An assessment of global and regional sea level for years 1993-2007 in a suite of interannual CORE-II simulations
Type | Article | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | 2014-06 | ||||||||||||
Language | English | ||||||||||||
Author(s) | Griffies Stephen M.1, Yin Jianjun2, Durack Paul J.3, Goddard Paul2, Bates Susan C.4, Behrens Erik5, Bentsen Mats6, Bi Daohua7, Biastoch Arne5, Boening Claus W.5, Bozec Alexandra8, Chassignet Eric8, Danabasoglu Gokhan4, Danilov Sergey9, Domingues Catia M.10, Drange Helge11, Farneti Riccardo12, Fernandez Elodie13, Greatbatch Richard J.5, Holland David M.14, Ilicak Mehmet6, Large William G.4, Lorbacher Katja7, Lu Jianhua8, Marsland Simon J.7, Mishra Akhilesh8, Nurser A. J. George15, Salas Y Melia David16, Palter Jaime B.17, Samuels Bonita L.1, Schroeter Jens9, Schwarzkopf Franziska U.5, Sidorenko Dmitry9, Treguier Anne-Marie18, Tseng Yu-Heng4, Tsujino Hiroyuki19, Uotila Petteri7, Valcke Sophie13, Voldoire Aurore16, Wang Qiang9, Winton Michael1, Zhang Xuebin20 | ||||||||||||
Affiliation(s) | 1 : NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540, USA. 2 : Univ Arizona, Dept Geosci, Tucson, AZ 85721, USA. 3 : Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA, USA. 4 : Natl Ctr Atmospher Res, Boulder, CO 80307, USA. 5 : GEOMAR Helmholtz Ctr Ocean Res Kiel, Kiel, Germany. 6 : Uni Res Ltd, Uni Climate, Bergen, Norway. 7 : CSIRO, Ctr Australian Weather & Climate Res, Melbourne, Vic, Australia. 8 : Florida State Univ, Ctr Ocean Atmospher Predict Studies, Tallahassee, FL 32306, USA. 9 : Alfred Wegener Inst AWI Polar & Marine Res, Bremerhaven, Germany. 10 : Univ Tasmania, Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas, Australia. 11 : Univ Bergen, Bergen, Norway. 12 : Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. 13 : CNRS INSU, URA 1875, Ctr Europeen Rech & Format Avanceen Calcul Sci, Toulouse, France. 14 : NYU, New York, NY 10012 ,USA. 15 : Natl Oceanog Ctr Southampton, Southampton, Hants, England. 16 : Ctr Natl Rech Meteorol CNRM GAME, Toulouse, France. 17 : McGill Univ, Montreal, PQ, Canada. 18 : CNRS Ifremer IRD UBO, UMR 6523, Lab Phys Oceans, Plouzane, France. 19 : Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki 305, Japan. 20 : CSIRO, Ctr Australian Weather & Climate Res, Hobart, Tas, Australia. |
||||||||||||
Source | Ocean Modelling (1463-5003) (Elsevier Sci Ltd), 2014-06 , Vol. 78 , P. 35-89 | ||||||||||||
DOI | 10.1016/j.ocemod.2014.03.004 | ||||||||||||
WOS© Times Cited | 92 | ||||||||||||
Note | CORE-II Virtual Special Issue | ||||||||||||
Keyword(s) | Sea level, CORE global ocean-ice simulations, Steric sea level, Global sea level, Ocean heat content | ||||||||||||
Abstract | The Palomares Margin, an NNE–SSW segment of the South Iberian Margin located between the Alboran and the Algerian–Balearic basins, is dissected by two major submarine canyon systems: the Gata (in the South) and the Alías–Almanzora (in the North). New swath bathymetry, side-scan sonar images, accompanied by 5 kHz and TOPAS subbottom profiles, allow us to recognize these canyons as Mediterranean examples of medium-sized turbidite systems developed in a tectonically active margin.The Gata Turbidite System is confined between residual basement seamounts and exhibits incised braided channels that feed a discrete deep-sea fan, which points to a dominantly coarse-grained turbiditic system. The Alías–Almanzora Turbidite System, larger and less confined, is a good example of nested turbiditic system within the canyon. Concentric sediment waves characterize the Alías–Almanzora deep-sea fan, and the size and acoustic character of these bedforms suggest a fine-grained turbidite system. Both canyons are deeply entrenched on a narrow continental shelf and terminate at the base of the continental slope as channels that feed deep sea fans. While the Alías–Almanzora Turbidite System is the offshore continuation of seasonal rivers, the Gata Turbidite System is exclusively formed by headward erosion along the continental slope. In both cases, left-lateral transpressive deformation influences their location, longitudinal profiles, incision at the upper sections, and canyon bending associated with specific fault segments. | ||||||||||||
Full Text |
|