated positions
	2.1.3.5 RAFOS positions


	2.2 How to calculate cycle timing variables
	2.2.1 Positioning system and transmission system times
	2.2.1.1 For Argos floats
	2.2.1.1.1 First and last message times
	2.2.1.1.2 First and last location times

	2.2.1.2 For Iridium floats
	2.2.1.2.1 First and last message times
	2.2.1.2.2 First and last location times


	2.2.2 Times of float events
	2.2.3 APEX floats
	2.2.4 APEX floats with the APF8 controller board
	2.2.4.1 Transmission End Time determination – APEX APF8 floats
	2.2.4.2 Descent Start Time determination – APEX APF8
	2.2.4.3 Descent End Time determination – APEX APF8
	2.2.4.4 Park Start Time determination – APEX APF8 in Delayed Mode
	2.2.4.5 Park End Time determination – APEX APF8
	2.2.4.6 Deep Descent End Time determination – APEX APF8
	2.2.4.7 Ascent Start Time determination – APEX APF8
	2.2.4.8 Argos APEX floats that do not provide this time
	2.2.4.9 Ascent Start Time provided by APEX floats
	2.2.4.10 Ascent End Time determination – APEX APF8
	2.2.4.11 Transmission Start Time determination – APEX APF8
	2.2.4.12 Argos APEX floats
	2.2.4.13 Transmission Start Time provided by APEX Argos floats

	2.2.5 APEX floats with the APF9a or APF9t controller
	2.2.5.1   Auxiliary Engineering Data (AED)

	2.2.6 APEX floats with the APF9i controller and Seabird NAVIS floats
	2.2.6.1 Transmitted time stamp information from msg files
	2.2.6.1  Descent Start Time
	2.2.6.2 Descent End Time (DET)
	2.2.6.3 Park End Time (PET)
	2.2.6.4 Ascent Start Time (AST) and Deep Descent End Time (DDET)
	2.2.6.5 Ascent Start Time
	2.2.6.6 Ascent End Time (AET)
	2.2.6.7 Transmission Start Time (TST)
	2.2.6.8 Transmission End Time (TET)

	2.2.7 Apex APF11 Argos floats with firmware version 2.8.0 or 2.10.4
	2.2.8 Apex APF11 floats with Iridium
	2.2.9 HM2000 floats
	2.2.10 NEMO floats
	2.2.10.1.1 Descent Start Time - NEMO
	2.2.10.1.2 First Stabilization Time - NEMO
	2.2.10.1.3 Descent End Time & Park Start Time - NEMO
	2.2.10.1.4 Park End Time - NEMO
	2.2.10.1.5 Deep Descent End Time - NEMO
	2.2.10.1.6 Ascent Start Time - NEMO
	2.2.10.1.7 Ascent End Time - NEMO
	2.2.10.1.8 Transmission Start Time - NEMO
	2.2.10.1.9 Transmission End Time - NEMO

	2.2.11 NINJA floats
	2.2.11.1.1 Dated events for NINJA 300001, 300002 and 300003 versions
	2.2.11.1.1.1 Descent Start Time - NINJA
	2.2.11.1.1.2 First Stabilization Time - NINJA
	2.2.11.1.1.3 Park Start Time - NINJA
	2.2.11.1.1.4 Park End Time - NINJA
	2.2.11.1.1.5 Deep Descent End Time - NINJA
	2.2.11.1.1.6 Ascent Start Time - NINJA
	2.2.11.1.1.7 Ascent End Time - NINJA
	2.2.11.1.1.8 Transmission Start Time - NINJA
	2.2.11.1.1.9 Transmission End Time - NINJA

	2.2.11.1.2 2008 NINJA floats

	2.2.12 Deep NINJA floats
	2.2.13 NOVA floats
	2.2.13.1.1 Launch time
	2.2.13.1.2 Descent Start Time - NOVA
	2.2.13.1.3 First Stabilization Time - NOVA
	2.2.13.1.4 Park Start Time - NOVA
	2.2.13.1.5 Park End Time - NOVA
	2.2.13.1.6 Deep Descent End Time - NOVA
	2.2.13.1.7 Ascent Start Time - NOVA
	2.2.13.1.8 Ascent End Time - NOVA
	2.2.13.1.9 Transmission Start Time & First Message Time- NOVA
	2.2.13.1.10 Transmission End Time & Last Message Time- NOVA

	2.2.14 PROVOR  floats
	2.2.14.1.1 Timed events for PROVOR 101011, 101012, 101014, 101015, 101013, 100001, 101017, 101018 and 101019 versions
	2.2.14.1.1.1 Descent Start Time
	2.2.14.1.1.2 First Stabilization Time
	2.2.14.1.1.3 Park Start Time
	2.2.14.1.1.4 Park End Time
	2.2.14.1.1.5 Deep Park Start Time
	2.2.14.1.1.6 Ascent Start Time
	2.2.14.1.1.7 Ascent End Time
	2.2.14.1.1.8 Transmission Start Time

	2.2.14.1.2 Timed events for PROVOR 102002, 102003 and 102004 versions
	2.2.14.1.2.1 Descent Start Time
	2.2.14.1.2.2 First Stabilization Time
	2.2.14.1.2.3 Park Start Time
	2.2.14.1.2.4 Park End Time
	2.2.14.1.2.5 Deep Park Start Time
	2.2.14.1.2.6 Ascent Start Time
	2.2.14.1.2.7 Ascent End Time
	2.2.14.1.2.8 Transmission Start Time

	2.2.14.1.3 Timed events for PROVOR 101009, 101006, 101008 and 101010 versions
	2.2.14.1.3.1 Descent Start Time
	2.2.14.1.3.2 First Stabilization Time
	2.2.14.1.3.3 Park Start Time
	2.2.14.1.3.4 Park End Time
	2.2.14.1.3.5 Deep Park Start Time
	2.2.14.1.3.6 Ascent Start Time
	2.2.14.1.3.7 Ascent End Time
	2.2.14.1.3.8 Transmission Start Time

	2.2.14.1.4 Timed events for PROVOR 100006, 100005, 100004, 100008 and 100003 versions
	2.2.14.1.4.1 Descent Start Time
	2.2.14.1.4.2 First Stabilization Time
	2.2.14.1.4.3 Park Start Time
	2.2.14.1.4.4 Park End Time
	2.2.14.1.4.5 Deep Park Start Time
	2.2.14.1.4.6 Ascent Start Time
	2.2.14.1.4.7 Ascent End Time
	2.2.14.1.4.8 Transmission Start Time

	2.2.14.1.5 Timed events for PROVOR 101007 version
	2.2.14.1.5.1 Descent Start Time
	2.2.14.1.5.2 First Stabilization Time
	2.2.14.1.5.3 Park Start Time
	2.2.14.1.5.4 Park End Time
	2.2.14.1.5.5 Deep Park Start Time
	2.2.14.1.5.6 Ascent Start Time
	2.2.14.1.5.7 Ascent End Time
	2.2.14.1.5.8 Transmission Start Time

	2.2.14.1.6 Timed events for PROVOR 101002, 101005 and 100002 versions
	2.2.14.1.6.1 Descent Start Time
	2.2.14.1.6.2 First Stabilization Time
	2.2.14.1.6.3 Park Start Time
	2.2.14.1.6.4 Park End Time
	2.2.14.1.6.5 Deep Park Start Time
	2.2.14.1.6.6 Ascent Start Time
	2.2.14.1.6.7 Ascent End Time
	2.2.14.1.6.8 Transmission Start Time

	2.2.14.1.7 Timed events for PROVOR 101003 and 101004 versions
	2.2.14.1.7.1 Descent Start Time
	2.2.14.1.7.2 First Stabilization Time
	2.2.14.1.7.3 Park Start Time
	2.2.14.1.7.4 Park End Time
	2.2.14.1.7.5 Deep Park Start Time
	2.2.14.1.7.6 Ascent Start Time
	2.2.14.1.7.7 Ascent End Time
	2.2.14.1.7.8 Transmission Start Time

	2.2.14.1.8 From day, hours and minutes to time
	2.2.14.1.9 Technical time resolution

	2.2.15 PROVORCTS3 & Arvor Iridium
	2.2.16 Arvor Argos
	2.2.17 SOLO floats
	2.2.18 SOLO-II floats

	2.3 Guidelines for Argos message selection
	2.3.1 Argos float message selection

	2.4 Sensor measurements
	2.4.1 Sensor measurements sampled during the drift phase at parking depth
	2.4.1.1 APEX and Navis floats
	2.4.1.1.1 CTD measurement sampled at the end of the drift phase at parking depth
	2.4.1.1.2 CTD measurements regularly sampled during the drift phase at parking depth
	2.4.1.1.2.1 Normal float behavior
	2.4.1.1.2.2 Floats with daily CTD measurements
	2.4.1.1.2.3 Floats providing only averaged values
	2.4.1.1.2.4 Isopycnal floats behavior
	2.4.1.1.2.5 Old versions of isopycnal floats
	2.4.1.1.2.6 RAFOS floats behavior

	2.4.1.1.3 Minimum and maximum values of pressure during drift
	2.4.1.1.4 PARAM at min/max of another PARAM
	2.4.1.1.5 BGC measurements regularly sampled during the drift phase at parking depth

	2.4.1.2 PROVOR floats
	2.4.1.2.1 CTD measurements regularly sampled during the drift phase at parking depth
	2.4.1.2.1.1 Drift measurement times determination for PROVOR 101011, 102002, 101012, 101014, 101015, 102003, 101013 and 100001 versions
	2.4.1.2.1.2 Drift measurement times determination for PROVOR 101009, 101006, 101008, 101007, 101010, 101002, 101005, 101003, 101004 and 100002 versions

	2.4.1.2.2 Minimum and maximum values of pressure during drift

	2.4.1.3 NINJA floats
	2.4.1.3.1 CTD measurements for NINJA 300001, 300002 and 300003 versions
	2.4.1.3.1.1 CTD measurement sampled at the beginning and end of the drift phase at parking depth
	2.4.1.3.1.2 CTD measurements regularly sampled during the drift phase at parking depth

	1.
	2.
	2.1.
	2.2.
	2.3.
	2.4.
	2.4.1.
	2.4.1.1.
	2.4.1.2.
	2.4.1.3.
	2.4.1.3.1.
	2.4.1.3.1.1.
	2.4.1.3.1.2.
	2.4.1.3.1.3. CTD measurements for NINJA 300004 version

	2.4.1.4 SOLO-II and SOLO floats
	2.4.1.5 NOVA floats

	2.4.2 REPRESENTATIVE_PARK_PRESSURE
	2.4.3 Ascending and descending measurements
	2.4.3.1 Stabilization CTD measurements
	2.4.3.1.1 PROVOR floats
	2.4.3.1.2 NINJA floats

	2.4.3.2 APEX descending pressure marks
	2.4.3.2.1 APEX Argos floats
	2.4.3.2.2 APEX Iridium floats

	2.4.3.3 APEX isopycnal pre-stabilization measurements
	2.4.3.4 Dated bins of descending/ascending profiles
	2.4.3.4.1 PROVOR floats
	2.4.3.4.2 NINJA floats
	2.4.3.4.3 SOLO-II floats

	2.4.3.5 Deepest descending/ascending CTD measurements
	2.4.3.6 Max pressure during descent to PARKING depth
	2.4.3.7 Min/max pressure during drift at PROFILE depth
	2.4.3.8 Max pressure during descent to PROFILE depth
	2.4.3.9 Max pressure of the cycle
	2.4.3.10 PROVOR Iridium spy data

	2.4.4 Surface measurements
	2.4.4.1 NKE floats
	2.4.4.1.1 NKE Oxygen only floats without the “Near Surface & In Air” feature
	2.4.4.1.2 NKE Oxygen only floats with the “Near Surface & In Air” feature
	2.4.4.1.3 NKE BGC floats
	2.4.4.1.3.1 For Provor CTS4 floats
	2.4.4.1.3.2 For Provor CTS5 floats


	2.4.4.2 Apex floats
	2.4.4.2.1 For Apex Argos floats
	2.4.4.2.2 For Apex Iridium floats
	2.4.4.2.2.1 Apex APF9 floats
	2.4.4.2.2.2 Apex APF11 floats


	2.4.4.3 Navis floats


	2.5 GROUNDED Flags

	ANNEX A: Some definitions
	2.6 Definitions of Argos raw data contents
	2.7 Cyclic Redundancy Check
	2.8 Float clock drift and clock offset
	2.9 APEX Argos test/data messages
	2.10 APEX Deep Profile First floats
	2.11 APEX Time Of Day feature
	2.12 APEX Auxiliary Engineering Data

	3  ANNEX B: Transmission End Time estimation for an APEX Argos float
	3.1 Apex float theoretical functioning
	3.2 The Park et al. method
	3.3 The proposed method
	3.3.1 First algorithm: Transmission End Times estimated from the maximum envelope of the Last Message Times
	3.3.2 Second algorithm: Transmission End Times estimated by a method that takes the float clock offset into account
	3.3.2.1 Step #1
	3.3.2.2 Step #2
	3.3.2.3 Step #3
	3.3.2.4 Step #4
	3.3.2.5 Step #5
	3.3.2.6 Step #6
	3.3.2.7 Example of implementation of the second algorithm

	3.3.3 Final improvement: taking the cycle duration anomalies into account
	3.3.4 Results obtained in the ANDRO data set
	3.3.5 Recommended method for real time processing


	4 ANNEX C: Computing Transmission Start Time for and APEX Argos float
	4.1 Teledyne Webb Research proposed method
	4.2 An improved proposed method

	5 ANNEX D: Apex float vertical velocities
	5.1 APEX float descending velocity
	5.2 APEX float ascending velocity

	6 ANNEX E: Input parameters
	7 ANNEX F: Measurement code table
	7.1 General Measurement Code Table Key
	7.2 Relative Generic Code Table Key (from MC minus 24 to MC minus 1)
	7.3 Measurement Code Table

	8 ANNEX G: Implementation of the JAMSTEC trajectory quality control method
	8.1 Inputs
	8.2 Algorithm
	8.2.1 Step 1
	8.2.2 Step 2
	8.2.3 Step 3
	8.2.4 Step 4

	8.3 Speed test
	8.3.1 Case of different Argos classes
	8.3.2 Case of identical Argos classes

	8.4 Distance test
	8.5 Distance computation
	8.5.1 Matlab implementation of the LPO distance algorithm
	8.5.2 Test points


	9 ANNEX H: Cookbook entry point
	9.1 PROVOR floats
	9.2 PROVOR-MT floats
	9.3 ARVOR floats
	9.4 NINJA floats

	10 ANNEX I: APEX APF8 Estimation methods for PST, PET, AST
	10.1  Park Start Time (PST)
	10.2 Park End Time (PET)
	10.3 Ascent Start Time (AST)


